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Abstract. One-time signatures (OTS) are called one-time, because the
accompanying security reductions only guarantee security under single-
message attacks. However, this does not imply that efficient attacks are
possible under two-message attacks. Especially in the context of hash-
based OTS (which are basic building blocks of recent standardization
proposals) this leads to the question if accidental reuse of a one-time key
pair leads to immediate loss of security or to graceful degradation.

In this work we analyze the security of the most prominent hash-
based OTS, Lamport’s scheme, its optimized variant, and WOTS, under
different kinds of two-message attacks. Interestingly, it turns out that
the schemes are still secure under two message attacks, asymptotically.
However, this does not imply anything for typical parameters. Our results
show that for Lamport’s scheme, security only slowly degrades in the rel-
evant attack scenarios and typical parameters are still somewhat secure,
even in case of a two-message attack. As we move on to optimized Lam-
port and its generalization WOTS, security degrades faster and faster,
and typical parameters do not provide any reasonable level of security
under two-message attacks.
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1 Introduction

The possible advent of large-scale quantum computers threatens the security
of all widely deployed public key cryptography. Shor’s algorithm [20] allows
to factor and compute discrete logarithms in polynomial time on a quantum
computer with a few thousand logical qubits. While it is not yet known for sure
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if it will be possible to build such a machine, it is a question of risk assessment
to be prepared. The implied disastrous consequences by now also motivated
standardization bodies (see e.g. [16]) and security agencies [17] to prepare the
transition to post-quantum cryptography – cryptography secure against attacks
using quantum-computers.

The first post-quantum signature schemes considered for standardization
are hash-based Merkle Signature Schemes [9,13]. These schemes form the most
confidence-inspiring post-quantum solution for digital signatures as their secu-
rity only relies on some mild assumptions about properties of cryptographic
hash-functions [11]. This is in contrast to all other proposals where security in
addition to assumptions about the used hash function is based on rather new
intractability assumptions like the MQ-problem (see e.g. [18]) or the approxi-
mate shortest vector problem [6]. Hash-based signature schemes can be split into
stateful [3–5,10,11,15] and stateless [1] proposals. In this context, statefulness
means that the secret key changes after every signature. In case a ’secret key
state’ is used twice, all security guarantees vanish. In practice it turns out that
in many scenarios keeping a state becomes a complicated issue [14]. However,
currently stateful schemes are the ones considered for standardization as these
schemes are far more efficient in terms of signature size and signing speed than
the stateless alternatives.

The reason these schemes are stateful is that their core building block is a
so-called one-time signature scheme (OTS). A one-time signature scheme allows
to use a key pair to sign a single (arbitrary) message. If a key pair is used to
sign a second, different message, no security guarantees are given. The security
reductions only apply as long as just a single message is signed. While this is
commonly interpreted as the schemes are entirely broken if a key pair is used
to sign twice, this is not necessarily the case. It is known that if an adversary
has full control about the messages to be signed, the schemes are fully broken
after two signatures, i.e. the secret key can be extracted without any effort.
However, in practice the OTS causing statefulness are used to sign the digest of
an adversarial chosen message. Moreover, in both recent proposals for standard-
ization [9,13] these message digests are randomized. Hence, the actually signed
message (digest) is unpredictable for an adversary.

Taking the message digest into account is one of the crucial steps in the
construction of hash-based few-time signature schemes like HORS [19] that allow
to use a key pair to sign a small number of messages before security drops below
the acceptable limit. This opens up the question if classical hash-based OTS
are still one-time when we take the message digest into account or if a similar
argument applies as for HORS. For practice, this question translates to the
question if reuse of a secret key state leads to a hard fail or if one is “only”
facing graceful degradation of security.

Our Contribution. In this work we analyze the security of hash-based one-time
signature schemes under different kinds of two-message-attacks. We carry out the
analysis for the most prominent proposals Lamport’s scheme [12], the optimized
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version of Lamport’s scheme [15], and the Winternitz OTS (WOTS) [15]. It turns
out that actually, all three schemes are still secure under two-message attacks if
we take into account that a message digest is signed – at least asymptotically
(see Table 1).

Table 1. Complexity for an existential forgery under a random message attack for the
given signature scheme with typical parameters (see text).

Signature scheme Attack complexity

Lamport O((1.34)m)

Optimized Lamport O((1.14)m+logm)

Winternitz O((1.09)m+logm)

The general working of these schemes is as follows. If necessary, a message
M is first compressed using a cryptographic hash function H to obtain a fixed
length message digest M∗ = H(M). A mapping function G is used to map M∗

to some index set B = (B1, . . . , B�) = G(M∗). Finally, secret values indicated
by the index set B are published as signature. Generally, the secret values are
the preimages of public key values under a cryptographic hash function F. Ver-
ification works by applying F to the given values and comparing the results to
the respective public key values. In case of WOTS secrets are arranged in hash
chains. The end nodes of the chains are the public key values. In this case, there
exists some dependency, i.e., if a value from a chain is part of the signature, all
later values of that chain can be derived applying F.

After seeing two signatures, there exist two possible ways to forge a signature.
First, an adversary can try to find a message that is mapped to an index set
which is covered by the union of the index sets of the two seen signatures. In this
case, all the required secret values are contained in the two signatures. Second,
an adversary can try to compute the missing secret values for a signature from
the respective public key values. However, this requires to break one of the
security properties of F and would also allow to forge signatures after seeing
just the public key. Parameters in practice are chosen such that this is infeasible.
Consequently, we just consider the first approach in this work. The possibility
and complexity of attacks of this type depends on the properties of hash function
H, the message mapping function G, and possible dependencies of secret values
(as in the case of WOTS). In our analysis we focus on the latter two. For H
we assume that it behaves like a random oracle. This decision follows the same
reasoning as above. Vulnerabilities of H would already allow for forgeries under
one-message attacks. For WOTS this implies that the obtained results also apply
to the recent variants of WOTS that minimize security assumptions [2,8,11] as
the mapping function and the arrangement of secret values for these variants is
the same as in the original scheme.

