
Software Product Lines

Klaus Pohl and Andreas Metzger

1 Introduction

Software product line engineering (SPLE) has proven to empower industry to
develop a diversity of similar systems at lower cost, in shorter time, and with
higher quality when compared with the development of single systems [1, 2]. A
software product line (also sometimes called software product family) is “a set of
software-intensive systems that share a common, managed set of features satisfying
the specific needs of a particular market segment or mission and that are developed
from a common set of core assets [artifacts] in a prescribed way” [3].

SPLE exploits the commonalities of the different systems (typically called
applications) belonging to the product line and systematically handles the variation
(i.e., the differences) among those applications. Commonality is invariant for (i.e.,
shared by) all product line applications [4]; for example, all mobile phones allow
users to make calls. Product line variability defines how the different applications
of the product line may vary [5]. Product line applications may differ in terms of
features and functional and quality requirements they fulfill; for example, some
tablet computers may include mobile broadband connectivity, while others may not.

The SPLE paradigm has a strong track record of success in industry. Success
stories can be found in textbooks (such as [1, 3, 6]) or in the product line hall of
fame of the leading international software product line conference (http://splc.net/
fame.html). Reported benefits of SPLE include improved productivity by as much
as a factor of 10, increased quality by as much as a factor of 10, decreased cost by as
much as 60%, decreased labor needs by as much as 87%, decreased time to market
by as much as 98%, and ability to move into new markets in months, not years.

K. Pohl (�) · A. Metzger
Paluno (The Ruhr Institute for Software Technology), University of Duisburg-Essen, Essen,
Germany
e-mail: andreas.metzger@paluno.uni-due.de; klaus.pohl@paluno.uni-due.de

© The Author(s) 2018
V. Gruhn, R. Striemer (eds.), The Essence of Software Engineering,
https://doi.org/10.1007/978-3-319-73897-0_11

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73897-0_11&domain=pdf
http://splc.net/fame.html
http://splc.net/fame.html
mailto:andreas.metzger@paluno.uni-due.de
mailto:klaus.pohl@paluno.uni-due.de
https://doi.org/10.1007/978-3-319-73897-0_11


186 K. Pohl and A. Metzger

In this chapter, we describe the key differences between software product line
engineering and the development of single software systems (Sect. 2). In particular,
we provide an overview of the activities and techniques used in the two development
processes of SPLE (Sects. 3 and 4) and discuss different ways for modeling the
variability of software product lines (Sect. 5). Finally, we provide some examples of
using variability modeling techniques in non-SPLE settings (Sect. 6).

2 Differences Between SPLE and Single System Development

Figure 1 depicts a well-established SPLE framework defined in the European SPLE
research projects ESAPS, CAFÉ, and FAMILIES. The framework was adopted
as part of the ISO/IEC standard #26550 (“Software and systems engineering:
Reference model for product line engineering and management”). It is described
in detail in [1].

The SPLE framework highlights the main differences between the development
of single systems and software product line engineering: the two complementary
development processes (“domain engineering” and “application engineering”) as
well as the explicit modeling and management of product line variability (“domain
variability model” and “application variability model”).

gnire enignE
n ia

mo
D

gnire enignE
noita cilpp

A

Domain
Requirements
Engineering

Domain
Realization

Domain
Quality 

Assurance

Domain
Design

Application
Requirements
Engineering

Application
Realization

Application
Quality

Assurance

Application 1 Artifacts

Test Cases, …Requirements

Product Line Platform (Domain Artifacts)

Product
Management

Application n Artifacts

Application
Design

Requirements Architecture Components Test Cases, …

Domain Variability Model

Application Variability Model

Domain 
Artefact 
Definition

Domain 
Artifact 
Reuse

Application 
Derivation

Domain 
Engineering
Life-cycle

Application 
Engineering
Life-cycle

Trace Links
Architecture Components

Fig. 1 SPLE framework (adapted from [1])



Software Product Lines 187

2.1 Two Development Processes

SPLE differentiates between the following two complementary development pro-
cesses.

Domain Engineering The domain engineering process (shown in the upper half
of Fig. 1) is responsible for defining the commonality and the variability of the
product line, as well as for developing the domain artifacts. Domain artifacts
“realize” commonality and variability. They include, among others, requirements
artifacts (e.g., use case diagrams, requirements models), architectural artifacts (e.g.,
component models, class diagrams), implementation artifacts (e.g., source code
files, libraries), and test artifacts (e.g., test cases, test data). The product line platform
encompasses the domain artifacts of the product line. Important parts of the product
line platform are the domain requirements and the product line architecture. The
product line architecture is often called the reference architecture of the product
line [1, 6]. We elaborate on the development activities executed during domain
engineering in Sect. 3.

