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Abstract. We present a full-fledged, highly-optimized, constant-time
software for post-quantum supersingular isogeny-based undeniable signa-
ture (SIUS) on the ARMv8 platforms providing 83- and 110-bit quantum
security levels. To the best of our knowledge, this work is the first empir-
ical implementation of isogeny-based quantum-resistant undeniable sig-
nature presented to date. The proposed software is developed on the top
of our optimized hand-written ARMv8 assembly arithmetic library and
benchmarked on a variety of platforms. The entire protocol runs less than
a second on Huawei Nexus smart phone, providing 83-bit quantum secu-
rity level. Moreover, our signature and public key sizes are 25% smaller
than the original SIUS scheme. We remark that the SIUS protocol, sim-
ilar to other isogeny-based schemes, suffers from the excessive number
of operations, affecting its overall performance. Nonetheless, its signifi-
cantly smaller key and signature sizes make it a promising candidate for
post-quantum cryptography.
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1 Introduction

To prepare for the advent of quantum computers, the state-of-the-art research
work has been investigating various public-key cryptography primitives which
are assumed to be resistant against Shor’s quantum algorithm [27]. One family
of these primitives is based on the hardness of computing isogenies between
two isogenous supersingular elliptic curves. Elliptic curve isogenies were first
proposed by Couveignes [10] as an alternative underlying problem of elliptic
curve cryptography. Construction of public-key cryptography from the isogeny
of regular elliptic curves was introduced by Rostovtsev and Stolbunov [26,29].
However, the proposed scheme was later found to be unassured due to the sub-
exponential quantum attack proposed by Childs et al. [8]. Cryptographic schemes
c© Springer International Publishing AG 2018
C. Adams and J. Camenisch (Eds.): SAC 2017, LNCS 10719, pp. 281–298, 2018.
https://doi.org/10.1007/978-3-319-72565-9_14



282 A. Jalali et al.

based on supersingular elliptic curve isogenies were also applied in cryptographic
hash functions by Charles-Lauter-Goren [6] which proposed the hardness of path-
finding in supersingular isogeny graphs. Isogenies on elliptic curves have been
used as an assumption for other cryptographic systems such as Diffie-Hellman
key-exchange [18], authenticated encryption [28], and signatures [14,19,31]. To
date, the best known classical and quantum attacks against the supersingular
isogeny problem have exponential complexity, making this cryptosystem to be
one of the auspicious quantum-resistant candidates. Furthermore, isogeny-based
schemes are constructed over elliptic curves and provide significantly smaller
key size compared to other quantum-resistant candidates. This is desirable for
the applications where communication bandwidth is restricted. Recently, it is
pointed out that isogeny-based cryptosystems can be utilized with even smaller
keys using key compression techniques [4,9].

Recent attempts to efficiently implement isogeny-based key-exchange proto-
col, in software [3,9,23] and hardware [22], show that this cryptography primi-
tive can be efficiently implemented on different platforms with reasonable per-
formance metrics. However, the performance evaluation of other supersingular
isogeny-based schemes such as undeniable signature has not been investigated
in depth. In this work, we present a constant-time software for the signature
and confirmation/disavowal operations of supersingular isogeny-based undeni-
able signature (SIUS) which was first introduced by Jao and Soukharev [19].
Furthermore, we benchmark our software on a variety of platforms to evalu-
ate the performance of a quantum-resistant undeniable signature as a reference.
Additionally, we develop an optimized version of the SIUS scheme for the 64-bit
ARM platforms with a special focus on the ARMv8 Cortex-A57 processor. The
proposed implementation is developed based on the projective coordinates and
curve coefficients in analogy with the projective formulas which are proposed in
[9]. We plan to make our software publicly available in the near future.

The main contributions of this paper are summarized as follows:

– We propose a new set of inversion-free projective formulas for computing
degree 5 isogenies of supersingular Montgomery curves. Previous implemen-
tations of isogeny-based cryptosystems mainly focused on Diffie-Hellman key
exchange protocol (SIDH) which is constructed over the two subgroups of
points on elliptic curves; accordingly, efficient formulas for 3 and 4 degree
isogenies have been studied and implemented in [9,12,23]. However, since the
isogeny-based undeniable signature is constructed on three such subgroups of
points, in this work, we develop projective degree 5 isogenies formulae and
implement them efficiently on our target processor.

– Taking advantage of reduced curve coefficient technique in Kummer varieties,
we reduce the signature and public-key sizes of SIUS protocol by 25% com-
pared to the original definition of this protocol in [19].