For Lamport’s scheme, we obtain exact complexities for two-message attacks.
For the optimized Lamport scheme and WOTS analysis becomes extremely
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complex when looking at the actual mapping function. This is caused by a
checksum which is added to the message. This checksum introduces a lot of
dependencies between probabilities, eventually leading to sums with an exponen-
tial number of summands. Therefore, we decided to analyze a simplified variant
where we assume that the checksums are independent and uniformly distributed.
For this simplified message mapping, we obtain exact complexities. We experi-
mentally verified the results obtained for the simplified mapping function.

We analyze security of the OTS without initial message hash in terms of full
break resistance, universal, selective, and existential unforgability under random
and adaptively chosen message attacks. Please note that as we assume H to be
a random oracle, existential unforgability under an adaptively chosen message
attack (EU-CMA) of a scheme with initial randomized message hashing is equiv-
alent to existential unforgability under a random message attack (EU-RMA) of
the scheme without initial message hash. Accordingly, the crucial case for prac-
tice is EU-RMA security of the scheme without initial message hash. It covers
the case of accidental reuse of an OTS key pair when using one of the recent
proposals to standardize hash-based signatures. While all three schemes turn out
to be EU-RMA-secure under two-message attacks in the asymptotic setting, we
get different results for typical parameter choices. For Lamport’s scheme with a
message digest size of 256 bits, the complexity to produce existential forgeries
under two-random-message attacks is still 2106 hash function calls, ignoring the
costs for pairwise comparison of all message digests. Hence, in this setting a
signer is still on the safe side even after using a one-time key pair twice. For the
optimized Lamport OTS with 256 bit message digests, the complexity to produce
existential forgeries under two-random-message attacks is already down to 251.
Which means attacks are not for free, but they are possible. For WOTS in the
same setting, using the parameters from [9], we are left with an attack complex-
ity of 234 hash function computations. This can be done on a modern computer
within few days if not hours. These parameters use a Winternitz parameter of
w = 16, i.e. hash chains of length 16. For bigger values of w, the attack com-
plexity goes down even further. These results show that Lamport’s scheme is
still somewhat forgiving but especially for WOTS, measures have to be taken
that prevent ots key reuse in any case. However, as soon as we are consider-
ing attacks on quantum-computers, complexities drop at least by a square-root
factor. In this case even Lamport’s scheme has to be considered broken after
two-random-message attacks for typical parameters.

Organization. In Sect. 2 we discuss the models we use as well as required
notation. We start our analysis in Sect. 3 with Lamport’s scheme. We continue
in Sect. 4 with the optimized Lamport scheme and in Sect. 5 with WOTS. In
Sect. 6, we experimentally verify our results.

2 The Model

Security of one-time signature schemes (OTS) can be analyzed with regard to all
traditional security definitions for general signature schemes. The difference is



“Oops, I Did It Again” 303

that the number of adversarial signature queries is limited to q = 1. Formally, any
signature scheme that achieves EU-CMA-security (see definition below) when the
adversary may only make a single signature query is a OTS. To understand the
security of a OTS under two-message attacks in any of the models, we simply
investigate the security for q = 2. We first discuss the traditional definitions and
afterwards we discuss how to analyze security within these models.

2.1 Digital Signature Schemes

First, what exactly are we talking about? From a formal perspective the objects
we are talking about are digital signature schemes, defined as follows:

Definition 1 (Digital Signature Scheme). Let M be the message space. A
digital signature scheme Dss = (kg, sign, vf) is a triple of probabilistic polynomial
time algorithms:

– kg(1n) on input of a security parameter 1n outputs a private signing key sk
and a public verification key pk;

– sign(sk,M) outputs a signature σ under sk for message M , if M ∈ M;
– vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that the following correctness condition is fulfilled:

∀(pk, sk) ← kg(1n),∀(M ∈ M) : vf(pk, sign(sk,M),M) = 1.

Throughout this work signature scheme always refers to a digital signature
scheme.

2.2 Security of Signature Schemes

The definition above is only a functional definition of the object at hand that
says nothing about security. It leaves the question of how to define security
for a signature scheme. In general we can split security notions into the goals
an adversary A has to achieve (e.g., a valid signature on any new message for
existential unforgeability) and the attack capabilities given to A (e.g., adaptively
learning signatures on messages of its choice after seeing the public key). For the
goals, the relevant notions1 are:

Full break (FB): A can compute the secret key.
Universal forgery (UU): A can forge a signature for any given message. A

can efficiently answer any signing query.
Selective forgery (SU): A can forge a signature for some message of its

choice. In this case A commits itself to a message before the attack starts.
Existential forgery (EU): A can forge a signature for one arbitrary message.

A might output a forgery for any message for which it did not learn the
signature from a oracle during the attack.

1 We omit strong unforgeability here as it is irrelevant for this context.
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On the other hand, for the attacks we got (We omit key-only attacks as these
allow for no signature queries at all):

Random message attack (RMA): A learns the public key and the signa-
tures on a set of random messages.

Adaptively chosen message attack (CMA): A learns the public key and
is allowed to adaptively ask for the signatures on messages of its choice2.

These two attacks are parameterized by the number of signature queries q
the adversary is allowed to ask. For one-time schemes we only require that a
notion is fulfilled for q = 1.

Any combination of a goal and an attack from the above sets gives a mean-
ingful notion of security. The strength of the notion increases going down each
list. Accordingly, a scheme that is only secure against a full break under a ran-
dom message attack offers the weakest kind of security while a scheme that
offers existential unforgeability under adaptively chosen message attacks offers
the strongest security guarantees.