Application Engineering The application engineering process (shown in the lower
half of Fig. 1) is responsible for deriving concrete applications from the domain
artifacts. During application engineering, the variability of the domain artifacts is
exploited and bound (resolved) according to the needs and requirements of the
particular application. Thereby, invariant and variant domain artifacts are reused.
We elaborate on the activities during application engineering in Sect. 4.

2.2 Product Line Variability

Product line variability is the key, crosscutting concern in SPLE [1, 3]. Product
line variability defines how applications of a software product line can differ, for
example, in terms of properties, features offered, functions, or qualities offered.
Whether a given property is invariant (common) or variable for the applications of
the software product line is determined by explicit management decisions, typically
made by product management [1, 5]. Product line variability is documented in so-
called variability models. The SPLE framework in Fig. 1 differentiates between two
types of variability models: domain variability models and application variability
models [7].

During domain engineering, the variability of the product line is defined and
documented in the domain variability model. In application engineering, the
variability defined in the domain variability model is bound in order to fulfill the
application-specific requirements. The variability bindings for a specific application
are documented in the application variability model.

Product line variability is preplanned in order to fulfill different market and
stakeholder needs. Still, application engineers may face the problem that individual
customer- or market-specific needs cannot be satisfied by reusing common and



188 K. Pohl and A. Metzger

variable domain artifacts. In this case, customer- or market-specific extensions or
adjustments of the common and variable artifacts are required. The adjustment
required can be enabled by initiating a product line evolution (e.g., by introducing
additional product line variability) or by adapting the application artifacts and
document such adaptation in the application variability model [7]. An application
variability model thus documents both the variability bound for the specific
application and the application-specific adaptations.

2.3 Software Variability Versus Product Line Variability

Software variability refers to the ability of software systems or artifacts to be
efficiently extended, changed, customized, or configured [8]. Most modeling and
programming languages provide mechanism for software variability. Examples
include abstract superclasses allowing different specializations, interfaces facili-
tating different implementations, or conditional compilation (e.g., using #ifdefs)
facilitating the inclusion of different code fragments.

In contrast to software variability, product line variability defines how the
applications of a product line can differ. Together with the commonalities, product
line variability defines the scope of a product line (see Sect. 3.1). Product line
variability is preplanned. Defining whether a given feature, functional or quality
requirement is product line variability or not requires explicit decisions from product
management or other stakeholders.

Software variability can represent both product line variability as well as
commonality. As an example for software variability, take the abstract superclass
Communication with two concrete subclasses, WiFi and MobileBroadband, docu-
mented in a UML class diagram. Clearly, the superclass together with the subclasses
documents software variability. In principle, any of the two or even both subclasses
could be used in place of the superclass.

This software variability, on the one hand, can represent a commonality if
the stakeholders, for instance, had decided that all product line applications
must include both subclasses WiFi and MobileBroadband—in other words, if
the stakeholders have decided that the product line applications cannot differ in
terms of the communication used. In such cases, software variability documents
commonality of the product line and not product line variability. On the other
hand, this software variability could also document product line variability. For
example, if the stakeholders had decided that for each application of the product
line the engineer has to choose at least one of the two communication subclasses, the
applications could differ in terms of the subclasses they include for communication.

Consequently, product line variability cannot be automatically derived from
software variability. In other words, product line variability cannot be identified by
analyzing software variability documented in existing software artifacts or models.
Thus, defining and modeling product line variability requires additional modeling
concepts (see Sect. 5).



Software Product Lines 189

3 Domain Engineering

3.1 Product Management

The main task of product management in SPLE is product line scoping [9]. One
facet of product line scoping is the definition of the product portfolio, that is, the set
of applications offered for a certain market segment by a particular business unit or
company. Further facets commonly include the definition of which set of features
as well as which set of domain artifacts can be economically reused. If the scope of
a software product line is too broad, domain artifacts may become too generic and
the effort of realizing them may become too high. In this case, the product line may
not be economically viable. On the other hand, if the scope is defined too narrow,
required features as well as functional and quality requirements of many customers
may not be covered and thus only very few applications might be derived from the
product line. Again, the product line may not be economically viable. Therefore,
product line scoping techniques need to include cost estimations and benefits as
well as business and technical experts.