– We introduce two implementation-friendly primes for different quantum secu-
rity levels. The proposed primes have a special shape that can be used to effi-
ciently implement isogenies and finite field arithmetic computations on 64-bit
platforms. We include a comparative discussion of implementation techniques
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on the ARMv8-A platforms based on their capabilities to efficiently imple-
ment finite field arithmetic.

– We implement the SIUS protocol in C language for two quantum-security lev-
els. The presented implementation is portable on different platforms, provid-
ing 83 and 110 bits of quantum security. We also present an optimized version
of the protocol for the ARMv8-A platforms. To the best of our knowledge,
our software is the first implementation of the SIUS found in the literature.

2 Preliminaries

This section provides a brief overview of the isogeny-based undeniable signature
scheme and its features. We refer readers to [12,18,19] for more detailed informa-
tion of quantum-resistant isogeny-based cryptography and its related protocols.

2.1 Isogenies and Kernels

Let E1 and E2 be elliptic curves over a field K. An isogeny over K is a rational
map over K which is denoted as φ : E1 → E2 such that φ(OE1) = OE2 . The
degree of an isogeny, denoted as �, is the degree of its rational map. We represent
the isogeny of degree � as �-isogeny. If there exists an isogeny of degree � between
two elliptic curves E1 and E2, then these two curves are �-isogenous, and they
share the same j-invariant value. Isogenies of elliptic curves are identified with
their kernels using Vélu’s formula [30]. The kernel of an isogeny φ of degree �
is a finite subgroup of points in E(K) and defined as: ker(φ) = {OE} ∪ {P =
(xp, yp) ∈ E(K) : order(P ) = �}, and for a separable isogeny of degree � has
exactly � elements. Let E be an elliptic curve defined over K and G a finite
subgroup of E(K) which is defined over K. Then, there is an isogenous elliptic
curve E′ : E/〈G〉 and an isogeny map φ : E → E′ both defined over K with
ker(φ) = G [13]. In this work, all the kernels are cyclic groups and we can evaluate
isogenies using the kernel or any single generator of the kernel. For small values of
�, we can compute this isogeny efficiently using Vélu’s formula. Moreover, as it is
discussed in details in [9,12,18,23], large-degree isogenies of smooth order elliptic
curves can be computed using consecutive elliptic curve point multiplication
and the evaluation of small-degree isogenies. The computation procedure adopts
an optimal strategy which computes the leaves of the isogeny graph efficiently
using a combination of point multiplication, isogeny evaluation, and divide-and-
conquer method. However, the optimal strategy over a defined finite field depends
on the cost of point multiplication by � and �-isogeny evaluation of elliptic curves
on the target platform. We return to this discussion in Sect. 3.3.

2.2 Supersingular Isogeny Undeniable Signature

The undeniable signature was first introduced by Chaum and Van Antwerpen [7]
which was constructed based on discrete logarithm problem. Furthermore, the
security of this scheme was defined by Kurosawa and Furukawa [24], in which
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the invisibility concept of undeniable signatures was characterized. Unlike a digi-
tal signature, an undeniable signature requires an interactive procedure between
signer and verifier to confirm and disavow valid and forged signatures, respec-
tively. It is noted that any undeniable signature scheme requires 6 specific func-
tions to securely generate, verify, and disavow a signature. These functions have
been first defined in [11] and denoted as:

∑
= (Gk, S, V, Ssim, πcon, πdis),

where a key generation algorithm Gk, a signature algorithm S, a validity check
V , a signature simulator Ssim, a confirmation protocol πcon, and finally a dis-
avowal protocol πdis make up an undeniable signature scheme. The confirmation
protocol πcon and the disavowal protocol πdis are used by signer to prove to the
verifier that the signature is valid or invalid, respectively. Moreover, an unde-
niable signature scheme is assumed to be secure, if and only if it completely
satisfies unforgeability and invisibility [24]. We refer to [19,24] for details on the
definitions of unforgeability and invisibility.

SIUS is defined over smooth primes of the form p = �eAA �eBB �eCC .f ± 1 , where
�A, �B , and �C are small primes and f is a small factor. A supersingular elliptic
curve E of cardinality #E = (p ∓ 1)2 = (�eAA �eBB �eCC .f)2 can be constructed over
Fp2 using Bröker’s algorithm [5] which is the SIUS scheme base curve, and its
coefficients are public parameters. Furthermore, three pairs of random points
on E denoted as {PA, QA} ∈ E[�eAA ], {PM , QM} ∈ E[�eBB ], and {PC , QC} ∈
E[�eCC ] are randomly chosen as the starting points. Hence, the protocol public
parameters are p, E, {PA, QA}, {PM , QM}, {PC , QC}, and a hash function H
which is used to compute the message hash before the signing procedure.

