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Abstract. Active learning is a common approach when it comes to clas-
sification problems where a lot of unlabeled samples are available but
the cost of manually annotating samples is high. This paper describes a
study of the feasibility of uncertainty based active learning for general
purpose Twitter sentiment analysis with deep neural networks. Results
indicate that the approach based on active learning is able to achieve
similar results to very large corpora of randomly selected samples. The
method outperforms randomly selected training data when the amount
of training data used for both approaches is of equal size.

1 Introduction

General purpose Twitter sentiment analysis was introduced as a new sentiment
classification task by Haldenwang and Vornberger (2015). The main difference to
other popular Twitter sentiment analysis tasks – such as SemEval, Nakov et al.
(2016) – lies in the omission of filtering the Twitter stream with regard to cer-
tain topics or types of messages. Hence, the data set consists of a representative
sample of the public Twitter stream, which is relevant for applications such as
monitoring the sentiment of individuals, regions or the general, unfiltered public
Twitter stream.

Systems based on deep neural networks are prevalent in the related Twitter
sentiment analysis tasks (Deriu et al. 2016, Rouvier and Favre 2016, Xu et al.
2016). Therefore, it seems reasonable to investigate their feasibility for general
purpose Twitter sentiment analysis.

Acquiring a sufficient amount of manually annotated data for the training of
deep neural networks to perform the aforementioned task is very labor intensive.
One possibility to deal with low amounts of manually annotated data is the use
of distant supervision approaches based upon emoticons as originally introduced
by Pak and Paroubek (2010). Distant supervision has already successfully been
used in the training process of various deep learning architectures for Twitter sen-
timent analysis (Severyn and Moschitti 2015, Deriu et al. 2016, Xu et al. 2016).
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While noisy labels based on emoticons provide a good starting point for the
training of a deep learning system, it is probably beneficial to use manually
annotated training data for the specific task to achieve satisfying results.

A common approach to reduce the manual effort is active learning. Settles
(2010) summarizes the idea of active learning as follow: “[. . . ] a machine learning
algorithm can achieve greater accuracy with fewer training labels if it is allowed
to choose the data from which it learns [. . . ]”. Given a large corpus of unlabeled
data points, the learner may choose the samples from which it hopes to gain the
most insights from. The labels of the chosen data points are queried from an
oracle, in this case a human annotator. The remainder of this paper describes a
study the authors conducted to assess the feasibility of various metrics for mea-
suring the potential information gain for unlabeled samples and then choosing
the samples that are to be annotated.

2 Experimental Setup

In this section we first introduce the initial deep neural network that is the
starting point for all experiments and illustrate how it was parametrized. Sec-
ondly, the active learning strategies which are evaluated are described. Finally,
the experimental procedure is presented.

2.1 Initial Deep Neural Network

The classifier used in these experiments is a convolutional neural network. Its
basic architecture is described in Zhang and Wallace (2015). First, the tokenized
tweet is transformed into a list of dense word embeddings. The resulting sentence
matrix is then convolved with a certain set of filters of potentially varying region
sizes. After that, the resulting feature maps, which are vectors describing certain
“higher order features” of the tweet, activate a 1-max-pooling layer via a possibly
non-linear activation function. Lastly, this pooling layer is densely connected to
the output layer using softmax activation and optional dropout regularization.
In contrast to Zhang and Wallace (2015), our output layer has three neurons,
reflecting the fact that we want to differentiate the three classes positive, negative
and uncertain.1

All weights of the network were initialized randomly except for the embed-
ding layer, where we used word2vec vectors (cf. Mikolov et al. (2013)) of dimen-
sion d = 100 trained on a dataset of approximately 33 million tweets collected
between June 2012 and August 2013 by Neubauer (2014). After some minimal
preprocessing2, this dataset contained 624,015 unique tokens, of which we used
the 200,000 most frequent ones in the network. The parameters were chosen as
follows: The model used was the skip-gram model, the window size was 5 words,
the subsampling threshold was t = 10−5; negative sampling was used with k = 5