3.2 Domain Requirements Engineering

Domain requirements engineering encompasses the typical requirements engineer-
ing activities [10], such as elicitation, negotiation, documentation, validation, and
management, but in this case for the common and variable requirements for the
product portfolio envisioned by product management. To identify all relevant
common and variable requirements, product line requirements engineers have to
involve a larger number of stakeholders than for single systems and have to consider
additional requirements sources and constraints [1]. For example, a product line
may address multiple customer groups and thus requirements engineers need to
involve representatives of those groups, which requires support for the elicitation
and documentation of common and variable requirements [11].

The amount of commonality and variability defined in domain requirements
engineering has a huge impact on all other product line engineering activities, both
in domain and application engineering. A high percentage of common features
and common domain requirements in a product line typically require lower effort
for designing and realizing the product line. Moreover, common requirements and
domain artifacts are essential to engineering a product line platform that is stable yet
flexible enough. On the other hand, the extent of variable requirements determines
the potential number of different applications that can be derived from the product
line and thus has significant impact on whether all goals and needs of the envisioned
customers and/or market segments may be satisfied [1]. If a set of differing but
related requirements is identified, two principal ways to treat those requirements
exist. Those requirements may be defined as variable in the domain requirements.



190 K. Pohl and A. Metzger

Or those requirements may be harmonized or generalized and thereby defined as
a common domain requirement. Determining how to treat those requirements is
clearly a trade-off decision that has to be made in concert with product management
and scoping.

3.3 Domain Design

Domain design encompasses all activities for defining the reference architecture of
the product line. Numerous SPLE design methods have been advocated and targeted
techniques for modeling variability in the architecture are available.

Traditionally, product line architecture approaches have been component based.
In such a setting, variability is realized as component compositions and/or by
introducing variation points into the components themselves. More recently, aspect-
oriented architectures have been proposed to better address crosscutting features.
Crosscutting features are encapsulated into modular units, the aspects, and com-
posed by means of aspect-oriented mechanisms such as advices, join-points, and
point-cuts [12]. Most recently, service-oriented architectures have been considered
as part of SPLE [13]. In contrast to a component, which represents a comprehensive
piece of software that is part of the software product line, a service represents
functionality with associated quality characteristics (typically defined in a service-
level agreement) offered by a service provider via a service interface [14]. The
service itself or the service provider can change as long as the functionality and
the service-level agreement remain the same.

3.4 Domain Realization

Domain realization deals with the detailed design and the implementation of the
domain artifacts, for example, as reusable components or services. Variability can be
realized using the capabilities of existing programming languages, compilers, and
linkers [15]. Approaches include the use of inheritance (e.g., implementing alter-
native subclasses for an abstract superclass), aspect-oriented programming (e.g.,
the weaving of alternative code), conditional compilation (e.g., using preprocessor
directives such as #ifdef), and binary replacement (e.g., providing the linker with
alternative implementations of libraries).

To explicitly handle feature modularity and feature dependencies (or interac-
tions) at the language level, new types of programming languages have been
proposed that consider features and variability as first-class concepts. Feature-
oriented programming supports the flexible and modular composition of systems
from individual features. In FOP, “a feature module encapsulates changes that are
made to a program in order to add a new capability or functionality” [16]. In delta-
oriented programming, a compositional programming language, a product line is



Software Product Lines 191

realized by a core module and a set of delta modules. The core module implements
a valid application developed with single system development techniques. Delta
modules specify changes to be applied to the core module to implement additional
applications. Changes to the core model include the adding of additional code (as in
FOP), but also removing and even the modification of code [17].

3.5 Domain Quality Assurance

Quality assurance of domain artifacts is essential for successful product line
engineering. A fault in a domain artifact may affect all applications of the product
line in which this artifact is reused. Quality assurance techniques from single-
system engineering cannot be directly applied to domain artifacts. As an example,
a domain requirements specification can define a variable requirement r, that is
related to variant v1, and a variable requirement:r related to variant v2. Performing
a consistency check of the domain requirements specification R D fr, :rg using
quality assurance techniques from single system development would identify a
contradiction between r and :r. Yet, if the variants v1 and v2 are defined to
be mutually exclusive, the contradicting requirements can never be implemented
together in the same application. Thus, the two requirements will never cause
an inconsistency. A central challenge for quality assurance techniques in domain
engineering is thus the consideration of product line variability [18].

Quality Assurance of Domain Artifacts Quality assurance of domain artifacts
calls for quality assurance techniques that work in the presence of variability,
including formal verification and testing. For the formal verification of product
line artifacts, prominent verification techniques from single systems engineering
have been adapted to the software product line setting, including type checking,
model checking, and theorem proving. To handle variability during verification,
various strategies have been followed, such as checking representative applications,
checking features in isolation, or aiming to check all potential applications of the
product line [18].