Signature. The signer securely generates two random integers mA, nA ∈
Z/�eAA Z, computes the point KA = [mA]PA + [nA]QA on elliptic curve E, and
gets the isogenous curve EA using �eAA -isogeny map φA : E → EA/〈KA〉. The
signer also evaluates φA(PC) and φA(QC) using φA and publishes the public-key
as EA, φA(PC), and φA(QC), while the private-key is (mA, nA). The signer com-
putes the message hash h = H(M), KM = PM +[h]QM , and sets it as the kernel
of isogeny φM . Moreover, the signer computes φM (KA) and φA(KM ) which are
the kernel of the isogeny φM,AM and φA,AM , respectively. In order to generate
the signature, the signer computes the following isogenies:

– φM : E → EM = E/〈KM 〉,
– φM,AM : EM → EAM = EM/〈φM (KA)〉 ∼= EA/〈φA(KM )〉.
Figure 1 illustrates the corresponding required maps to generate the signature
EAM from the base curve E. Additionally, using φM,AM , the signer evaluates
φM,AM (φM (PC)) and φM,AM (φM (QC)) on EAM , and presents these two points
along with EAM as the signature string.

Confirmation Protocol πcon. To confirm the signature, EAM should be con-
firmed without disclosing the signature isogenies, i.e., φM,AM and φA,AM . To
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Fig. 1. Signature (Sign.) and Confirmation (Conf.) protocol isogeny maps.

this end, signer uses the public points {PC , QC} and generates another isogeny
φC similar to φA:

1. The signer generates two secret integers mC , nC ∈ Z/�eCC Z and computes
the kernel KC = [mC ]PC + [nC ]QC . Consecutively, the signer computes the
following isogenies:

– φC : E → EC = E/〈KC〉,
– φC,MC : EC → EMC = EC/〈φC(KM )〉,
– φA,AC : EC → EAC = EA/〈φA(KC)〉,
– φMC,AMC : EMC → EAMC = EMC/〈φC,MC(KA)〉.
The signer further commits EC , EAC , EMC , EAMC , and ker(φC,MC) = φC(KM )
to be verified. Note that here, the signer uses {PC , QC} to eventually blind the
signature EAM through EAMC as a commitment without disclosing the required
information to compute the actual signature.

2. The verifier randomly generates a bit b ∈ {0, 1} and sends it to the signer:
(a) If b = 0, the signer outputs ker(φC) = KC . Since EA is available in

the signer’s public-key, the verifier is able to compute ker(φA,AC). More-
over, using ker(φM ) = KM , the verifier can compute ker(φM,MC) =
φM (KC). The verifier uses the auxiliary points in the signature, i.e.,
φM,AM (φM (PC) and φM,AM (φM (QC)), and computes φAM,AMC . Finally,
verifier utilizes the signer’s output point ker(φC) and KM , and verifies
ker(φC,MC) = φC(KM ) which is committed by the signer. The verifier
checks that all the computed kernels map between the corresponding
curves specified in the signer’s commitment. Note that the verification
procedure is performed simply by comparing the j-invariant values of the
curves.
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(b) If b = 1, the signer outputs ker(φC,AC) = φC(KA). Using this value,
the verifier computes φMC,AMC and φAC,AMC , and verifies if φC,AC ,
φMC,AMC , and φAC,AMC correctly map between the corresponding com-
mitted curves by the signer.

Disavowal Protocol πdis. In disavowal protocol, given a falsified signature, the
signer wishes to convince the verifier that the presented signature is fake. In this
case, the signer is presented with a fake signature (EF , FP , FQ) instead of the
real signature (EAM , φM,AM (φM (PC)), φM,AM (φM (QC))). The signer should
disavow EF without revealing any credentials such as EAM . To this end, the
signer, similar to confirmation protocol, exploits the point {PC , QC} to blind
EAM , yet gives the verifier enough information that the verifier can compute
EFC and check that EFC 	= EAMC .

