
Chapter 2
Historic Milestones of Human River Uses
and Ecological Impacts

Gertrud Haidvogl

2.1 Introduction

History has been acknowledged for 20 years as an important research element for
river management that has been applied, for example, to define reference conditions
and assess the level of degradation. The evolution of river uses and related ecological
conditions, especially in recent decades, has been utilized to show the impact of
humans on these ecosystems. Integrating a historical perspective into river manage-
ment can, however, go beyond these targets (see, e.g., Haidvogl et al. 2014, 2015;
Higgs et al. 2014). Just as present river management decisions will influence future
conditions, paths trodden by users in the past have a bearing on today’s ecology.
Sound long-term studies of the natural and societal drivers shaping historical river
changes can thus support our understanding of the present situation and identify
trajectories of change. In long-term studies taking into account the dynamics of
natural forces—in particular climate change and subsequent altered hydrologic and
temperature conditions—as well as social dynamics (e.g., decision-making pro-
cesses, main energy sources and technologies, superordinated practices and values)
can reveal distinct overarching patterns of river use and management. This can
contribute to developing future strategies and plans with lower ecological impacts.

This chapter describes major milestones of human river uses and ecological
impacts. With some brief mention of Asian river case studies, it highlights especially
examples, which are representative of industrialized countries of Europe and North
America. In Europe, larger environmental changes of aquatic ecosystems occurred
already in ancient and medieval times. European colonists spread practices and
techniques of river uses to other areas of the industrialized world after they reached
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regions, which have previously only been influenced by indigenous people (e.g.,
Humphries and Winemiller 2009). In the global North, the main milestone of
historical river uses and subsequent ecological impacts was certainly the shift from
agrarian to industrialized societies in the eighteenth and nineteenth centuries.
Accordingly, preindustrial and industrialized rivers exhibit large differences in
their ecological functioning as well as in the intensity of human impacts. Shifting
from the preindustrial to the industrial mode of living resulted from the change of the
prime energy source. While the former depended on wood, the latter requires
exploitation of fossil energy, first coal, and, shortly before and particularly after
World War II, oil (Sieferle 2006). Fossil fuels offered among others new transport
means and possibilities for trading as well as unprecedented options to modify
riverine environments. Fossil fuels enabled the systematic channelization of rivers
and supported their damming or stocking of nonnative species on a global scale.
Industrialization loosened the century-long tight connection of major parts of soci-
eties from their local and regional environmental resources and gave way to new
practices of exploiting riverine ecosystem services.

2.2 Historical River Uses and Resulting Impacts

2.2.1 General Patterns of River Uses

Rivers provide ecosystem services that have attracted humans for millennia (see
Chap. 21). Archaeological and later written evidence provide proof that river uses
and necessary technical infrastructures existed already in ancient times, especially in
arid zones. The Sadd-el-Kafara Dam on the Nile built some 30 km south of Cairo
about 4500 years ago is considered as one of the oldest constructions of its kind
(Hassan 2011). Major rivers such as the Nile, the Euphrates, the Indus, and the
Jangtsekiang enabled cultures to develop and shaped their economy and culture.

In Europe, the Greek and Roman civilizations started influencing rivers, espe-
cially in urban areas to which water was delivered by aqueducts. With the collapse of
the Roman Empire, technologically supported water uses diminished quickly in
areas colonized by Romans. For several hundred years, they were replaced by rather
local and small-scale river uses except for Spain, where the Muslims introduced
water wheels and mills after the seventh century (Downs and Gregory 2004; Hassan
2011).

Outside of Europe, continuing technological progress and practices of river use as
well as possible ecological effects linked to demographic and economic develop-
ment can be deduced from the dams built, e.g., in Japan during the European “Dark
Ages.” The World Commission on Large Dams lists 20 dams higher than 15 m,
which were built between 130 and 1492 CE. Most of these (i.e., 14) existed in Japan,
and one each in India and Afghanistan. In Europe, by the Early to Late Middle Ages
only one dam erected in 130 CE in Spain remained. Larger dam construction started
only during the Late Middle Ages: In the present Czech Republic between the
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thirteenth and fifteenth centuries, three facilities were erected to create fishponds
(ICOLD—International Commission on Large Dams 2016).

In most European countries and in North America, rivers served a large variety of
human uses up until the beginning of the industrial era in the late eighteenth and
nineteenth centuries. In preindustrial times most parts of society depended on local
and regional environmental resources, often brought to them by rivers. This consti-
tuted their strategic importance. Different societal demands on rivers had to be
harmonized to minimize adverse impacts on riverine services. Rivers and brooks
were the main source of kinetic energy. They were the main transport routes, either
for shipping goods or for transporting wood via rafts, sometimes with goods on it. In
the case of very small brooks, wood was driven as loose logs, often during seasonal
flooding. Although drinking water came often from groundwater wells, surface
waters were sources, too. Surface water was a direct resource for many activities.
It was used for cleansing and served many commercial purposes that had an adverse
effect on water quality for drinking and cleaning. In urban areas and settlements, any
local stream received the waste and wastewater from dwellers. It has to be noted,
however, that the latter was rather limited as long as a majority of people depended
on wells and their limited water quantities. Wastewater volumes significantly
increased starting in the late nineteenth and twentieth centuries, as rapidly increasing
urban populations required larger-scale and more sophisticated water management.
As a result, central water pipelines supplying individual buildings and their house-
holds were built. Aquatic biodiversity is an essential component of ecosystem
services, and riverine animals and plants played an important role for local food
provision. Fish were central to the diets of many regions, especially for settlers along
coastal rivers, but also in Christian countries in continental areas. Frogs, mussels,
and even beavers were also used as food and, in the latter case, for fur. Floodplain
forests helped to meet the heavy demands for wood as a basic energy source for
preindustrial societies.