As in the development of single systems, testing in SPLE aims to execute the
software to uncover the evidence of defects. One class of domain testing techniques
includes techniques for developing reusable test cases in domain engineering and
reusing and executing these test cases in application engineering [19]. In addition,
domain testing aims to uncover evidence of defects in domain artifacts before these
artifacts are reused in application engineering. Due to the variability defined in the
domain artifacts, testing all potential product line applications (i.e., all potential
combination of the common and variable artifacts) during domain engineering is
impossible [20]. Typical domain testing strategies thus reduce the number of artifact
combinations by using pairwise or t-wise testing strategies, or by focusing on
important features and feature combinations.



192 K. Pohl and A. Metzger

Variability Analysis The consistency of the variability model is often a prereq-
uisite for the analysis of domain artifacts. Variability analysis techniques help to
ensure this consistency. Variability analysis aims to check and ensure whether
certain properties for a given variability model hold. Examples for properties
checked are satisfiability (i.e., whether at least one application can be derived from
the variability model), membership (i.e., whether a given configuration is consistent
with the variability model and thus represents a valid application of the product
line), commonality (i.e., the set of “features” that appear in all applications), and
“dead” features (i.e., features that cannot be selected for any application).

Manual analysis of variability models is error prone and infeasible when facing
large-scale variability models. A broad spectrum of automated variability analysis
techniques has been proposed which can be categorized in three main classes [21]:
propositional-logics-based (using SAT or BDD solvers), constraint-programming-
based (using CSP solvers), and description-logics-based (using DL reasoners). In
general, variability model analyses exhibit an exponential worst-case execution
time. Yet, research results indicate that in most cases variability model analysis can
be mastered quite successfully using powerful solvers [22].

4 Application Engineering

4.1 Application Requirements Engineering

During application requirements engineering, the requirements for a specific appli-
cation are defined. In general, the application-specific requirements should be
satisfied by exploiting the variability and using the commonality defined for the
software product line. The application-specific binding of the variability is defined
in the application variability model [1, 7].

In SPLE research, many publications convey the impression that an application
can be derived from the domain artifacts by binding the defined variability of the
product line and thus application derivation is seen purely as a feature selection
process. For example, decision models define the decisions to be taken to derive
an application of the product line [23]. To guide users to make those decisions,
specific tools have been suggested. In the extreme, fully automated approaches have
been devised that aim at optimal feature selection, for example, using search-based
techniques.

In practice, customer- or market-specific applications often cannot be fully
realized by reusing domain artifacts alone [7]. Often, there are application-specific
requirements that cannot be satisfied by reusing domain requirements and thus
require application-specific extensions to satisfy them. In order to handle such
application-specific deviations from product line requirements, these application-
specific extensions should be modeled as application-specific variation and
documented, in addition to the variability bindings, in the application variability
model [7].



Software Product Lines 193

4.2 Application Design

Based on the application requirements, the application-specific architecture is
derived from the domain architecture. The application architecture is typically a
specialization of the reference architecture of the product line [1].

During application design, the design alternatives documented as variability
in the domain architecture are assessed. The alternatives that fit the application
requirements best are selected. Yet, in the case of application-specific deviations
(see above), additional design decisions may have to be taken in order to derive
an architecture that satisfies the application-specific requirements. Or even the
architecture might have to be extended or adjusted, or the evolution of the product
line architecture might be triggered.

4.3 Application Realization

During application realization, code artifacts developed during domain engineering
are derived and adjusted based on the application architecture and the application-
specific requirements. For example, by parameterizing code modules using software
configuration techniques, code modules can be adapted to fit a particular applica-
tion. Application realization techniques facilitate such adaptations. An alternative
approach to software configuration is code generation. Code generation techniques
for product line applications have mainly adapted techniques from model-driven
development and domain-specific languages.

Generative software product lines, a subclass of software product lines, support
the derivation of individual applications without programming glue code or modi-
fying the domain components. Yet, such an ideal approach is often not possible in
practice (see above). In other words, application-specific coding and adjustments
are usually required.

4.4 Application Quality Assurance

Due to the variability of the reusable artifacts, it is impossible—except for trivial
product lines—to comprehensively test all potential product line applications during
domain engineering. Moreover, if based on concrete application requirements,
specific variants are developed or application-specific extensions are made (e.g., see
the discussion in Sect. 4.1), such variants and extensions can only be tested during
application engineering.