1. The signer generates two secret random integers mC , nC ∈ Z/�eCC Z to com-
pute ker(φC) = KC = [mC ]PC+[nC ]QC . The signer computes all the required
kernels and isogenies to blind EAM using EAMC similar to Step 1 in the con-
firmation protocol πcon. The signer commits EC , EAC , EMC , EAMC , and
ker(φC,MC) = φC(KM ).

2. The verifier selects b ∈ {0, 1}:
(a) If b = 0, the signer provides ker(φC). The verifier computes ker(φC),

ker(φM,MC), and ker(φA,AC) using ker(φC). Also, the verifier computes
ker(φC,MC) independently and checks its value with the commitment.
Using knowledge of EF (fake signature), the verifier computes the isogeny
map φF,FC : EF → EFC = EF /〈[mC ]FP +[nC ]FQ〉. Now, the verifier has
all the required isogeny maps to check the correctness of the corresponding
curves in the signer’s commitment as well as checking that EFC 	= EAMC .

(b) If b = 1, the signer outputs ker(φC,AC). The verifier computes φMC,AMC

and φAC,AMC , and checks if φC,AC , φMC,AMC , and φAC,AMC map the
corresponding committed curves correctly similar to confirmation proto-
col.

3 Implementation Parameters

Unlike traditional elliptic curve cryptography with a fixed curve, isogeny-based
cryptosystem computes the isogeny between different curves and maps the cor-
responding points which are computationally intensive for large-degree isoge-
nies. Hence, from the first version of isogeny-based software (Diffie-Hellman key
exchange scheme) developed by De Feo et al. [12], all the required arithmetic
of elliptic curves were computed in Kummer varieties using Montgomery arith-
metic, taking advantage of their efficient computations. Moreover, the recently
proposed projective formulas for isogeny computations [9] set the performance
bar higher and provide faster, yet constant-time library for SIDH key exchange
scheme by providing almost inversion-free implementation. In this work, we
follow the same methodology and arithmetic for the isogeny computations to
achieve efficient performance results.
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3.1 Projective Isogenies of Montgomery Curves

We follow the implementation parameters and strategies described in [9] for 3-
and 4-isogeny computations, while we propose new sets of projective formulas
for 5-isogeny computations on Montgomery curves.

Let E : by2 = x3 +ax2 +x be a Montgomery curve defined over a field K not
of characteristic 2, where a, b ∈ K and a(b2 − 4) 	= 0. The projective points on E
are all points (X : Y : Z) ∈ P

2(K) = {(X : Y : Z) : (X,Y,Z) ∈ K
3 − {(0, 0, 0)}}

satisfying the homogeneous equation:

bZY 2 = X3 + aZX2 + Z2X.

Moreover, we can convert the curve coefficients to projective coordinates as
(A : B : C) ∈ P

2(K), where a = A/C and b = B/C. Now, the fully projective
curve equation is:

BZY 2 = CX3 + AZX2 + Z2CX.

Moreover, based on [9], isogeny and point arithmetic computations can be
stated even more simply by ignoring B, since Kummer arithmetic is indepen-
dent of this coefficient [25], and works solely with (A : C) ∈ P

1. Based on these
assumptions, we restate the Montgomery curves projective 3- and 4-isogeny for-
mulae from [9,18], and develop new sets of formulas for projective 5 isogenies in
the following.

Projective 3 Isogenies. An isogeny of degree � can be efficiently computed
for small values of � using Vélu’s formula and its kernel. For 3 isogenies, the
kernel of the isogeny is the subgroup of points on E which has order 3. We
denote this subgroup as G3 = {P3,−P3,O} where P3 = (X3 : Z3) ∈ P

1 is a
point with order equal to 3 on E. In analogy with the computations in [9,18],
the projective 3-isogeny map φ3 : E(A:C) → E′

(A′:C′), and 3-isogeny evaluation
formulas (X : Z) 
→ (X ′ : Z ′) can be efficiently computed as

φ3 : (A′ : C ′) = (Z4
3 + 18X2

3Z2
3 − 27X4

3 : 4X3Z
3
3 ),

(X ′ : Z ′) = (X(X3X − Z3Z)2 : Z(Z3X − X3Z)2),

which cost 6M + 2S + 5a for each isogeny map and 3M + 3S + 8a for each
evaluation.