2.3 Formal Definitions

We now give formal definitions for the notions from above. We define EU-CMA
as an example. The definitions for the remaining notions can be found in the full
version.

EU-CMA. The standard security notion for digital signature schemes is exis-
tential unforgeability under adaptive chosen message attacks (EU-CMA) which
is defined using the following experiment. By Dss(1n) we denote a signature
scheme with security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ← kg(1n)
(M�, σ�) ← ASign(sk,·)(pk)
Let {(Mi, σi)}q

1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,M�, σ�) = 1 and M� �∈ {Mi}q

1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

A signature scheme is called (t, ε(t), q)-EU-CMA-secure if any adversary running
in time at most t, making no more than q queries to the signing oracle has at
most a success probability of ε(t) for breaking the scheme:

2 We omit the non-adaptive setting as it turns out that there is no difference in the
given setting.
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Definition 2 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as defined
above. We call Dss (t, ε(t), q)-EU-CMA-secure if InSeceu-cma (Dss(1n); t, q), the
maximum success probability of all possibly probabilistic adversaries A running in
time ≤ t, making at most q queries to Sign in the above experiment, is bounded
by ε(t):

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} ≤ ε(t).

A (t, ε(t))-EU-CMA-secure one-time signature scheme (OTS) is a Dss that is
(t, ε(t), 1)-EU-CMA secure, i.e. the number of signing oracle queries of the adver-
sary is limited to one.

We can give similar definitions for the remaining notions. The difference
between the different notions is described by a modified experiment. The defini-
tion of success probability and what it means for a scheme to fulfill the notion can
be obtained replacing the experiment in the above definitions (and, of course,
tracing the resulting changes through the definition). The experiments of the
remaining notions are given in the full version.

Attack Complexity. For a (t, ε(t))-secure scheme, we define the attack com-
plexity as 2t∗ for t∗ = mint{ε(t) ≥ 1

2}. As the most costly operations of all
attacks are calls to the message digest function H, we measure attack complex-
ity as the number of calls to H.

Further Model Decisions. For our analysis we made several decisions on
how we are analyzing the security in the above models. We are not interested in
attacks that exploit weaknesses of the used hash-functions as these already apply
in the one-message attack setting. Therefore, we model all used hash functions
as random oracles. Due to this decision, RMA-attacks model the setting where
randomized hashing is used for the initial message digest. Hence, we do not do
a separate analysis for variants of the schemes that use randomized hashing.

3 Lamport’s Scheme

We start with analyzing Lamport’s scheme which was the first proposal for a
hash-based signature scheme. For q = 1 it achieves the strongest security notion
EU-CMA-security when the used function is one-way (actually even the ignored
stronger SU-CMA-security if the function is second-preimage resistant). This
holds even without hashing the message first. Now let us look at the two-message
attack case.

3.1 Scheme Description

The first and most intuitive proposal for an OTS is Lamport’s scheme (some-
times called Lamport-Diffie OTS) [12]. The scheme uses a one-way function
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F : {0, 1}n → {0, 1}n, and signs m bit strings. The secret key consists of 2m
random bit strings

sk = (sk1,0, sk1,1, . . . , skm,0, skm,1)

of length n. The public key consists of the 2m outputs of the one-way function

pk = (pk1,0, pk1,1, . . . , pkm,0, pkm,1) = (F(sk1,0),F(sk1,1), . . . ,F(skm,0),F(skm,1))

when evaluated on the elements of the secret key. Signing a message (digest)
M∗ ∈ {0, 1}m corresponds to publishing the corresponding elements of the secret
key:

σ = (σ1, . . . , σm) = (sk1,M∗
1
, . . . , skm,M∗

m
).

To verify a signature the verifier checks whether the elements of the signature
are mapped to the right elements of the public key using F:

(F(σ1), . . . ,F(σm)) ?= (pk1,M∗
1
, . . . , pkm,M∗

m
).

For Lamport’s scheme, the message mapping can be considered the identity.

3.2 Security Under Two-Message Attacks

Considering a CMA setting, we cannot achieve any security without an initial
message hash. An adversary A can choose any pair of messages (M∗

1 ,M∗
2 ) such

that M∗
1 = ¬M∗

2 , where ¬ denotes bitwise negation, and will learn the full secret
key. In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m, i.e., a m-bit message digest M∗ is used to select the secret
key elements. Our results are summarized in Table 2.

Table 2. Overview of the computational complexity for two-message attacks against
Lamport’s scheme. If the success probability of an attack is not constant in terms
complexity, we give the attack complexity to achieve a success probability of 1/2.

Security goal Attack complexity Pr[Success]

EU-CMA O((4/3)m/3) 1
2

SU-CMA O((4/3)m/3) 1
2

UU-CMA O(2m/2) 1
2

FB-CMA O(2m/2) 1
2

EU-RMA O((4/3)m) 1
2

SU-RMA - (3/4)m

UU-RMA - (3/4)m

FB-RMA - (1/2)m/2
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FB-CMA. A full break requires A to find a pair of messages (M1,M2) such
that H(M1) = ¬H(M2). This task has the same complexity as collision finding
for H. The only difference between the two tasks is that the equality condition
is replaced by equality after negation. Sadly, this does not mean that we get a
reduction from collision resistance as the counter example of the identity function
shows: The identity function is collision resistant as no collisions exist but it is
trivial to find a pair such that one message is the negation of the other. However,
assuming H behaves like a random function a birthday bound argument shows
that the complexity of finding such a pair is O(2m/2) which can be carried out
as pre-computation as long as H is known.