Growing demand from increasing human populations and the expanding econo-
mies of growing settlements and towns intensified all these preindustrial river uses.
At the onset of industrialization around the beginning of the nineteenth century,
human river uses have been maximized as far as possible in large areas of the
Western world. But the exploitation of the various riverine ecosystem services was
still limited to the local and regional scales, and finding compromises to mitigate
adverse effects of one type of use on the other remained a prerequisite.

“Industrialized rivers” differ fundamentally from preindustrial ones. The shift
from wood to fossil fuels enabled river engineers to carry out large-scale systematic
regulation projects for navigation or flood protection especially on dynamic large
rivers. New technologies produced and conducted electricity from hydropower
plants to cities and factories, making electricity production spatially independent
from the place of use. Travel times decreased and trade volumes increased with the
rise of ships and railways driven by fossil fuels (first coal, then petroleum).
Preindustrial patterns of river use and resulting ecological impacts ceased to exist.
No longer did local and regional rivers serve all purposes that depended on water.
For example, drinking and process water could be brought into cities from distant
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rivers and springs, increasing the environmental imprint of urban centers in spatial
terms (see, e.g., Billen et al. 2012). Large quantities of fish could be imported from
the sea to continental consumers in reasonable times, thus eliminating the need to
protect local stocks. Also, food supply based on improving transport started to affect
watersheds on a global scale far away from the places of consumption (Vörösmarty
et al. 2015).

The industrialization of rivers happened gradually and with increasing pace (see
Fig. 2.1). Along with human uses, the resultant ecological impacts increased expo-
nentially, especially after the 1950s. Until the late nineteenth century, often features
from the preceding preindustrial period prevailed. For instance, defying elimination
by fossil fuels, water mills had grown and become more complex so as to drive
sophisticated machinery, to cool water, to improve power generation, to irrigate
agricultural land, and/or to secure water supply (Downs and Gregory 2004). But
generally, in the nineteenth century and thereafter, shifts in technology, cultural
practices, administration, and policy reflected their new roles in river management,
especially in European and North American countries. Management of river risks
entered a new era. Active flood protection based on dikes became more and more
common. It replaced preindustrial strategies of passive flood protection, which
aimed at measures to keep damages to goods and lives as low as possible but not
at preventing flooding at all (see Chap. 28). Technological and administrative
innovations shifted the perspective of the industrial societies toward river ecosys-
tems. The increasing capacity to substitute for river ecosystem services, regardless of
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Fig. 2.1 The evolution of human pressure on rivers and freshwater systems in the twentieth
century; the examples demonstrate the often exponential increase after World War II. (a) Global
water withdrawals 1900–2000 (estimation for 2000); (b) Number of large dams (higher than 15 m)
1900–2000; (c) Fisheries landings from inland waters 1950–2000; (d) Global inputs of anthropo-
genically fixed nitrogen; adapted from Gleick 1993 (a), ICOLD 2007 (b), Allan et al. 2005 (c),
Vitousek 1994 (d) and Strayer and Dudgeon 2010
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distance, eliminated the need to harmonize a large variety of different uses
(Jakobsson 2002). This resulted in maximizing one or two river uses, often those
that did not adversely affect each other, e.g., power and transport. Other river uses,
often fish and fisheries, were given up in favor of the preferred river services. After
the 1970s, the negative effects of human impacts on ecological conditions received
more and more attention, and river restoration projects have been started. This went
hand in hand with thorough scientific observations of the links between human river
alterations and biodiversity as well as animal and plant stocks often enabling for the
first time to trace ecological changes based on direct field observations.

The following examples of human river uses and ecological impacts can be taken
as fairly general, especially for the industrialized world, although with few excep-
tions (see Zarfl et al. 2015) no global or even continental overviews on the historical
development of river uses and ecological impacts exist.

2.2.2 Milestones of Dam Building

Dams are one example of the increasing pressure on river services. Mostly, dams
were built to gain hydropower, but they supported also the creation of fishponds or,
in dryer areas, irrigation of agricultural land. The number of weirs increased
throughout the High and Late Middle Ages and thereafter. For instance, in England,
where the oldest comprehensive report exists in the form of the Domesday Book
from 1086, 5642 mill weirs were recorded for this time. For France it is assumed that
in the beginning of the twelfth century 20,000 dams were operated. Two centuries
after, the number had risen to 40,000, and by the end of the fifteenth century (i.e., the
end of the Middle Ages), 70,000 dams had been constructed (Braudel 1986).
Certainly, the increase in numbers followed the expansion of populations, especially
in cities with the increasing wealth of urban dwellers. Bork et al. (1998) added an
environmental argument (so-called Wassermühlenthese, i.e., “water mill thesis”) to
the rising number of mills. According to their historical and paleographic study of
German landscapes north of the Alps, in the fourteenth century, land-use change,
especially forest clearing for the benefit of arable land, meadows, and pastures,
reduced transpiration and caused rising groundwater levels. This made springs more
abundant and their increasing runoffs were a suitable basis to construct mill weirs.
From the turn of the eighteenth to the nineteenth century, it is estimated that in
Europe the number of weirs amounted to 500,000–600,000 (Braudel 1986). One can
assume, however, that this estimate relates only to larger weirs, while the total
number was much higher. For example, a case study of an Austrian alpine river
catchment (Möll River in Carinthia) showed that in the 25 communities located
along this approx. 80-km-long river and its tributaries, 750 hydropower facilities
existed (Haidvogl and Preis 2003, unpublished dataset).