Projective 4 Isogenies. Isogenies of degree four are constructed on the sub-
group of the points on E which have the exact order equal to four. Again, we
use Vélu’s formula to derive the rational maps and refer to [9] for projectivizing
the isogeny map and evaluation formulas. The 4-isogeny map and evaluation set
of formulas can be expressed as follows:

φ4 : (A′ : C ′) = (2(2X4
4 − Z4

4 ) : Z4
4 ),



288 A. Jalali et al.

(X ′ : Z ′) = (X(2X4Z4Z − X(X2
4 + Z2

4 ))(X4X − Z4Z)2) :

Z(2X4Z4X − Z(X2
4 + Z2

4 ))(Z4X − X4Z)2),

where P4 = (X4 : Z4) ∈ P
1 is a 4-torsion point on E. The above formulas can

be computed using 5S + 7a for isogeny map, and 9M + 1S + 6a for isogeny
evaluation using pre-computed coefficients X2

4 + Z2
4 , X2

4 − Z2
4 , 2X4Z4, X4

4 , and
Z4
4 which are stored when the isogeny map φ4 is computed.

Projective 5 Isogenies. Isogenies of degree 5, unlike the isogenies of degree
4 and degree 3, require more complicated set of formulas. First, we should
construct the kernel using the subgroup of order 5 on E. Suppose P5 =
(X5 : Z5) ∈ P

1 is a 5-torsion point on E and let 2P5 = (X̄5 : Z̄5) ∈ P
1.

The 5-torsion subgroup for computing isogeny can be represented as G5 =
{−2P5,−P5,O, P5, 2P5} which has exactly 5 elements. Applying the abscissas
of P5 and 2P5, we develop a set of formulas for computing 5-isogeny map and
evaluating this isogeny for a given point (X : Z).

For the 5-isogeny map, we use the fact that the x abscissas of P5 and [4]P5 =
[2]2P5 are equal. Using 5-division polynomials ψ5(x), the 5-isogeny map can be
computed as:

φ5 : (A′ : C ′) = (X̄4
5Z5 − 4X5X̄5Z̄5(X̄2

5 + Z̄2
5 ) − Z5Z̄

2
5 (2X̄2

5 − Z̄2
5 ) : 4X5X̄

2
5 Z̄2

5 )

using 10M + 2S + 7a, when the abscissa of 2P5 is available. For the isogeny eval-
uation, computations are more complex. Particularly, we notice that the Vélu’s
formula for computation of the 5-isogeny map leads to an unwieldy formula com-
pared to 3 and 4 isogenies. The projective version of the 5-isogeny evaluation
can be computed using

(X ′ : Z ′) = (XZ5Z̄5(X5Z − XZ5)2(X̄5Z − XZ̄5)2

+ 2Z[2Z2(X5Z̄5(X̄5Z − XZ̄5)2(AX5Z5 + C(X2
5 + Z2

5 ))

+ X̄5Z5(X5Z − XZ5)2(AX̄5Z̄5 + C(X̄2
5 + Z̄2

5 )))

+ Z̄5(X5Z − XZ5)(X̄5Z − XZ̄5)2(2AX5Z5 + C(3X2
5 + Z2

5 ))

+ Z5(X̄5Z − XZ̄5)(X5Z − XZ5)2(2AX̄5Z̄5 + C(3X̄2
5 + Z̄2

5 ))] :

CZZ5Z̄5(X5Z − XZ5)2(X̄5Z − XZ̄5)2),

which is more complicated than the 5-isogeny map; however, in our implemen-
tation, we store five coefficients during the computation of 5-isogeny map which
are used in 5-isogeny evaluation. These coefficients are X̄5Z5, X̄5Z̄5, (X̄2

5 + Z̄2
5 ),

Z5Z̄5, and X̄2
5 . Using these pre-computed values, the 5-isogeny can be evaluated

in 30M + 4S + 16a. We state that the 5-isogeny evaluation formula in affine
coordinates has relatively simpler formula than projective form; however, affine
formulas require excessive number of field inversions which result in significant
overall performance degradation if the inversions are computed using constant-
time algorithms. Alternatively, non-constant time inversion algorithms can be
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Table 1. Proposed smooth implementation-friendly primes for SIUS scheme

p = �
eA
A

�
eB
B

�
eC
C

− 1 Prime size

(bits)

min(�
eA
A

, �
eB
B

, �
eC
C

)

(bits)

θ Quantum

security

Classical

security

Signature

(bytes)

225031635110 − 1 764 251 9.13 83 125 573

233032105151 − 1 1014 331 9.19 110 165 761

deployed to implement the whole protocol in affine coordinates. Nevertheless, in
such case, the software would be vulnerable to timing analysis attacks. Hence, we
choose to work with projective coordinates, providing a constant-time software
which is assumed to be secure against these types of attack.