EU-CMA. To produce a valid forgery in a chosen message setting, an adversary
A has to find a triple of messages M1,M2,M3 such that

break(M1,M2,M3) = (∀i ∈ [0,m−1]) : H(M1)i = H(M2)i ∨H(M1)i = H(M3)i)

where H(·)i denotes the i-th bit of the message digest. In this case, we say that
M2,M3 form a cover for M1.

For random messages M1,M2,M3, the probability that M2,M3 cover M1 is
the inverse probability of each bit of M∗

1 not being covered by M∗
2 ,M∗

3 :

PrM1 [break(M1,M2,M3) = 1] = (1 − (1/2)2)m = (3/4)m

For an existential forgery, A can start by hashing τ > 2 random messages,
pick a random set of two hashed message and check if these cover a hashed third
message. There are

(
τ
2

)
such pairs of hashed messages, and τ −2 hashed messages

that are potentially covered, leaving a total of
(
τ
2

)
(τ − 2) possibilities. We can

bound the success probability of an existential forgery by the union bound:

Pr{M1,...,Mτ }[∃(Ma,Mb,Mc) ∈ {M1, . . . ,Mτ} : break(Ma,Mb,Mc) = 1]

≤
(

τ

2

)
(τ − 2)(3/4)m ≤ 1

2
τ3(3/4)m

We want to know for which τ this upper bound reaches 1/2, which is
τ = (4/3)m/3. Hence, the attack complexity is lower bound by (4/3)m/3. As
an example, if we consider m = 256 then 236 > (4/3)m/3. It has to be noted
that this is all pre-computation, which can be done before choosing a victim:
no knowledge of the public key is required. It remains to show how tight our
upper bound is. In Sect. 6, we experimentally verify that it is tight for the case
of optimized Lamport and Winternitz.

SU-CMA. For selective forgeries, A can pick a message M for which it needs
to find a cover before receiving signatures. However, since no knowledge of the
public key is needed to start an attack, there is no difference between a selec-
tive forgery and an existential forgery. A can simply search for three messages
(M1,M2,M3) satisfying the break condition before the attack starts using the
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correct hash function. It can then commit to M1 before learning pk, and use
the signatures of M2,M3 to sign M1. This means, the complexity of a selective
forgery can again be lower bound by (4/3)m/3.

UU-CMA. For universal forgeries, A can try to find two messages M1,M2

such that they have non-overlapping message digests in r indices. After the
experiment, A can forge any message with probability (1/2)m−r, since a messages
digest has to overlap with the digests of M1,M2 in m−r indices. The probability
that any two messages M1,M2 have non-overlapping message digests in r indices
is

(
m
r

)
(1/2)r(1/2)m−r =

(
m
r

)
(1/2)m. Using similar arguments as in the EU-CMA

case after τ calls to H, the probability that two messages have r non-overlapping
indices is bounded by at least 1/2 if

(
τ
2

) ≥ 1/2 ·2m
(
m
r

)−1, where we can estimate

that τ = 2m/2
(
m
r

)−1/2. It is easy to see that the more pre-computation an
attacker is doing, the higher the success probability. Figure 1 shows the success
probability as a function of the pre-computation carried out. For m = 256, a
pre-computation of 2136 calls to H is required to reach a probability of 1/2.

Fig. 1. This plot shows the relation between the amount of pre-computation and the
success probability of a universal forgery in a chosen message attack on Lamport’s
One-Time Signature Scheme.

EU-RMA. In this case, the adversary gets a signature of two random messages
(M1,M2) and has to find a third message M3 that is covered by M1,M2. The
difference to the CMA case is that A cannot optimize the choice of M1,M2. This
means each index should be covered, which happens with probability (3/4)m.
In consequence, A has to compute τ = (4/3)m message digests before it finds
a forgery with probability ≥ 1/2. For m = 256, this means the attacker has to
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compute about 2106 message digests, making this type of forgery computation-
ally infeasible. However, for m = 128 bit message digests, this would mean a
computational cost of 253, which is in reach for strong attackers.

SU-RMA. For SU-RMA, the adversary selects a message before it receives two
signatures of two random messages. There is no way for A to optimize the selec-
tion of this message, as A does not know (or has influence on) the two random
messages for which it learns the signatures. The probability that A can after-
wards sign the selected message is (3/4)m. This is also the success probability
of the attack. Note that this probability is constant for fixed parameters, i.e.,
independent of the adversaries efforts.

UU-RMA. For random message attacks, there is no difference between uni-
versal and selective forgery attacks since the adversary has no power over the
signed messages and cannot affect his success probability by choice of a target
message. This means also in this case, the probability of a forgery is (3/4)m.

FB-RMA. The probability of a full break under a random message attack, is
simply the probability that two messages are each-others negated version. This
happens with probability (1/2)m.

4 Optimized Lamport

The optimized Lamport scheme is very similar to Lamport’s scheme and first
appeared in [15]. While it is interesting on its own, it is also of interest as it can
be viewed as a special, simplified version of the Winternitz OTS discussed in the
next section.

4.1 Scheme Description

The optimized Lamport scheme uses a one-way function F : {0, 1}n → {0, 1}n,
and signs m bit messages. The secret key consists of � = m + log m + 1 random
bit strings

sk = (sk1, . . . , sk�)

of length n. The public key consists of the � outputs of the one-way function

pk = (pk1, . . . , pk�) = (F(sk1), . . . ,F(sk�))

when evaluated on the elements of the secret key. Signing a message M∗ ∈
{0, 1}m corresponds to first computing and appending a checksum to M∗ to
obtain the message mapping G(M∗) = B = M∗‖C where C =

∑m
i=1 ¬M∗

i . The
signature consists of the secret key element if the corresponding bit in B is 1,
and the public key element otherwise:

σ = (σ1, . . . , σm) with σi =
{
ski, if Bi = 1,
pki, if Bi = 0.
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To verify a signature the verifier checks whether the full public key is obtained
by hashing the elements of the signature that correspond to 1 bits in B:

Return 1, iff (∀i ∈ [1, �]) : pki =
{
F(σi), if Bi = 1,
σi, if Bi = 0.