It is evident that already preindustrial weirs—though small compared to modern
dams—had modified ecological conditions. They acted as sediment traps and altered
channel morphology not least due to their tremendous number. In small,
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anabranching streams in the mid-Atlantic region of North America, no significant
amounts of sediment accumulated before European colonization in the seventeenth
century. After European settlers had built thousands of milldams between the
seventeenth and nineteenth centuries, 1–5 m of slack water sedimentation had
covered the floodplains and the present meandering river channels incised in these
sediments (Walter and Merritts 2008).

The impacts of weirs, especially on fish migration, have been known and
addressed for centuries (see Chaps. 6 and 9). In preindustrial times, when harmo-
nizing various river uses on local scales was a necessity, finding compromise was
key. Although neither historical observations nor fishery records have been kept, this
is evident from water legislation. A Scottish statute of 1214 demanded, for instance,
openings in dams, and all barrier nets had to be lifted on Saturdays to allow salmon
runs (Salmo salar, Hoffmann 1996). A fishing decree from 1545 for the Austrian
Traisen River, a right-hand tributary of the Danube, provides similar protections for
potamodromous fish species (Raab 1978). For tributaries of Alpenrhein (Rhine
upstream of Lake Constance), fish passes were planned already in the sixteenth
century. Along the Ill River, such a technical facility should have re-enabled
migration of lake trout, which was interrupted by a dam to withdraw drinking and
process water for the commune Feldkirch. This dam replaced an older and lower
construction that was destroyed by a flood in 1566. Some decades later, the manorial
lords upstream raised an official complaint because their main fishing target was
missed. A fish bypass was suggested as possible solution but never built due to the
technical problems of such a construction in the schistose rocks (Zösmair 1886). A
fish pass was however realized on the Albula River, a tributary of Hinterrhein in the
Swiss canton Graubünden, after millers erected a new dam in the 1680s and
interrupted lake trout migration. The passage had a length of 6 m and a width of
1.5 m (Bundi 1988).

In the late nineteenth and especially in the twentieth century, the number of dams
rose exponentially around the globe, first in the North and then in the South (see
Chaps. 1 and 6). They continued to serve century-long functions especially as
hydropower producers and for irrigation. New technologies and machinery built
with ever-cheaper steel and powered by fossil energy helped to create concrete
edifices of 100 m height and more. Together with the necessary means to transform
mechanic energy into electricity and to transmit this electricity over large distances,
large manufacturers and railways and urban administration soon started to benefit.
After World War II, electricity use rose, not least with domestic demand for
household appliances. In arid regions, dams and reservoirs secured irrigation of
agricultural land. A summary on dam construction in the twentieth century demon-
strates the increasing pace of large dam building after 1950 (Rosenberg et al. 2000).
By 1900, several hundreds of large dams (i.e., equal or higher than 15 m; Interna-
tional Commission on Large Dams) existed. Up until 1950, the total global number
newly built per decade was less than 1000. During the 1950s, almost 3000 new dam
projects were implemented. In the 1970s, the number peaked at more than new 5400
facilities. In the 1990s, still almost 2000 new constructions occurred globally. In the
2000s and 2010s, the number further decreased, but, e.g., Zarfl et al. (2015) assume

24 G. Haidvogl

https://doi.org/10.1007/978-3-319-73250-3_6
https://doi.org/10.1007/978-3-319-73250-3_9
https://doi.org/10.1007/978-3-319-73250-3_1
https://doi.org/10.1007/978-3-319-73250-3_6


that in the 2020s thereafter new dam construction will resume (see also Lehner et al.
2011a) (Fig. 2.2).

The ecological effects of modern dams are manifold (see, e.g., Poff and Hart
2002; see Chap. 6). They reduce velocity and often create almost stagnant waters of
varying size; they change water temperature, which influences bioenergetics and
vital rates of organisms. Downstream movement of water and sediment is influenced
and reduced with adverse effect on river and riparian habitats, and biogeochemical
cycles are modified. Dams hamper migration of fish and other aquatic organisms and
exchange of nutrients up- and downstream. Almost half of present larger dams are
used for irrigation (International Commission on Large Dams; http://www.icold-
cigb.org/, Accessed 18 Jul 2016). Water abstraction via dams and reservoirs caused
some of the most striking examples of environmental degradation in the last decades.
For example, after a severe drought in 1946, the former USSR initiated large-scale
dam constructions to redistribute available water resources. The Aral Sea is a
prominent case for environmental degradation as it suffers from reduced water
inflow due to water abstraction in the main tributaries since the 1960s (Micklin
2007).
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2.2.3 River Channelization to Secure Transport
and Land Use

There is no direct link between historical river transport and land use in floodplains.
However, these two human river system uses have to be perceived as connected, as
both required channelization measures. Accordingly, activities evolved centuries
ago to prevent erosion of cultivated land and, in particular, to secure navigation.
Initial measures focused on stabilizing riverbeds and riverbanks, while flood protec-
tion dikes to avoid inundation of settlements became more typical only in and after
the nineteenth century with industrialization and subsequent population growth and
spread of settlements into floodplains.