3.2 Proposed Implementation-Friendly Primes

The SIUS scheme is built over a prime of the smooth form p = �eAA �eBB �eCC .f ± 1,
taking advantage of its special shape to construct three different subgroups of
points on E, i.e., E[�eAA ], E[�eBB ], and E[�eCC ]. Finding the efficient primes of this
form is directly related to the field arithmetic algorithms and implementation
platform architecture. Since we utilize Montgomery arithmetic, we choose to set
�A = 2 to find Montgomery-friendly primes (p′ = −p−1mod R = 1) [16]. The
generic Montgomery reduction requires s2 + s multiplications, while reduction
over Montgomery-friendly primes can be efficiently computed using s2 multipli-
cations for a 2s-limb element.

Moreover, as it is discussed in [9], Montgomery reduction can be implemented
even more efficiently for the primes of the form p = 2eAα − 1, since it can be
implemented based on multiplication of the finite field elements with p̂ = p+1 =
2eAα which has exactly

⌊
eA
r

⌋
least significant words equal to “0” in 2r-radix

representation; therefore, multiplication of these limbs can simply be neglected
inside the reduction implementation. This implies that the larger values of eA
lead to even more efficient implementation of Montgomery reduction for the
primes of this form, because the number of “0” words are increased. We return
to this discussion in Sect. 4.3.

So far, we set �A = 2 and seek for the large values of eA to make the reduction
procedure more optimized. We also choose f = 1 since the SIUS security level
depends only on the size of the kernels, and larger values of f do not provide
any more security, yet increase the prime size. Furthermore, we set �B = 3
and �C = 5 to compute small-degree isogenies of elliptic curves efficiently using
Velús formula. Moreover, as stated in [19], the fastest known quantum algorithm
against the SIUS scheme require O(n1/3) running time, where n is the size of
the kernel; therefore, we search for the primes which provide reasonable level of
quantum security, but not too large in size, so we can implement the finite field
arithmetic efficiently on the ARM-powered devices. We propose an efficiency
parameter to ease the prime search procedure of the SIUS smooth primes. Let

θ =
nbits(p)

min(nbits(�eAA , �eBB , �eCC ))/3
,
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Table 2. Comparative timings for multiplication and isogeny evaluation in projective
Kummer coordinates in terms of microseconds on ARMv8 Cortex-A57

Operation p764 p1014

� = 3 � = 4 � = 5 � = 3 � = 4 � = 5

Multiplication by � (μs) 56 52 68 94 87 115

�-isogeny evaluation (μs) 35 47 185 59 78 309

r = mul/eval 1.6 1.1 0.3 1.6 1.1 0.3

be the efficiency parameter for a prime of the form �eAA �eBB �eCC − 1, where
nbits(n) = �logn2 � which represents the number of bits in n. In particular, we
are interested in the primes with the smaller value of θ, so we attain higher
level of security with smaller number of bits. For all the smooth primes of the
form p = �eAA �eBB �eCC − 1 with different size and security levels, this parameter
is bounded by 9 < θ < 10 which makes it a reasonable measurement with low
variation for the prime search procedure. We also choose the primes with the
number of bits smaller than multiple of 64-bit word, so we can adopt a combina-
tion of Karatsuba multiplication, carry-handling elimination, and lazy reduction
in Fp2 arithmetic for achieving better performance.

Based on the above assumptions, we search for the implementation-friendly
primes which are well-fitted into our library and target processor. Table 1
includes our proposed primes for two different quantum security levels. We also
ensure that these primes satisfy the security balance for computing isogenies
of torsion subgroups, i.e., �eAA , �eBB , and �eCC have less than 40 bits difference
pairwise.

Smaller Signature. We denote that by ignoring the curve coefficient B and
using projective coordinates, each element of the signature, i.e., curve and auxil-
iary points is represented by only one field element in Fp2 which makes the SIUS
signature and public-key in our implementation about 25% smaller than the
original signature sizes reported in [19] for different security levels. This concept
was first used in [9], providing smaller public-keys for the SIDH protocol.