Application testing techniques support the derivation of application-specific
test cases from reusable domain test artifacts [19, 24]. Some application testing
techniques aim to minimize the retesting of application parts already been tested



194 K. Pohl and A. Metzger

for another application of the product line, thereby representing a special case of
regression testing [25].

5 Modeling Product Line Variability

As explained in Sect. 2.3, product line variability differs significantly from software
variability. Product line variability needs to be explicitly defined to empower and
support the communication, discussion, management, and analysis of product line
variability. Here, we introduce key constructs and two different approaches for
modeling product line variability.

5.1 Key Modeling Constructs

There are few, simple modeling constructs required for modeling product line
variability:

• A variation point documents a variable item and thus defines “what can vary”
(without saying how it can vary). As an example, the color of a car may vary.

• A variant documents a concrete variation and is related to a variation point. A
variant thus defines “how something can vary.” As an example, colors for a car
may include black, red, and white.

• A variability constraint defines restrictions about the variability, for example, to
define permissible combinations of variants in an application or to define that the
selection of one variant requires or excludes the selection of another variant. As
an example, only one single color may be chosen for any concrete car.

5.2 Integrated Versus Orthogonal Modeling of Variability

There are two principal ways in SPLE research and practice to explicitly document
product line variability: integrated and orthogonal documentation.

Integrated Variability Modeling To support the integrated documentation of
product line variability, dedicated or specialized modeling and documentation
concepts are introduced into existing modeling languages or document templates.
An example for the integrated documentation of product line variability is depicted
in Fig. 2a. The figure shows a UML class diagram extended by two stereotypes,
“VariationPoint” and “Variant.” The stereotypes are used to explicitly document the
product line variability. This example models a product line, in which communica-
tion is defined as product line variability (documented by Communication being a
variation point and WiFi and MobileBroadband being variants).



Software Product Lines 195

Cl
as

s D
ia

gr
am

«V
ar

ia
nt

»
W

iF
i

«V
ar

ia
nt

»
M

ob
ile

Br
oa

db
an

d

«V
ar

ia
�o

nP
oi

nt
»

Co
m
m
un

ic
at
io
n

Sh
or

tIn
te

ge
r

Bi
gI

nt
eg

er

In
te
ge
r

O
rt

ho
go

na
l

Va
ria

bi
lit

y
M

od
el

Co
m

m
un

i-
ca

tio
n

VP
1

M
ob

ile
Br

oa
db

an
d

V2

W
iF

i

V1

1.
.*

Cl
as

s D
ia

gr
am

W
iF

i
M

ob
ile

Br
oa

db
an

d

Co
m
m
un

ic
at
io
n

Sh
or

tIn
te

ge
r

Bi
gI

nt
eg

er

In
te
ge
r

a)
 In

te
gr

at
ed

 V
ar

ia
bi

lit
y 

M
od

el
lin

g
b)

 O
rt

ho
go

na
l V

ar
ia

bi
lit

y 
M

od
el

lin
g

Tr
ac

e 
Li

nk

Va
ria

tio
n

Po
in

t

Va
ria

nt

Va
ria

bi
lit

y
Co

ns
tr

ai
nt

F
ig
.2

Il
lu

st
ra

ti
on

of
in

te
gr

at
ed

vs
.o

rt
ho

go
na

lv
ar

ia
bi

li
ty

m
od

el
in

g



196 K. Pohl and A. Metzger

Feature models are a commonly used form of integrated variability modeling
(e.g., see [15]). A feature model is a tree or a directed acyclic graph of features. A
feature model is organized hierarchically. A feature can be decomposed into sub-
features. A mandatory feature has to be selected if its parent feature is mandatory
or if its parent feature is optional and has been selected. Mandatory features define
commonalities. Mandatory features have to be selected for all applications of the
product line. Optional, alternative, and “or” features define variability in feature
models. As a result, a feature model is a compact representation of all mandatory
and optional features of a software product line. Each valid combination of features
represents a potential product line application.

Orthogonal Variability Modeling To support the orthogonal documentation of
product line variability, product line variability is documented in a dedicated model.
In other words, the documentation of product line variability is separated from the
documentation of the software development artifacts. Thereby, the variability of the
product line is treated as a first-class product line artifact. By relating the product
line variability defined in the orthogonal variability model with the software artifacts
defined in the artifact models, the realization of product line variability within the
software artifacts is documented. Figure 2b sketches an example of an orthogonal
documentation of product line variability and its relation to software development
artifacts. As depicted in the figure, the documentation of product line variability is
clearly separated from the documentation of other software development aspects.
Note that the orthogonal variability model only defines product line variability. It
does not define product line commonalities.