Transport has been an essential function of rivers for millennia. It characterizes
virtually all rivers that attracted settlement. Just as with hydropower use, its intensity
grew with rising population and trading of agrarian, preindustrial societies. Gener-
ally, river transport was cheaper and, often, even safer than that on roads, though it
was at the same time slower. In addition, navigation, rafting, or log driving was
affected by yearly natural cycles, especially low- and high-flow periods or freezing,
as typical for alpine and continental regions (e.g., Pounds 1979). Hence, it was the
main option for trading bulky goods and, in particular, wood (Pounds 1979; Möser
2008, Sieferle 2008). To support smooth navigation, riverbanks were often fixed and
obstacles such as boulders removed manually from rivers or blasted, for instance, on
the Austrian Danube in the late eighteenth century (Petts et al. 1989; Hohensinner
et al. 2013).

To complement the transport network offered by natural waterways, artificial
canals were introduced. In Europe, the first attempts to construct artificial shipping
canals date back to Roman Times, e.g., in the Netherlands (Corbulo, Drusus canals)
and France (Vella et al. 1999), or to the Early Middle Ages, when Charlemagne
projected the Fossa Carolina in 793 (see, e.g., Brolsma 2011; Leitholdt et al. 2012).
Charlemagne’s plan was far beyond the technologies available at that time, and the
canal remained a 3-km-long fragment. In Asia, the approx. 1770-km-long Beijing–
Hangzhou Grand Canal was built as strategic waterway before the end of the
thirteenth century. It linked five river basins and transferred water from Yangtze to
North China Plain (Gregory 2006). By 1411, the Grand Canal was further developed
and fed, among others, by water of the Lower Yellow River’s main channel, which
was stabilized to provide continuous flow (Overeem et al. 2013). To avoid a
northward breach of the Yellow River and subsequent damage to the canal, a
continuous levee was built on the north bank of the Yellow River and completed
in 1494. On the southward banks, breaches diverted water toward the distributaries
of the Huai River as flood control measures.

In Europe, in the seventeenth century, first projects in the Netherlands or in
France (Canal du Midi) initiated a canal building boom that continued for the next
two centuries (Brolsma 2011). Projects became much more ambitious, e.g., as
proposals for connections between major European rivers such as Danube, Elbe,
or Oder show (see, e.g., Vogemont 1712). Inland canal building continued well into
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the twentieth century. For example, as the connection between the Black and the
North Sea was envisioned by Charlemagne already in the eighth century, the Rhine-
Main-Danube Canal became reality only in the 1990s. It can be assumed that, since
their completion, artificial canals have supported the dispersal of aquatic animals, in
particular fish, to new river systems. The nase (Chondrostoma nasus), for instance,
entered French rivers via shipping canals at the latest in the second half of the
nineteenth century. The expansion of this species is confirmed for the 1860s for the
Rhine and a new canal system in north-eastern France. Its occurrence was soon after
observed in the Seine, then in the Upper Loire and Rhone basins where it arrived
within less than 40 years (Nelva 1997).

In the 1830s, steam-driven railways started to operate, and railway connections
intensified quickly in Europe as well as in North America (see, e.g., Pounds 1979 for
Europe). Navigation was forced to react to the growing competition, usually by
increasing ecological pressures on rivers. Since the first decades of the nineteenth
century, the sophistication of steam technology also powered ships, freeing them
from the need for tow roads and teams on the riverbanks. Compared to the wooden
ships, their requirements for space in the river channel were much stricter, e.g.,
regarding homogenous and larger river cross sections. Steam ships soon increased in
size, boosting the pressure for straightening and channelizing rivers with well-
known ecological consequences (see Chap. 3).

While river channelization for navigation dates back centuries, flood protection is
more typical for industrialized rivers. In the late nineteenth and twentieth century,
previously not intensively used floodplains were newly colonized as urban areas. In
the Middle Ages and Early Modern Period, neither settlements nor agricultural lands
were protected from floods. It was rather common to adapt land use as much as
possible to flooding, e.g., by preferences for elevated terrain and lower water depths
during floods. This has been proven for arable land in the Austrian Danube flood-
plains in the Machland or for settlements in Vienna (see, e.g., Haidvogl 2008;
Haidvogl et al. 2013). Large-scale flood protection measures—often implemented
in conjunction with hydropower dams and waterway improvement for
shipping—resulted in hydraulic disconnection of areas that previously had been
flooded regularly. Cutoff from normal river channel flows as well as, even more
importantly, flood pulses, floodplain waters stagnated and filled with sediments and
organic matter, raising floodplain elevation and finally drying up (see, e.g.,
Hohensinner et al. 2004).