3.3 Optimal Strategy for Large-Degree Isogeny Computation

In the previous sections, we have described all the necessary formulas for comput-
ing small-degree isogenies. However, eventually, we require to compute smooth
large-degree �e isogenies inside the protocol. This can be done by the composi-
tion of small-degree � isogeny e times as φ = φe−1 ◦φe−2 ◦ · · · ◦φ0 using different
strategies. As it is pointed out in [18], we can demonstrate the computational
structure of isogeny map between different points of elliptic curves as a graph,
where left edges represent point multiplications by � and right edges are �-isogeny
evaluations. Additionally, since multiplications and isogeny computations have
different costs, different weights are assigned to the left and right edges of the
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graph. Jao and De Feo [18] developed an optimal strategy for the large-degree
isogeny computations by traversing this weighted graph at each point based on
a decision algorithm. Their proposed strategy reveals the most efficient steps of
computing large smooth degree isogenies. We adopt the same strategy in our
implementation. Note that the cost of point multiplication by � and �-isogeny
evaluation is different for each degree, i.e., �A, �B , and �C , as well for the tar-
get platform. We obtain these weights for each small-degree �A = 3, �B = 4,
and �C = 5 on our target processor and find the optimal strategy based on
them. Table 2 includes the operation costs of multiplication by � and �-isogeny
evaluation for different � over the two finite fields on an ARMv8 Cortex-A57
core.

The provided numbers are averaged over 104 iterations of the functions, and
they are implemented based on our optimized assembly library. The r ratio
represents the relative cost of point multiplication to isogeny evaluation for each
degree �. Regarding this ratio, the optimal strategy traversal for each degree is
computed. We observe that the smaller value of r leads to less number of isogeny
evaluation operations in the final strategy.

3.4 Protocol Implementation

We implement the SIUS protocol using five main procedures:

1. Sign(): Key generation and signature operations performed by the signer.
2. SignerConfirmation(): The isogeny computations performed by the signer

to commit the required curves and points.
3. VerifierConfirmation(): The isogeny computations performed by the ver-

ifier to confirm the correctness of a signature.
4. SignerDisavowal(): The isogeny computations performed by the signer to

disavow a forged signature. These computations are identical to the signer’s
confirmation protocol.

5. VerifierDisavowal(): The isogeny computations performed by the verifier
to check that the fake signature is disavowed by the signer.

Moreover, we implement the verifier’s confirmation and disavowal functions
based on the input bit b ∈ {0, 1}. Therefore, the number of operations and
isogeny computations in verifier’s confirmation and disavowal protocols depends
on the b value. In Sect. 5, we provide the corresponding timings for each function
based on this value in detail. We also remark that in our implementation, all
the verification operations are implemented by checking the j-invariant values of
committed curves and the curves which are computed by the verifier using the
public parameters.

Figure 2 illustrates the SIUS confirmation protocol mechanism based on the
above functions. The same mechanism applies to the disavowal protocol using
SignerDisavowal() and VerfierDisavowal() functions. Note that the veri-
fier’s disavowal protocol in case of b = 0 requires one more isogeny computation,
i.e., φF : EF → EFC = EF /〈[mC ]FP + [nC ]FQ〉.
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Fig. 2. The SIUS confirmation protocol mechanism.

4 Fp Arithmetic on ARMv8

We implement optimized field arithmetic library, targeting the ARMv8-A plat-
form using AArch64 assembly instruction set. We concentrate on the develop-
ment of tailored hand-optimized arithmetic functions for each proposed finite
field. We employ loop unrolling, full register allocation, and multiple load/store
techniques to highly optimize our field arithmetic library.

4.1 Target Platform Architecture

The proposed software is benchmarked on various platforms; however, we opti-
mized our finite filed arithmetic library for the 64-bit ARM-powered devices. We
run our software on a Huawei Nexus 6P smart phone which is equipped with
ARMv8 Cortex-A57 and ARMv8 Cortex-A53, providing ARM big.LITTLE tech-
nology1. ARMv8 processors are capable of performing arithmetic instructions
using the A64 instruction set with general registers, as well as Advanced SIMD
instructions with vectors. The instruction processing pipeline is composed of two
phases. First, instructions are fetched and decoded in order into internal micro-
operations. Then, micro-operations stall for their operands and assign execution
to one of the execution pipelines [2]. We note that the high-performance Cortex-
A57 cores have separate execution pipes for ASIMD and A64 operations in fully
out-of-order phase which results in fast computational power, while Cortex-A53
1 ARM big.LITTLE technology is a power optimization technology where high-

performance cores are combined with power-efficient cores to provide power-
performance efficient benchmarks.
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Fig. 3. (a) A64 and (b) Adv. SIMD 128 × 128-bit multiplication.