1 See Haldenwang and Vornberger (2015) for further details.
2 replacing @-mentions and URLs by generic tokens and removing “non-words”.
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“noise words” and we ran two iterations of the algorithm. Most of these values
were recommended by Mikolov et al. (2013), where one can also find explana-
tions for the parameters. The rest of the network’s hyperparameters was found
using a search guided by the best practices laid out in Zhang and Wallace (2015):
We first evaluated networks with only one region size r ∈ {2, 3, 4, 5, 6, 8, 10} and
n ∈ {50, 325, 600} filters. The activation function f between the convolution and
pooling layers was chosen from the set {id, tanh, RelU3} and the dropout rate
(Srivastava et al. 2014) was p ∈ {0, 0.25, 0.5}.

We evaluated all of these combinations based on their average macro-F1-score
in a tenfold cross-validation using the dataset from Haldenwang and Vornberger
(2015). First, each network was trained using a distant supervision procedure
with noisy labels based on emoticons in the dataset of Neubauer (2014). Note,
that the distant super vision approach only consists of positive and negative
tweets, since there is no reliable noisy label for uncertain tweets. Next, the net-
work’s parameters were further refined by using the positive and negative tweets
from the datasets of the SemEval competitions (Nakov et al. 2013, Rosenthal
et al. 2014, 2015) for training.4 The networks were trained using the Adagrad
(Duchi et al. 2011) algorithm. Both datasets were presented once (one epoch) in
a batch size of 50 tweets.

The best configuration turned out to be r = 2, n = 50, f = tanh and
p = 0.25 with an average F -score of F1 ≈ 0.56. We also tried adding bigger filters
to this configuration in multiple ways, but none of the resulting configurations
could significantly surpass the above, so we do not go into further details of this
process here. For the following experiments with regard to active learning, we
used the version of this network that was only trained on the noisy labels, to
properly reflect one of the constraints of this approach: not to have a big supply
of manually labeled tweets in advance.

2.2 Investigated Active Learning Strategies

As a strategy to query the best suited tweets to label for the network, we decided
to investigate uncertainty sampling, a strategy originally devised by Lewis and
Gale (1994) which is both easy to implement and understand and thus com-
monly used. With this strategy, each tweet is assigned an uncertainty value
which defines how uncertain the network is in finding the correct label for the
tweet. The most uncertain tweets are then chosen to be labeled.

For a problem with three (or more) classes such as ours, there are different
metrics available to calculate uncertainty. These metrics differ in how many of
the class probabilities they take into account. In the following a short description
for each of the metrics provided. A more thorough introduction and comparison
can be found in the literature survey of Settles (2010).

3 Mahendran and Vedaldi (2015).
4 The neutral class does not match with the desired uncertain class and hence is
ommitted here.
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The confidence metric can be used to choose the tweet x∗
LC whose label the

network is least confident about:

x∗
LC = argmin

x
Pθ(ŷ|x)

The confidence is defined as the probability that the class label ŷ chosen by
the network θ is correct as considered by the network itself (and as such is the
highest of the three probabilities for the three class labels).

The margin metric also takes the second highest probability into account by
calculating the difference between the probabilities of the two class labels ŷ1 and
ŷ2 the network believes to be most likely correct:

x∗
M = argmin

x
Pθ(ŷ1|x) − Pθ(ŷ2|x)

A tweet with a smaller margin would be considered more uncertain since the
network has difficulties choosing between the labels ŷ1 and ŷ2.

Finally, the entropy metric considers the probability for all class labels ŷi to
calculate the amount of informativity each tweet has to offer to the network:

x∗
H = argmax

x
−

∑

i

Pθ(ŷi|x) log Pθ(ŷi|x)

In our experiment we compare the effect of these metrics to find out which
is most helpful for our use case.

To speed up the labeling process, we query and label the tweets in batches
of 20. However, since the uncertainty values are not recalculated after picking a
tweet for a batch, this could lead to the tweets in the batch being very similar
to one another since they all occupy the same uncertain region of the feature
space. To avoid this, we introduce diversity as a second criterion to our querying
process as described in (Patra and Bruzzone 2012):

First, we choose the 60 most uncertain tweets which we then reduce to 20
both uncertain and diverse tweets by clustering them with kernel k-means into
20 clusters and picking the most uncertain tweet from each cluster.