2.2.4 Water Supply from Rivers: Increasing Imprint
on Urban Hinterland

Rivers were essential water resources in particular for various commercial purposes.
In urban areas, they became centers of economy. Washers, tanners, dyers, beer
brewers, or slaughterhouses, for example, used them likewise for cleaning and
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washing. Often this resulted in serious conflicts in water demand between water
polluters and other commercial ventures requiring clean water (see, e.g., Billen et al.
1999). Drinking water was often withdrawn from local groundwater sources,
although surface waters were used as well, as the example of urban centers such as
St. Petersburg shows (Kraikovsky and Lajus 2010). In the nineteenth century,
population growth and urbanization increased the pressure on drinking and process
water supply. As characteristic for the industrial period, the growing metropoles
were driven by the declining quantity and/or quality of water supply to cross the
boundaries of their local and regional river catchments. Via water pipelines, they
tapped sources far away and transferred also their ecological imprint to other more
suitable regions. Prime European examples include Paris (Barles 2012) and Vienna
(Gierlinger et al. 2013). Enlarged water supplies often resulted in an enormous
growth of water use per capita, sometimes continuing until present times. The
Greek capital Athens, for instance, started to search for new water resources outside
of the immediate urban surroundings in the 1830s. Since then, water supply infra-
structures to tap distant sources have been expanded gradually. At present, Athens
controls a significant amount of water reserves of two Greek river basins and no
attempts have been made to decrease per capita demand of urban population
(Stergiouli and Hadjibiros 2012). A similar historical trend can be observed for
Barcelona, with the exception of successful recent efforts to reduce urban water
consumption (Tello and Ostos 2012). In mid-nineteenth century, Boston pipelines
brought water 20 miles from Lake Cochituate after the local wells became so
polluted that they could no longer be used without danger to the lives of urban
dwellers. In the 1860s, the city incorporated several communities to extend and
secure its water resources. Bostonians used in the 1860s 100 gallons per person per
day (approx. 380 L) in contrast to 3–5 gallons (approx. 11–19 L) when water came
from wells (Vörösmarty et al. 2015). New York abstracted water from a tributary of
the Hudson after erecting the New Croton Dam that was the world’s largest masonry
dam at its completion in 1906 (Vörösmarty et al. 2015).

As a general historical tendency, more drinking and process water increased the
volume of wastewater released into rivers. Newly built centralized sewage systems
initiated point-source pollution, built in urban areas since the late nineteenth century,
to fight against hygienic nuisance and infectious diseases, such as cholera.

2.2.5 Pollution of Rivers and Its Legacies

Waste—for long historical periods mostly of organic origin—increased the nutrient
load in aquatic ecosystems. Centuries ago, smaller and mid-sized rivers suffered
certainly more than large ones because of their lower dilution capacity. Medieval
castles and monasteries had often a direct connection between their latrines and local
rivers (Hoffmann 1996). Already in the beginning of the fourteenth century, Paris
effluents had turned the Seine into an infectious and foul canal (Mieck 1981). The
quantities of waste were however considerably smaller before the 1900s. For
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example, human and animal excreta were considered as valuable nutrient resources
since agrarian societies depended solely on natural fertilizers for grain production.
Only in the late nineteenth century did it become a general habit to flush and dispose,
respectively, human and animal excreta. By then, Justus von Liebig’s discoveries of
the role of nutrients for plants, his invention of a phosphorous fertilizer in 1843, as
well as the import of guano and “Chile saltpetre” by steam ship navigation improved
the fertilizer sources for European agriculture. Sewage farms collecting in particular
organic waste from towns had their heyday in the first decades of the twentieth
century. However, the invention of the Haber–Bosch process in 1910 relieved
farmers for the first time in history fully from their dependence on natural fertilizers.
This had far-reaching consequences for rivers. For example, for the Seine, it was
demonstrated that in 1817 when 716,000 dwellers and 16,500 horses lived within the
urban borders the amount of nitrogen released into the Seine was negligible. The
larger part was returned to the agricultural lands that provided the city in turn with
food and feed. A hundred years later, in 1913 when 2,893,000 inhabitants and
55,000 horses lived in Paris, 3100 tons of nitrogen were released annually into the
river via central sewers, which were built in the meantime. Still, however, the larger
proportion of nitrogen was collected for agriculture, mostly in the large sewage
farms along the Seine banks downstream of Paris (i.e., 9100 tons/year; Barles 2007).

On a global scale, Green et al. (2004) compared the change of riverine nitrogen
fluxes of the preindustrial era and nowadays. The largest preindustrial flux was
found for the Amazon exceeding a load of 3.3 million MT N/year at the river mouth.
At present, the largest amounts are closely linked to industrialized areas, e.g.,
continental Europe, North America, as well as Southern and Southeast Asia. As
for nitrogen, eutrophication as a result of excessive phosphorus input became an
increasing problem for rivers in the second half of the twentieth century (see, e.g.,
Liu et al. 2012).

While organic river pollution can produce effects over the short- and midterm,
other types of historical pollution will remain for decades and even centuries. The
current release of toxic and hazardous substance into rivers and their long-term
legacies are widely recognized. For example, chloride pollution in the Rhine is
expected to persist for several centuries, forcing France to face a salinity problem
on its Alsace aquifer (see Vörösmarty et al. 2015). The long-term legacies of
historical events are, however, only slowly getting the scrutiny of river ecologists
and managers (but see, e.g., EEA 2001, 2013).

Pollution with heavy metals from mining and ore processing has been relevant
throughout history. Several studies exist, for instance, for the mining of mercury in
support of large-scale gold and silver exploitation and production since the sixteenth
century in Europe and America. Recently, Torkar and Zwitter (2015) investigated
the long-term effects of the Slovenian mercury mine in Idrija and the resulting
pollution of Idrijca River on fish. Polluted sediments were swept downstream and
finally accumulated in the sediments of the northern part of the Gulf of Trieste
(Gosar 2008; Foucher et al. 2009). According to Nriagu (1994), the annual loss of
mercury in the silver mines of Spanish America averaged 612 tons per year between
1580 and 1900. Total losses of mercury to the environment in the Americas within

2 Historic Milestones of Human River Uses and Ecological Impacts 29



this period amounted to 257,400 tons. Approximately 60–65% was released to the
atmosphere, but large quantities of mercury were deposited on terrestrial and riverine
ecosystems from where they may be reemitted. Concerning most of the mercury now
sequestered in the sediments of aquatic systems—mainly in marine sediments,
Camargo (2002) concluded, however, that the high mercury concentrations currently
reported in the global environment are a consequence of the huge pollution caused
by human activities during the twentieth century.