Integrated Versus Orthogonal Variability Modeling Integrated variability mod-
eling increases the complexity of the software artifact models and documentations
due to the additional documentation of product line variability within those artifacts.
Moreover, product line variability is redundantly defined in different development
artifacts such as requirements models, component diagrams, code, or test cases. As
a result, understanding and tracing product line variability between different artifact
models becomes difficult. First, different modeling constructs are used to represent
the variability in the different models. As a consequence, product line variability is
represented differently in the various models. Second, dependencies between the
variability defined in the different artifact models are typically not documented
explicitly. Third, it is difficult, if not impossible, to keep the variability defined in
the different models consistent.

Orthogonal variability modeling avoids those three significant drawbacks of inte-
grated variability modeling. In an orthogonal variability model, only the variability
of a product line is defined. Commonalities of the product line are only documented
in the base models—a key difference from “traditional” feature models, which
define both commonalities and variability. The explicit differentiation between
variation point and variant marks a second key difference from feature models,
which do not provide explicit modeling concepts for variation points. As a third
key difference, the variability definition in an orthogonal variability model is free
from realization concerns. Therefore, orthogonal variability models provide a clear



Software Product Lines 197

separation between product line variability (documented in an orthogonal variability
model) and software variability (specified in the base models). When using feature
models, the separation between product line variability and software variability
often gets blurred [5]. Defining the variability in a dedicated, orthogonal variability
model avoids this problem.

Product line variability defined in variability models must be interrelated with
the software development artifacts defined in the base models. Establishing and
maintaining trace links between variability models and the base models is not trivial.
A solution for the interrelation is to parameterize the base models to indicate which
base model elements link to which feature. However, this solution violates the key
principle of keeping product line variability separate from base models. More recent
solutions argue for dedicated mapping specifications, which define mappings from
variation points and variants to MOF-compliant base models.

6 Variability Modeling in Non-Product-Line Settings

Explicit variability modeling and management can also support the development of
software-intensive systems in non-SPLE settings. In this section, we briefly describe
some examples.

Clone-and-Own Development There are cases in which a strategic and planned
definition of a product line is not economically viable or not even possible.
Beyond the investment in technical design and development of domain artifacts,
the introduction of SPLE usually requires a change of processes and organization
structure and thus requires significant investments. Therefore, and for many other
reasons, instead of following an SPLE approach, software systems are quite often
created by “cloning” existing ones (e.g., by copying and modifying requirements,
architecture, and code of preceding systems). We strongly believe that the use of
the “copy-and-modify” (aka “clone-and-own”) approach will increase. Reasons for
this increase are, among others, the need to adapt the applications to new technology
and service offerings at run time and the rapid changes of the system context and the
system requirements. Increasing change demands make a prediction of the scope of
a potential product line much harder if not impossible.

Still, even if the SPLE approach is not followed to its full extent in these settings,
principles and techniques from variability management facilitate addressing key
challenges faced.

As an example, software configuration management tools may be extended with
explicit variability management facilities (e.g., see [26]). Thereby, variability is
identified (e.g., by deriving variability information based on “copy-and-modify”
activities executed by the engineers) and managed in a non-product-line setting.

As another example, the German BMBF projects SPES 2020 and SPES XT
(http://spes2020.informatik.tu-muenchen.de/) incorporated variability management
into the engineering process of embedded systems [27]. Here, variability modeling

http://spes2020.informatik.tu-muenchen.de/


198 K. Pohl and A. Metzger

principles and techniques facilitate the management of variability of related, single
applications.

Cloud Computing Cloud computing aims to provide seamless reconfiguration of
the infrastructure in real time based on measuring infrastructure usage and system
execution parameters in real time. When combined with the Internet of Things [28],
system execution data is enriched with data about the system context obtained by
thousands of sensors. Big data analytics facilitates turning all this data into potential
actionable insights with very low latency.

Together, these emerging technologies empower software developers and oper-
ators (DevOps) to continuously adjust the system based on instantaneous feedback
obtained from system execution and the system context [29]. As a consequence,
the tension between upfront investment and planning of a software product line and
the increased agility fostered by instantaneous feedback and continuous deployment
must be reconciled.

As an example, the EU FP7 project CloudWave (http://cloudwave-fp7.eu/)
addressed this challenge by employing variability models to structure feedback
about the dynamic reconfiguration of the cloud and in turn drive future reconfig-
urations [30]. An interesting opportunity is inferring the changes of product line
variability and commonalities from analyzing operational and contextual data from
cloud operations.