4.2 Security Under Two-Message Attacks

As with the non-optimized Lamport scheme, we cannot achieve any security
without initial message hash. While it is impossible to learn the whole secret
key from a two-message attack for typical parameters (this is the case as for m
being a power of two the most significant bit of the checksum is only 1 for the all
zero message, and it is impossible to learn the remaining secret key values from
the signature of a single message), it is trivial to obtain all secret key elements
but the one that corresponds to the most significant bit of the checksum. This
allows to sign any message but the all 0 message. An adversary can for example
use the all 1 message (to learn the secret key values for the message part of B)
and any message with a single one (to learn the secret key values of the checksum
part of B, besides the one at the most significant position).

In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m to obtain a message digest M∗ – making attacks signifi-
cantly harder. It is easy to see that checksum C follows a binomial distribution.
However, the analysis of the scheme as described above turned out too complex
to be carried out exactly due to the dependency between C and M∗. The prob-
lem is that it would be possible to condition on two checksums to cover a third
one in the existential forgery setting. These conditions would give an exact Ham-
ming weight for the message parts. However, there would be exponentially many
possibilities, each with a specific probability, rendering a very complex analysis.
For that reason, we simplified the analysis assuming that C is uniformly random
and thereby that digest M∗ and checksum C are independent of each other.
Note that the neglected dependency, and the neglected distribution of C, can
make the attack both easier and harder, depending on wether the higher order
bits of C are covered. Our theoretical results are summarized in Table 3. For an
experimental verification of our results see Sect. 6.

FB-CMA. As mentioned above for m being a power of two (which is the typical
setting), it is impossible to learn the whole secret key from a two-message attack.
For other choices of m, an adversary A has to find two messages M1,M2 such
that (B1)i = 1 or (B2)i = 1 for all i ∈ {0, . . . , � − 1}.

As H is modeled as random oracle and we assume the checksum is uniformly
random and independent of the message, every random input message M leads
to a random message mapping B of length �. For two random input messages
M1,M2, the probability that at least one of the two corresponding message
mappings B1, B2 is 1 at each position is:

Pr[FB(M1,M2)] = (3/4)�.
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Table 3. Overview of the computational complexity for two-message attacks against
the optimized Lamport scheme. If the success probability of an attack is not constant
in terms of complexity, we give the attack complexity to achieve a success probability
of 1/2 (aside from SU-RMA as the best we can achieve is a success probability of 3

8
).

Security goal Attack complexity Pr[Success]

EU-CMA O((8/7)(m+logm)/3) 1
2

SU-CMA O((8/7)(m+logm)/3) 1
2

UU-CMA O((4/3)(m+logm)/2) 1
2

FB-CMA O((4/3)(m+logm)/2) 1
2

EU-RMA O((8/7)m+logm) 1
2

SU-RMA O(2m+logm) 3
8

UU-RMA - (7/8)m+logm

FB-RMA - (3/4)m+logm

Similar to the strategy of the existential forgery in Lamport’s scheme, we
can hash τ messages and check all pairs for a full break. The probability of
a full break is bounded by

(
τ
2

)
(3/4)�. We can therefor lower bound the attack

complexity of a full break by (4/3)�/2 calls to H. For m = 256, this complexity
equals 254.

EU-CMA. We will now explore forgeries for a third message, given the signa-
tures for two messages. We define the condition for a break for three messages
M1,M2,M3 with message mappings B1, B2, B3 as:

break(M1,M2,M3) := (∀i ∈ [0, � − 1]) : (B1)i = 1 ⇒ (B2)i = 1 ∨ (B3)i = 1 (1)

where (Bj)i denotes the i-th bit of the mapping of message Mj . If the condition
is fulfilled, we say that M2,M3 form a cover of M1.

In other words: we only need the secret values for those bits of the first
message mapping that are 1, so the probability for a break is higher for target
messages with a low weight message mapping. Recall that we assume that M∗

j

and Cj are independent, meaning we assume we have three independent random
bit strings.

To get the probability that we cover a bit of B1, we can condition on the
value of that bit b ∈ {0, 1}:

Pr[(B1)i ≤ (B2)i ∨ (B1)i ≤ (B3)i]

=
∑

b∈{0,1}
Pr[(B1)i ≤ (B2)i ∨ (B1)i ≤ (B3)i |(B1)i = b]Pr[(B1)i = b]

=
1

2
· Pr[0 ≤ (B2)i ∨ 0 ≤ (B3)i |(B1)i = 0]

+
1

2
· Pr[1 ≤ (B2)i ∨ 1 ≤ (B3)i |(B1)i = 1]

=
1

2
· 1 +

1

2
· 3

4
=

7

8
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This means that the probability that the break condition is fulfilled for three
random messages is

(
7
8

)�.
As with the original Lamport scheme, we can precompute τ message map-

pings, and calculate the upper bound for the success probability. This time, for
the bound to reach 1/2 we need to compute τ = (8/7)�/3 message mappings,
using similar arguments as in the EU-CMA case for Lamport. For m = 256, this
means the adversary needs to precompute τ = 217 hash digests. For m = 128,
this would mean τ = 29 hash digests.

SU-CMA. As with the original Lamport scheme, the adversary does not need
knowledge of the public key to compute three messages that satisfy the break
condition. This means that also for the optimized Lamport scheme, a selective
forgery has the same complexity as an existential forgery under chosen message
attacks.