The long-term legacies of past sediment pollution have been recognized for the
Danube catchment where the risk of accidental release and remobilization of haz-
ardous substances stored in the soils from past industrial activities or waste disposal
was identified. An inventory of accident risk spots was elaborated. By 2009, a total
of approximately 650 such spots were reported in the flood-prone zones of the entire
river basin and 620 were evaluated. Here, a hazardous equivalent of 6.6 million tons
has been identified as a potential danger (ICPDR 2009).

2.2.6 Land-Use Change, Hydrology, and Erosion

Land-use change was an indirect but nevertheless severe human impact to
preindustrial streams. The large-scale medieval shift from forests to arable land in
Europe triggered more rapid surface runoff and erosion, reduced evapotranspiration,
and increased the discharges of rivers. Bork et al. (1998) investigated land-use
change and its environmental effects for Germany north of the Alps based on
palynological and pedological data and demonstrated its strong imprint. Around
650 CE, 93% of the total area was covered by woods (697,500 km2 out of a total of
750,00 km2). By 1310, the proportion of woods had diminished to 15% only (i.e.,
112,500 km2) mostly in favor of arable land and grassland. At present, forests cover
about one third, arable land 38%, and grassland about 24%. Other land-use types
were always of minor importance. Assuming that mean annual precipitation was
similar for all periods and amounted to 700 mm per year, total annual surface runoff
more or less doubled from 115 mm in 650 to 245 mm in 1310. At present, total
annual surface runoff is assumed to be around 220 mm. Although Bork et al. (1998)
did not specifically investigate the effects of altered surface runoff on river dis-
charge, they conclude that changed evapotranspiration and interception had an
effect. The Wassermühlenthese mentioned above clearly points to this link between
surface runoff and springs’ and rivers’ discharges.

Land-use and land-cover change clearly correlated with erosion rates. From the
seventh to the end of the tenth century (max. proportion of arable land 20%), for
instance, in all of Germany north of the Alps, an annual rate of up to about 9 million
tons eroded into river channels. During the first half of the fourteenth century, when
forests covered only 15%, the share of arable land had risen to more than 50% (about
55% in 1313–1318), and extreme precipitation events were frequent, annual erosion
reached 1900 Mio tons between 1313 and 1318. They peaked at 13,000 Mio tons in
1342, when a 1000-year recurrence flood hit large areas of central Europe. In the

30 G. Haidvogl



second half of the fourteenth century, erosion rates declined together with less wet
climate and an increasing proportion of forests recolonizing arable land. The latter
was abandoned due to declining human population after the first wave of plague in
1347–1353. Only in the 1780s and in the following decades a new increase to
200 Mio tons per year was noticed—a resurgence due to expansion of arable land
and a new period of intensified and more frequent rainstorms (see Bork et al. 1998;
but also Lang et al. 2000; Dreibrodt et al. 2010; Dotterweich and Dreibrodt 2011;
Brázdil et al. 2005). In total, it is assumed that half of the total erosion that can be
observed in Germany between the seventh and the twentieth century took place from
1310 to 1342 (Lang et al. 2000).

In North America and Australia, European settlers introduced new land-use
practices that increased erosion. However, changes in sedimentation rates and river
morphology date back to native population influences (Overeem et al. 2013). In
New Zealand, increase of sediment loads started in the North Island rivers already
with the Maoris, and similar trends are associated with cultivation practices of the
Native American population. Along the Waipaoa River in New Zealand, sediment
yields increased by 140% after Polynesians had arrived between 1250 and 1300 CE.
They settled mainly along coastal areas and kept erosion and sediment yield increase
comparatively low. This differed from European settlers arriving in the eighteenth
century. Their land-use change affected lower and upper catchments and sediment
yields increased by 660% (Overeem et al. 2013).

A direct link between land-use change, soil erosion rates, and alluvial sediments
is hard to prove. Dating is usually difficult due to the reworking of sediment layers in
rivers (Dotterweich 2008; Dreibrodt et al. 2010). Few case studies have investigated,
however, the link between increased alluvial sedimentation, land-use change, and
extreme precipitation events (Dotterweich 2008; Lang 2003; Lang et al. 2000).
Giosan et al. (2012) demonstrated that long-term land-use change in the Danube
catchment contributed in the Holocene and, in particular, over the last 1000 years to
the evolution of the Danube delta. Human impacts vs. long-term historical climate
and subsequent hydrology changes were examined as possible drivers of increased
sediment storage rates, and Giosan et al. (2012) found that land-use change was the
main factor. Sedimentation rates increased, in particular, after land clearance, affect-
ing also the lower Danube at larger scales during the last two centuries (see also
McCarney-Castle et al. 2012). Maselli and Trincardi (2013) found similar trends
when comparing the Ebro, Rhona, Po, and Danube. They found two main phases of
delta growth. One synchronous increase happened during Roman times under
relatively warm climatic conditions, a second during the Little Ice Age. The latter
shows, however, slight temporal differences since delta growth coincides temporally
mainly for the Ebro, Rhone, and Po (between the sixteenth and twentieth centuries),
whereas in the Danube delta growth was found mostly in the nineteenth century and
thereafter. Alterations of morphological river types and subsequent habitat change
affected riverine fish assemblages as it was shown by Pont et al. (2009) for the
Drome River, a tributary of the French Rhone.
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2.2.7 Fisheries: Intended and Unintended Dispersal
of Nonnative Species

Most human uses and their ecological impacts changed aquatic biota indirectly via
habitat modification. Fishing was one exception as it altered stocks directly. Also,
until the twentieth century, the appearance of nonnative species was caused mainly
by deliberate introductions by fisheries management (however, cf. nonnative fish
distribution as a consequence of artificial shipping canals above). Only during the
twentieth century, the unintended dispersal of nonnative and invasive fish species
and other aquatic animals and plants via transport means increased drastically.