Adaptive Systems Driven by the Internet of Services, the Internet of Things, and
the emergence of new highly distributed systems, such as cyber-physical systems
and ultra-large-scale systems, the need for software to live in an open and highly
dynamic world is becoming mandatory. Traditionally, software development rests
on a closed world assumption. The closed world assumption roughly means that the
boundary between the system and its context is known during system development
and that the boundary does not change during system execution [31]. In contrast,
open world systems cannot be specified completely during design time due to
incomplete knowledge about, for instance, services and their actual quality provided
during run time, sensors available during system operation to obtain environment
information, the availability of other systems to interact and cooperate with, or
the quality of data obtained. Such systems must frequently adapt to the dynamic
changes faced during run time [14, 32].

As an example, variability models have been used to define the configuration
space of a system (i.e., the set of all valid system configurations), thereby describing
possible and permissible run-time adaptations of the system [33]. Variability models
and mechanisms are well suited to deal with run-time adaptations by considering
features as the unit of adaptation.

Oftentimes, foreseeing future context conditions and defining appropriate adap-
tation options during design time is not possible, and thus defining a variability
model completely during design time is not feasible. A possible solution is to
apply learning and reasoning techniques to variability models, thereby dealing
with unknown situations [34]. For example, the DFG Priority Programme projects
iObserve and iObserve 2 (https://www.iobserve-devops.net/) used such principles

http://cloudwave-fp7.eu/
https://www.iobserve-devops.net/


Software Product Lines 199

to update variability models to unknown situations during run time. In the iObserve
approach, reinforcement learning is employed to improve the self-adaptive systems
adaptation knowledge expressed in terms of variability models [35].

7 Summary

Software product line engineering has proven to facilitate the development of
a diversity of similar software-intensive systems at lower cost, in shorter time,
and with higher quality when compared with the development of single systems.
We have described the main principles and techniques of software product line
engineering. Moreover, we sketched how product line engineering principles can
facilitate managing variability in non-product-line settings.

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering: foundations,
principles, and techniques. Springer, Berlin (2005)

2. Metzger, A., Pohl, K.: Software product line engineering and variability management: achieve-
ments and challenges. In: International Conference on Software Engineering (ICSE) – Future
of Software Engineering Track (FOSE 2014), Hyderabad, India (2014)

3. Clements, P., Northrop, L.: Software product lines: practices and patterns, reading. Addison-
Wesley, Upper Saddle River, NJ (2001)

4. Coplien, J., Hoffmann, D., Weiss, D.: Commonality and variability in software engineering.
IEEE Soft. 15(6), 37–45 (1998)

5. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.-Y., Saval, G.: Disambiguating the doc-
umentation of variability in software product lines: a separation of concerns, formalization
and automated analysis. In: 15th Int’l Requirements Engineering Conference (RE 2007),
New Delhi, India (2007)

6. van der Linden, F., Schmid, K., Rommes, E.: Software product lines in action. Springer, Berlin
(2007)

7. Halmans, G., Pohl, K., Sikora, E.: Documenting application-specific adaptations in software
product line engineering. In: 20th Int’l Conference on Advanced Information Systems Engi-
neering (CAiSE 2008), Montpellier, France (2008)

8. Galster, M., Weyns, D., Tofan, D., Michalek, B. and Avgeriou, P.: Variability in software
systems: a systematic literature review. In: IEEE Transactions on Software Engineering.
available online (2013)

9. Helferich, A., Schmid, K., Herzwurm, G.: Product management for software product lines: an
unsolved problem? Commun. ACM. 49(12), 66–67 (2006)

10. van Ommering, R., Bosch, J.: Widening the scope of software product lines: from variation to
composition. In: 2nd Int’l Software Product Line Conference (SPLC), San Diego, USA (2002)

11. Bühne, S., Lauenroth, K., Pohl, K., Weber, M.: Modelling features for multi-criteria product-
lines in the automotive industry. In: ICSE Workshop on Software Engineering for Automotive
Systems (SEAS 2004), Edinburgh, UK (2004)



200 K. Pohl and A. Metzger

12. Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer,
Heidelberg (2010)

13. Niu, N., Easterbrook, S.: Extracting and modeling product line functional requirements. In:
16th Int’l Requirements Engineering Conference (RE 2008), Barcelona, Spain (2008)

14. Figueiredo, E., Cacho, N., Sant’Anna, C., et al.: Evolving software product lines with aspects:
an empirical study on design stability. In 30th Int’l Conference on Software Engineering (ICSE
2008), Leipzig, Germany (2008)