UU-CMA. The goal of the adversary is to find two messages M1,M2 such that
their combined mappings have the highest weight possible. The probability that
any two messages have weight r is equal to

(
�
r

)
(3/4)r(1/4)�−r, where we again

assume that M∗ and C are independent. Note that the mean of this distribution
is at � · (3/4), which means A should not take any r below � · (3/4). After τ calls
to H, the probability that two of the messages M1,M2 have a combined weight

of r is bounded by at least 1/2 if
(
τ
2

) ≥ 1/2 ·
((

�
r

)
(3/4)r(1/4)�−r

)−1

. We can
estimate the pre-computation complexity as square-root of the right part of this
inequality. After the online phase of the attack, A can sign a new message with
probability (1/2)�−r, since for the positions that are not covered by B1 or B2,
the bit of the new message must be 0. The relation between the pre-computation
and the success probability is given in Fig. 2 for m = 256.

EU-RMA. According to Eq. 1, two messages M2,M3 have a probability of
(7/8)� to cover a random third message M1. This means that after receiving
the signature of two random messages, the adversary has to search τ = (8/7)�

messages to forge a third signature (again using arguments described in earlier
analyses), since it only needs the secret values for the bits of M1 that are 1. For
m = 256, this means a computational cost of about 251, which is in reach for
a strong attacker. For m = 128, this would mean a computational cost of 226,
which can be done within minutes on today’s CPUs.

SU-RMA. Unlike with the original Lamport scheme, for the optimized Lam-
port scheme an adversary can optimize his selection of the target message in a
random message attack. Messages that have low-weight message mappings are
more likely to be covered by the mappings of two random messages. However,
note that we can only select a single target message instead of a whole cover,
which makes the pre-computation more costly. The probability to find a message
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Fig. 2. This plot shows the relation between the amount of pre-computation and the
success probability of a universal forgery in a chosen message attack on the optimized
Lamport scheme.

mapping B with weight r is equal to
(

�
r

)
(1/2)�, which is again symmetric around

�/2. An attacker should therefor always pick a message with weight r ≤ �/2.
This message can be signed, after receiving the signatures of two random mes-
sages, with probability (3/4)r, since all positions of B that are 1 have to be
covered by the mappings of the two random messages. If we again estimate the

Fig. 3. This plot shows the relation between the amount of pre-computation and the
success probability of a selective forgery in a chosen message attack on the optimized
Lamport’s One-Time Signature Scheme.
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pre-computation as τ =
((

�
r

)
(1/2)�

)−1

to find a message mapping with weight r

with probability bounded by 1/2, we get the relation between pre-computation
and success probability for a selective forgery in Fig. 3 for m = 256. Note that
this figure looks similar to Fig. 2 but a far more pre-computation is required to
achieve the same bound on the success probability. Even for strong attackers, it
should be infeasible to get a high success probability.

UU-RMA. For a universal forgery under a random message attack, the attacker
cannot influence anything in the experiment. This means the success probability
for this forgery is simply the success probability of the conditional break: (7/8)�.

FB-RMA. The probability of a full break under a random message attack, is
simply the probability that all bits are covered. This happens with probability
(3/4)�, which is 2−54 when m = 256.

5 Winternitz OTS

The Winternitz one-time signature scheme (WOTS) is a further improvement of
the optimized Lamport scheme. Instead of using the hash of each secret key value
as public key, the public key values are obtained by hashing more than once, i.e. w
times. That way, more than one bit can be encoded per selection of a hash value.
The basic idea for the Winternitz OTS (WOTS) was proposed in [15]. What we
know as WOTS today is a generalization that was proposed by Even, Goldreich,
and Micali [7]. There exist several variants that reduce the assumptions made
about the used hash function [2,8,11]. Recent standardization proposals for hash-
based signatures [9,13] as well as a recent proposal for stateless hash-based
signatures [1] use WOTS as one-time signature scheme.

5.1 Scheme Description

WOTS uses a length-preserving (cryptographic hash) function F : {0, 1}n →
{0, 1}n. It is parameterized by the message length m and the Winternitz param-
eter w ∈ N, w > 1, which determines the time-memory trade-off. The two param-
eters are used to compute

�1 =
⌈

m

log(w)

⌉
, �2 =

⌊
log(�1(w − 1))

log(w)

⌋
+ 1, � = �1 + �2.

The scheme uses w − 1 iterations of F on a random input. We define them as

Fa(x) = F(Fa−1(x))

and F0(x) = x.
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Now we describe the three algorithms of the scheme:
Key generation algorithm (kg(1n)): On input of security parameter 1n the key
generation algorithm choses � n-bit strings uniformly at random. The secret key
sk = (sk1, . . . , sk�) consists of these � random bit strings. The public verification
key pk is computed as

pk = (pk1, . . . , pk�) = (Fw−1(sk1), . . . ,Fw−1(sk�))

Signature algorithm (sign(1n,M∗, sk)): On input of security parameter 1n, a mes-
sage (digest) M∗ of length m and the secret signing key sk, the signature algo-
rithm first computes a base w representation of M∗: M∗ = (M∗

1 . . . M∗
�1

), M∗
i ∈

{0, . . . , w − 1}. Next it computes the check sum

C =
�1∑

i=1

(w − 1 − M∗
i )

and computes its base w representation C = (C1, . . . , C�2). The length of the
base-w representation of C is at most �2 since C ≤ �1(w − 1). We set B =
(B1, . . . , B�) = M∗ ‖ C. The signature is computed as

σ = (σ1, . . . , σ�) = (FB1(sk1), . . . ,FB�(sk�)).

Verification algorithm (vf(1n,M∗, σ, pk)): On input of security parameter 1n, a
message (digest) M∗ of length m, a signature σ and the public verification key
pk, the verification algorithm first computes the Bi, 1 ≤ i ≤ � as described
above. Then it does the following comparison:

pk = (pk1, . . . , pk�)
?= (Fw−1−B1(σ1), . . . ,Fw−1−B�(σ�))

If the comparison holds, it returns true and false otherwise.