2.3 Experimental Procedure and Data Usage

For each of the uncertainty metrics described above, the experiment is initialized
with a copy of the initial deep neural network that was pretrained with the
aforementioned distantly supervised data only. The corpus of unlabled tweets to
chose from consisted of 100,000 tweets that were randomly sampled from the 33
million dataset of Neubauer (2014). First, all tweets in the unlabeled corpus are
classified by the network and then 20 tweets are chosen to be annotated using
the previously mentioned strategy. Next, after the 20 tweets are labeled by the
human annotator, 10 training iterations are performed with the newly annotated
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tweets. This procedure is then repeated until 1,000 tweets are annotated for each
uncertainty metric.

Additionally, we generated a random baseline by training a copy of the initial
neural network with randomly selected, manually annotated tweets in batches
of 20 with 10 training iterations.

Each generated network was then evaluated using the reliable general purpose
Twitter sentiment analysis data set from Haldenwang and Vornberger (2015) as
a test set. The resulting macro F1-score is reported.

3 Results

Figure 1 shows a visualization of the experimental results. A notable observation
is the effectiveness of just labeling 100 tweets, the classification performance
almost doubles for all metrics. This drastic increase in performance is a strong
indication that even small amounts of manually annotated data are very benefi-
cial in addition to the noisy labeled training data. Note, that the initial score is
rather low, because the network was just pretrained with positive and negative
data and, hence, missclassified all uncertain samples. When measuring the score
for just the positive and negative classes after pretraining, it was F1 ≈ 0.637.
Hence, pretraining with the distantly supervised data provides a useful basis for
the network’s parameters.

Fig. 1. Experimental results showing the macro F1-score of the investigated metrics in
steps of 100 manually annotated tweets.
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The random baseline yields solid results but seems to always be outperformed
by either the confidence or margin metric. The entropy metric performs worse
than random in almost all cases. Moreover, it seems to be the most unstable
with the strongest fluctuations in performance.

While the margin metric takes the lead for the first 800 annotated tweets, its
effectiveness drastically drops at 900 and 1,000. Below 800 the confidence metric
performed consistently worse than the margin metric but does not seem to suffer
as severe a performance drop and at 1,000 labeled tweets takes the lead.

Overall, the best performance achieved was F1 ≈ 0.55 by the margin metric
at 800 manually annotated tweets. The differences in classification behaviour
when compared to the other metrics and the random baseline were significant.
Moreover, the result is on par with training the same initial network with about
25,000 manually annotated tweets from a related domain (SemEval) and about
8,000 manually annotated tweets for the problem at hand (Haldenwang and
Vornberger 2015), as was presented in Sect. 2.1, while only using a fraction of
the training data.

4 Conclusions and Outlook

The results indicate that two out of three investigated uncertainty based active
learning strategies consistently seem to surpass random sample selection for the
investigated task.

Overall, the performance of the investigated strategies seems to be fluctuating
a lot. After a certain point (more than 800 labeled tweets) the performance of
all three active learning strategies seems to deteriorate or converge with the
random baseline. In future work the study has to be extended to verify the
aforementioned trend.

Moreover, a problem that can occur with purely uncertainty based metrics
lies in their affinity to favor outliers since those are often of high uncertainty
(Settles and Craven 2008). This selection of outliers may be what causes the
deterioration at the last steps, since the outliers probably do not add any useful
information for the correct classification of the non-outliers and may be harmful
for the overall generalization of the system. In future work we plan on inves-
tigating active learning strategies which do not purely rely on the uncertainty
but also take the density weight into account, as was suggested by Settles and
Craven (2008). The basic idea is to not only select uncertain samples but also
take into account the density of samples in the surrounding area to select data
points which are representative for as many other uncertain samples as possible.
Hopefully, this strategy can prevent pure outliers from being selected, increase
the information gain and reduce the fluctuations.

Combining deep convolutional neural networks with active learning based
on uncertainty sampling seems to be a promising approach for general purpose
Twitter sentiment analysis which can drastically reduce the amount of manual
annotation that is needed to achieve sufficient results.
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