It is evident that fishing put direct stress on the targeted fish populations and
changed species assemblages already centuries ago. A remarkable recorded example
of medieval overexploitation is the Alpine Zellersee in Austria. After the 1360s,
fishermen delivered each year 27,000 whitefish (Coregonus sp.) and 18 lake trout
(Salmo trutta) to the archbishop of Salzburg, taking themselves even more for their
own use. Only some decades later the whitefish population collapsed. Pike (Esox
lucius) was stocked to replace it. When predating pikes had soon diminished trout
stocks, only then did the fishing communities decide to reduce fishing pressure
(Freudlsperger 1936).

Particularly subjected to overexploitation were diadromous fish because of their
predictable spawning runs during which large amounts could be caught. For exam-
ple, archaeological sturgeon remains from the southern Baltics demonstrate a
decrease of average size of specimen and a decline of the percentage in total
consumption from 70% in the seventh, eighth, and ninth centuries to only 10% in
the twelfth and thirteenth centuries CE. Benecke (1986) clearly attributed this
change to overfishing. Weirs built since the High Middle Ages in Europe supported
overexploitation (Hoffmann 1996).

Such evidence for declining fish populations are rare for the medieval and even
for modern periods. Due to lack of written historical sources that enable tracing
depletion of certain fish species and their stocks, it is hardly possible to directly
quantify losses before the twentieth century. Nevertheless, some indications help
explain the preindustrial decline of fish. As mentioned already above, the latter can
be concluded indirectly from fishing laws that were issued in Europe since the
thirteenth century (Hoffmann 1996). The laws aimed first at protecting juveniles
by regulating minimum lengths or weights of individuals, by forbidding harmful
fishing gear, or by defining closed seasons. In contrast, habitat protection is rather a
practice of the nineteenth century and afterward.

While overexploitation of fish in the medieval and early modern period took place
especially in European countries, North America and Australia followed this pattern
after the colonization of European settlers. Travelers’ accounts describe the wealth of
freshwater fish, e.g., in the Ohio River which was said to have been inhabited by
enormous numbers of pike, walleye, catfish, buffalo fish, suckers, drum, and stur-
geon as well as small fish such as sand darters, chub, riffle darters, and minnows
(Trautman 1981 cited from Humphries and Winemiller 2009). Massive exploitation
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with a variety of fishing nets, dams to support fishing, as well as milldams hampering
fish migration soon raised concern of overexploitation. As in Europe, also in North
America fishing regulations followed. The number of fishing days per week was
reduced, fishing gear regulated, and closed seasons defined, for example, in
Massachusetts in 1710, in Connecticut in 1715, or in Rhode Island in 1735
(Humphries and Winemiller 2009). Sturgeon fishes (Acipenser oxyrinchus,
A. brevirostris), salmon, or shad (Clupea sapidissima) were among the fish stocks
which have been overfished so heavily that fishing them in the seventeenth and
eighteenth centuries was stopped several times after few years of fishing because
stocks were too low (Lichter et al. 2006). In North America, the settlers also
established a lively beaver trading industry. Hunting beavers began in the early
seventeenth century. Between 1630 and 1640, 80,000 individuals were caught
annually. By 1900, this species was more or less extinct in North America (Naiman
et al. 1988; cited from Humphries and Winemiller 2009). In the late nineteenth and
twentieth century, river channelization, flood protection dikes, hydropower dams,
and pollution added to the adverse effects of fish overexploitation in most of Western
rivers. It is assumed that in Europe 13 fish species have gone extinct since 1700
(Kottelat and Freyhof 2007). A large number of fish species is threatened, especially
less tolerant species requiring specific habitats.

Purposeful and unintended species introduction contributed to large-scale
changes in fish assemblages. Fish pond networks and fish breeding programs were
established to ensure a sufficient and steady supply of a resource that is naturally
only seasonally available. Historical records confirm this started in Western Europe
in the eleventh century and spread eastward in the twelfth and thirteenth centuries
(Hoffmann 1996). Originally, different kinds of cyprinids were raised in the ponds
because they could tolerate consistently warm temperatures. Soon, carp (Cyprinus
carpio), a fish species native to the middle and lower Danube watershed, became the
main species as they tolerate longer land transport, have a high fecundity, and grow
relatively fast. The earliest traces mark the spread of carps to the upper Danube, the
Elbe, or the Rhine in the eleventh and twelfth centuries and to the Maas, Seine, or
upper Rhone in the late twelfth and thirteenth centuries. The dispersal into central
Bohemia, Southern Poland, the Loire, and southern England happened in the Late
Middle Ages. From ponds, carp reached natural waters and had colonized suitable
habitats in most of Central, Western, and Northern Europe by 1600 (Hoffmann
1996).