Remark 1. The difference between the basic WOTS as described above and the
variants proposed in [2,8,11] is how F is iterated. As all the attacks below are
independent of this choice, our results apply to all those variants, too.

5.2 Two-Message Attacks

Without hashing the message, the scheme does not offer any security once an
attacker can choose two messages to be signed. As always, the adversary simply
chooses the all zero and the all one message to be signed, and afterwards knows
all secret values (for some parameter choices it will actually be impossible to
extract the whole secret key for the same reason as for optimized Lamport.
However, in that case, as for the optimized Lamport scheme, it is possible to
select two messages that allow learn all but one secret key element).

In the following we assume a message M is first hashed using a hash function
H : {0, 1}∗ → {0, 1}m to obtain a message digest M∗ – making attacks signifi-
cantly harder. As for the optimized Lamport scheme, the analysis of the scheme
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as described above turned out too complex to be carried out exactly due to the
dependency between C and M∗. We simplified the analysis assuming that C is
uniformly random and thereby that digest M∗ and checksum C are indepen-
dent of each other. It applies again that the neglected dependency can make the
attack both easier and harder, depending on the setting. Our theoretical results
are summarized in Table 4. For an experimental verification of the results see
Sect. 6.

Table 4. Overview of the computational complexity for two-message attacks against
the Winternitz OTS. If the success probability of an attack is not constant in terms of
complexity, we give the attack complexity to achieve a success probability of 1/2.

Security goal Attack complexity Pr[Success]

EU-CMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
3 log w

) 1
2

SU-CMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
3 log w

) 1
2

UU-CMA O(
(
1 − (w−1

w
)2

)− m+log m
2 log w ) 1

2

FB-CMA O(
(
1 − (w−1

w
)2

)− m+log m
log w ) 1

2

EU-RMA O(
(

(w+1)(4w+1)

6w2

)− m+log m
log w

) 1
2

SU-RMA O(
(

1
w

)− m+log m
log w ) 1

2

UU-RMA -
(

(w+1)(4w+1)

6w2

) m+log m
log w

FB-RMA -
(
1 − (w−1

w
)2

) m+log m
log w

FB-CMA. The adversary has to find messages M1,M2 with mappings B1, B2

such that for all 0 ≤ i ≤ �: either (B1)i = 0 or (B2)i = 0. The probability to
cover an index of the secret key equals (1 − (w−1

w )2) for each i, which means
the probability that this is true for all i equals: (1 − (w−1

w )2)�. After hashing τ
messages, the probability to find two messages satisfying the condition of a full
break will be upper bounded by at least 1/2 if

(
τ
2

) ≥ 1/2 · (1− (w−1
w )2)−�, which

means we can lower bound the attack complexity by τ ≥ (1 − (w−1
w )2)−�/2.

As a sanity check, we see that for w = 2 we get τ = (4/3)�/2, which is the
complexity of a full break for the optimized Lamport scheme. Typical parameters
for applications are w = 16 and m = 256, which leads to � = 67 and τ = 2102.

EU-CMA. For an existential forgery, we first define the condition for a break
for WOTS:

break(M1,M2,M3) := (∀i ∈ [0, � − 1]) : (B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i (2)

where (Bj)i denotes the i-th bit of the base-w values of the message mapping
Bj for message Mj ; j ∈ {1, 2, 3}. If the condition is true, we say M2,M3 form a
cover of M1.
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We will first see what the probability is to cover one index of B1. If we
condition on the value of (B1)i, we get:

Pr[(B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i]

=
w−1∑
x=0

Pr[(B1)i ≥ (B2)i ∨ (B1)i ≥ (B3)i|(B1)i = x]Pr[(B1)i = x]

=
w−1∑
x=0

1
w

(
1 −

(
w − (x + 1)

w

)2
)

=
(w + 1)(4w − 1)

6w2

Again as a sanity check, we see that for w = 2, this probability equals (7/8),
which we already concluded for the optimized Lamport scheme.

In total we see that the probability for a conditional break is:

Pr[break(M1,M2,M3) = 1] =
(

(w + 1)(4w − 1)
6w2

)�

≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

We see that for bigger w, the probability that one of the indices is not cov-
ered grows, but the number of indices shrinks. The logarithmic decrease of the
exponent is in this case more important, which means the bigger the w, the
bigger the probability of the conditional break (which means less computational
power required for forgeries) (Fig. 4).

Similar to the arguments for the EU-CMA cases for Lamport and opti-
mized Lamport scheme, an adversary needs to pre-compute about τ =((

(w+1)(4w−1)
6w2

)− m+log m
log w

)1/3

message mappings for the bound on the proba-

bility to find a cover in the list of τ message mappings to reach 1/2. As an
example, if we set m = 256 and w = 16, we have τ = 212. Note that, unlike the
FB-CMA setting, it is much easier to forge a third signature for bigger w: while
it becomes harder to get Bi = 0, the probability for a message cover grows.

SU-CMA. As with Lamport’s scheme and the optimized Lamport scheme, A
does not need knowledge of the public key to start any pre-computation. This
means we obtain the same complexity for a selective forgery as for an existential
forgery under CMA.