15. Mohabbati, B., Asadi, M., Gasevic, D., Hatala, M., Müller, H.: Combining service-orientation
and software product line engineering: a systematic mapping study. Inf. Soft. Technol. 55(11),
1845–1859 (2013)

16. Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dynamic,
self-adaptive service-based applications. Autom. Softw. Eng. 15(3–4), 313–341 (2008)

17. Capilla, R., Bosch, J., Kang, K.-C.: Systems and software variability management. Springer,
Heidelberg (2013)

18. Batory, D., Höfner, P., Kim, J.: Feature interactions, products, and composition. In: 10th Int’l
Conference on Generative Programming and Component Engineering (GPCE 2011), Portland,
USA (2011)

19. Haber, A., Hölldobler, K., Kolassa, C., Look, M., Rumpe, B., Müller, K., Schaefer, I.:
Engineering delta modeling languages. In 17th Int’l Software Product Line Conference (SPLC
2013), Tokyo, Japan (2013)

20. Lauenroth, K., Metzger, A., Pohl, K.: Quality assurance in the presence of variability.
In: Intentional perspectives on information systems engineering, pp. 319–334. Springer,
Heidelberg (2010)

21. Lee, J., Kang, S., Lee, D.: A survey on software product line testing. In 16th Int’l Software
Product Line Conference (SPLC 2012), Salvador, Brazil (2012)

22. Pohl, K., Metzger, A.: Software product line testing. Commun. ACM. 49(12), 78–81 (2006)
23. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years

later: a literature review. Inform. Sys. 35(6), 615–636 (2010)
24. Pohl, R., Stricker, V., Pohl, K.: Measuring the structural complexity of feature models. In 28th

Int’l Conference on Automated Software Engineering (ASE 2013), Palo Alto, USA (2013)
25. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-oriented

variability modeling: a multiple case study. Autom. Softw. Eng. 18(1), 77–114 (2011)
26. Engström, E., Runeson, P.: Software product line testing: a systematic mapping study. Inf.

Softw. Technol. 53(1), 2–13 (2011)
27. Stricker, V., Metzger, A., Pohl, K.: Avoiding redundant testing in application engineering. In:

14th Int’l Software Product Line Conference (SPLC 2010), Jeju Island, South Korea (2010).
28. Berger, T., Rublack, R., Nair, D., Atlee, J., Becker, M., Czarnecki, K., Wasowski, A.: A survey

of variability modeling in industrial practice. In 7th Int’l Workshop on Variability Modelling
of Software-intensive Systems (VaMoS 2013), Pisa, Italy (2013)

29. Rubin, J., Kirshin, A., Botterweck, G., Chechik, M.: Managing forked product variants. In:
16th Int’l Software Product Line Conference (SPLC 2012), Salvador, Brazil (2012)

30. Pohl, K., Broy, M., Daembkes, H., Hönninger, H.: Advanced model-based engineering of
embedded systems. Springer, Cham (2016)

31. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

32. Bosch, J.: Building products as innovation experiment systems. In: 3rd Int’l Conference on
Software Business (ICSOB 2012), Cambridge, USA (2012)

33. Cooper, K., Franch, X.: Editorial. J. Syst. Softw. 81(6), 841–842 (2008)



Software Product Lines 201

34. Díaz, J., Pérez, J., Alarcón, P.P., Garbajosa, J.: Agile product line engineering: a systematic
literature review. Softw. Pract. Exp. 41(8), 921–941 (2011)

35. Metzger, A., Bayer, A., Doyle, D., Molzam Sharifloo, A., Pohl, K., Wessling, F.: Coordinated
run-time adaptation of variability-intensive systems: an application in cloud computing. In
ICSE 2016 1st Int’l Workshop on Variability and Complexity in Software Design (VACE),
Austin, Texas (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


	Software Product Lines
	1 Introduction
	2 Differences Between SPLE and Single System Development
	2.1 Two Development Processes
	2.2 Product Line Variability
	2.3 Software Variability Versus Product Line Variability

	3 Domain Engineering
	3.1 Product Management
	3.2 Domain Requirements Engineering
	3.3 Domain Design
	3.4 Domain Realization
	3.5 Domain Quality Assurance

	4 Application Engineering
	4.1 Application Requirements Engineering
	4.2 Application Design
	4.3 Application Realization
	4.4 Application Quality Assurance

	5 Modeling Product Line Variability
	5.1 Key Modeling Constructs
	5.2 Integrated Versus Orthogonal Modeling of Variability

	6 Variability Modeling in Non-Product-Line Settings
	7 Summary
	References