It can be assumed that with the transfer of carp also other species were
unintentionally spread and colonized new river systems. Evidence suggests that
Bitterling (Rhodeus amarus) was introduced to many rivers of Central and Western
Europe in a first wave already in the High and Late Middle Ages (1150–1560)
together with carp (Damme et al. 2007). It is not possible to trace the origin of tench
(Tinca tinca) in sixteenth century Spain where it occurred together with carp
(Clavero and Villero 2014).

In contrast to many other domesticated animal and plant species, which were
transferred purposefully between the continents after the discovery of the Americas,
the so-called Columbian Exchange hardly affected riverine environments in the
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Early Modern Period, i.e., the sixteenth and seventeenth century (Crosby 1972). A
few—though delayed—exceptions are ornamental fish or species that were intro-
duced to help fighting mosquitos. The goldfish (Carassius auratus) was brought to
Portugal in 1611. In England and France, it was imported in eighteenth century
(Copp et al. 2005). The mosquitofish (Gambusia holbrooki) was introduced in
Europe in the 1920s (Vidal et al. 2010).

Introduction of nonnative fish species and the large-scale spread of invasive fish
are clearly attributed to industrialized rivers. With railways, fresh fish could be
imported in unprecedented quantities to continental areas. In Vienna, for example,
the import of fish from the North Sea started in 1899 when a German steam fish
trading company opened its first stand on the Viennese fish market. Only due to these
imports the yearly amounts sold on the market could increase from 600 to 2250 tons
between 1880 and 1914, securing fish as nutrition for the heavily growing popula-
tion (Jungwirth et al. 2014). Concurrently, local fish stocks in the Danube exhibited a
clear downward trend as they started to be seriously affected by systematic chan-
nelization measures for navigation and partly for flood protection.

Although fisheries can be seen as victims of the industrialization of rivers,
fishermen eagerly adapted new technologies, thereby contributing seriously on
their own to the change of riverine fish assemblages. They began artificial fish
breeding and stocking and often the efforts of European fishermen targeted North
American fish species since they were considered faster growing and sometimes also
better adapted to channelized habitats. Intentional fish translocations happened on a
continental as well as an intercontinental scale. In Europe, for instance, catfish
(Silurus glanis) or pike-perch (Sander lucioperca) were introduced in Western
Rivers in the nineteenth century (see, e.g., Copp et al. 2005). Modern steam ships
enabled relatively easy exchange between the continents, first and foremost between
Europe and North America. Rainbow trout (Oncorhynchus mykiss)—native to North
American and North Asian streams of the Pacific—was one of the main species. In
the USA, its artificial breeding for stocking of native and nonnative environments
started in the 1870s (Halverson 2010). Import to Europe followed soon after in the
1880s. Brook trout (Salvelinus fontinalis), brown bullhead (Ameiurus nebulosus),
pumpkinseed (Lepomis gibbosus), or smallmouth bass (Micropterus dolomieu) were
other target species. Some of the nonnative species introduced in Europe established
self-sustaining populations, e.g., rainbow trout or brook trout (Copp et al. 2005).

2.3 Conclusions

The historical evolution of river uses and resulting ecological impacts exhibit clear
temporal patterns. It is evident that human alterations have been numerous for
millennia. Preindustrial effects were mostly local and regional, and human practices,
such as passive flood protection, were designed to adapt to, not control, the dynamics
of rivers. This relates, for instance, to ancient Egypt and likewise to European
preindustrial practices of flood protection that depended on measures to mitigate
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flood damages (see Chap. 28). In intensely populated regions, such adaptive prac-
tices at local scales could aggregate up to larger-scale effects. Characteristic for
preindustrial rivers is that local aquatic environmental resources were essential for
societies. Since substitution by trade was not yet possible, harmonizing a variety of
uses was indispensable. This helped keep ecological impacts at low levels.
Preindustrial societies, nevertheless, initiated long-term changes of river ecosystems
that might influence them even in the present era. Land-use change and erosion as
well as weirs as sediment traps are prime cases. Although reliable and detailed
records are scarce, it seems that subsequent examples include stocking of nonnative
fish species and unintended expansion of fish and other species, for instance, via
shipping canals built in and after the seventeenth century contributed to early
modifications of aquatic biota and biotic communities. One should note that, in
contrast to (well-studied) marine systems (see, e. g., Jackson et al. 2001), in rivers
overexploitation, primarily of aquatic animals, was soon followed by effects of other
human uses on habitat conditions.

Industrialization had large-scale effects on river uses and their impacts on mor-
phology, hydrology, and aquatic biota. The use of fossil energy enabled intensifica-
tion of uses with unprecedented ecological consequences. Well into the twentieth
century, deteriorating water quality and hydromorphological degradation were per-
ceived as a necessary evil to foster economic development. Riverine impairment
peaked in response to a combination of intensifying factors: increasing resource
exploitation and use, a rising density of machinery in industry and private house-
holds, intensified agriculture driven by an ever-increasing number of machines, as
well as fertilizers and pesticides.

As a response in the late 1980s and 1990s, river restoration projects were planned
and implemented. Especially in densely populated areas and centers of economic
production, rivers and their biotic communities often have been degraded so dras-
tically that restoration toward a natural status appears impossible within any fore-
seeable political time frame (see, e.g., Hughes et al. 2005; Dufour and Piégay 2009).
In addition, some external factors, namely, climate and thus hydrology and temper-
ature, changed naturally as well as due to human impacts for more than a century.
This further prevents restoration of presumed pristine conditions. While this might
confine the role of history in defining reference conditions, historical investigation of
rivers can nevertheless add valuable insights into their trajectories and help
explaining the origins of present conditions.
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