UU-CMA. For a universal forgery, A can try to compute two message map-
pings B1, B2 such that either (B1)i ≤ r or (B2)i ≤ r for all i ∈ {0, . . . , � − 1},
where r ∈ {0, . . . , w − 1}. The probability that any two messages satisfy
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Fig. 4. This plot shows the logarithmic relation between w and Pr[break] for w ∈
{2, 4, 8, 16, 32, 64}. The logarithmic decrease of the exponent in Pr[break] is clearly
making the probability grow faster for larger w.

these rules equals
(

1 −
(

w−(r+1)
w

)2
)�

, which means the probability that there

exist two such messages in a list of τ messages is bounded by at least 1/2 if
(
τ
2

) ≥ 1/2 ·
(

1 −
(

w−(r+1)
w

)2
)−�

, using again the same arguments as for Lam-

port and optimized Lamport. Now A obtains a successful forgery for M3 with
probability at least

(
w−r

w

)�, since we ignored the cases where (B3)i is smaller
than r, but still bigger than (B1)i or (B2)i. The pre-computation τ and corre-
sponding success probability for different values of w and r ∈ {0, . . . , w − 1} are
given in Fig. 5.

EU-RMA. For WOTS, two messages cover a third one with probability:

Pr[break(M1,M2,M3) = 1] ≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

.

This means that when an attacker receives two signatures of two random mes-

sages, it has to compute about τ =
(

(w+1)(4w−1)
6w2

)− m+log m
log w

messages to find a

covered third message. For m = 256 and w = 16, this equals 234, which can be
done within a few days on today’s CPUs.

SU-RMA. For the selective forgery, an attacker can select an optimal mes-
sage with a mapping that contains as high values as possible. For the analysis,
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Fig. 5. This plot shows the relation between the amount of pre-computation and the
lower bound for the success probability for a universal forgery under a chosen message
attack on WOTS for different values of w and for each r ∈ {0, . . . , w − 1}.

we will use the same strategy as for the universal forgery, but in this case we
want (B1)i ≥ r for all i ∈ {0, . . . , �−1}, which happens with probability

(
w−r

w

)�.

Hence, the pre-computation can again be bound by τ ≥ (
w−r

w

)−� to upper bound
the probability of finding such a message in a list of τ messages by at least 1/2.
The probability that the adversary can sign his selected message after he received

two signatures on random messages equals
(

1 −
(

w−(r+1)
w

)2
)�

in this case. A

plot of the computational costs with corresponding success probability is given
in Fig. 6. As for the optimized Lamport scheme, it looks similar to the graph
of the universal forgery under chosen message attacks, but with lower success
probabilities since A only has control over the selected message.

UU-RMA. The probability of a successful universal forgery under a random
message attack equals the probability that three random messages fulfill the
break condition:

Pr[break(M1,M2,M3) = 1] ≈
(

(w + 1)(4w − 1)
6w2

)m+log m
log w

The attacker has no influence on the process and cannot use any computational
power before or after the online phase of the attack to increase his success prob-
ability.

FB-RMA. Similar to Lamport’s and the optimized Lamport scheme, a full
break occurs exactly when all secret values are exposed. For Winternitz with
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Fig. 6. This plot shows the relation between the amount of pre-computation and the
success probability of a selective forgery under random message attacks on WOTS for
different values of w and for each r ∈ {0, . . . , w − 1}

parameter w, this happens with probability (1 − (w−1
w )2)�, which is a negligible

probability for any w.

6 Experimental Verifications

In Sects. 3, 4, and 5 we discussed the attack complexity of several different
attacks. For the optimized Lamport scheme and WOTS, we assumed that the
checksum is uniformly random and hence the message digest and its checksum
behave as independent bit strings. However, as already mentioned there, the
actual situation is that the checksum is dependent of the message digest. To
verify the obtained results we carried out experiments for the EU-CMA case for
optimized Lamport and WOTS.

We determined a lower bound for the number of calls τ to the message
digest function H, such that a list of size τ of message digests, allows to find an
existential forgery with probability upper bounded by at least 1/2. We performed
several experiments for different values of τ , to see how realistic our assumption
matches the real situation and how tight our bound is. We checked how many
times a list of τ message mappings contained a cover for optimized Lamport
scheme with digest length of m = 128 bits and for WOTS, with m = 256 and w =
16 (which are the parameters suggested in [9]). We performed 100 experiments
per value of τ . As can be seen from the results in Table 5, the experiments closely
match the theoretical results using the checksum simplification. The theoretical
analysis predicts that τ = 29 is required for the bound on the probability of an
existential forgery to reach 1/2 for the optimized Lamport scheme with m = 128.
For WOTS, the analysis suggests τ = 212 when m = 256 and w = 16. From the
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results of the experiments, we can conclude that the simplifying assumption of
independent message digests and checksums is not causing a significant difference
to the real setting in the case of EU-CMA.

Remark 2. It is important to note that for extreme cases our analysis is not good
enough. In the FB-CMA, UU-CMA, SU-RMA and FB-RMA settings for the
optimized Lamport and Winternitz schemes, we are trying to push the message
mappings to extreme cases to allow for forgeries. However, due to the inverse
nature of the checksum, our analysis leads to impossible message mappings. For
example, a high weight message part means a low weight checksum part for
optimized Lamport, but in our analysis we are trying to push both message and
checksum part to high weights. Therefor we expect the complexity to be much
higher for these extreme cases, i.e. when r is very low or very high, with the
meaning of r as described in optimized Lamport and Winternitz.

Table 5. Experimental results for the success probability of an EU-CMA adversary,
using a list of τ message mappings for the optimized Lamport (left table) with digest
length m = 128 and for WOTS (right table) with w = 16 and digest length m = 256

τ Pr[Success]
28 0.02
29 0.13
210 0.77
211 1.0
212 1.0

τ Pr[Succes]
211 0.1
212 0.49
213 0.94
214 1.0
215 1.0

Acknowledgement. This research was motivated in part by suggestions by Burt
Kaliski of Verisign. The authors would also like to thank Aziz Mohaisen for helpful
discussions.

References

1. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

2. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21969-6 23

3. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

4. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-21969-6_23
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3


322 L. Groot Bruinderink and A. Hülsing
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