cores make use of highly power-efficient 8-stage in-order pipeline. We analyze
the usage of both instruction sets as well as their capabilities for field arithmetic
implementation in the following:

A64 Overview. The A64 instruction set provides similar functionality to the
A32 and T32 instruction set in AArch32 for the ARMv7 platforms. However,
it supports larger general-purpose register file with thirty one 64-bit unbanked
registers [15]. This excessive number of registers is suitable for implementing
field arithmetic over large fields, since the number of load and store instructions
is infrequent. Moreover, the field operands can be represented in radix-264 which
translates into a significant improvement in performance compared to the previ-
ous family of 32-bit ARM processors. The A64 multiplication instructions, i.e.,
MUL and UMULH, take 4 and 6 clock cycles on Cortex-A57 processors, respectively
[2]; the first instruction computes the low half of 64 × 64-bit multiplication
result, while the latter one generates the high part.

Advanced SIMD. The AArch64 vector multiplication instruction is similar to
ARMv7 NEON multiplication which computes two parallel 32 × 32-bit multipli-
cation and generates a pair of 64-bit results. This operation takes roughly 6 clock
cycles for the low half of the vector, i.e., UMULL, and 5 clock cycles for the upper
half, i.e., UMULL2, on the Cortex-A57 cores, when there are no dependencies [2].
Moreover, since data are decomposed into 32-bit limbs, the implementation of
arithmetic using Adv. SIMD instructions set leads to the representation of data
in radix-232. This simply implies that the number of multiplication instructions
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is twice compared to radix-264 representation. However, since a pair of 32 × 32-
bit multiplication is performed using one Adv. SIMD multiplication instruction,
the total number of multiplication instructions is the same for A64 and Adv.
SIMD implementations. Figure 3 illustrates this comparative discussion for 128
× 128-bit multi-precision multiplication. Each 64 × 64-bit multiplication result
is implemented using a pair of multiplication instructions, i.e., MUL and UMULH in
A64 assembly language; therefore, the entire multiplication requires 8 multipli-
cation instructions. Similarly, 8 SIMD multiplication instructions are required
to implement the same function using Adv. SIMD assembly.

Based on the above discussion, roughly speaking, n Adv. SIMD multiplication
instructions take about 5n

2 + 6n
2 = 5.5n clock cycles, while n A64 multiplications

take 4n
2 + 6n

2 = 5n clock cycles on Cortex-A57 processors. Therefore, we claim
that unlike AArch32 NEON instruction sets, AArch64 Adv. SIMD vectorization
does not provide any performance improvement over A64 general-purpose regis-
ters for field arithmetic implementation. Based on this conclusion, we implement
field arithmetic using A64 assembly instruction set, taking advantage of its wide
64-bit registers.

4.2 Finite Field Multiplication

The dominant field operation in any projective implementation is field mul-
tiplication and reduction, since all modular inversions are replaced with mul-
tiple multiplications. Therefore, optimized projective implementation requires
efficient modular multiplication. We implement field multiplication using prod-
uct scanning method for both Fp764 and Fp1014 fields using A64 instruction sets.
We have access to 31 × 64-bit general registers and we are able to implement
an optimized compact field multiplication function with a few number of data
transfers between memory and registers.

4.3 Finite Field Reduction

Since we perform isogeny computations and point multiplications on Mont-
gomery curves using Montgomery arithmetic, we use the efficient version of
Montgomery reduction for our smooth primes as it is discussed in [9,17]. We
remark that although the shape of our primes is slightly different compared to
the SIDH smooth primes, we still can adopt the same optimization for our modu-
lar reduction implementation and achieve remarkable performance improvement
compared to generic Montgomery or Barrett reduction. Thus, we implement cus-
tomized Comba-based Montgomery reduction for each of the proposed primes,
taking advantage of simplified formulas in [9], i.e., the reduction over p̂ = p + 1
which eliminates several single-precision multiplications by “0” limbs. In partic-
ular, p764+1 and p1014+1 have three and five 64-bit words equal to “0” in the
lower half. Since we choose the primes with larger values of eA, the total num-
ber of these zero limbs is the most possible value for each prime size. However,
we note that since the chain of “0” in SIUS primes is relatively shorter than
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Table 3. Performance results (×106 CPU clock cycles) of SIUS protocol on various
platforms. The verifier’s confirmation and disavowal computations are implemented
based on the protocol parameter b, while signer’s operations are independent of this
value.

Field size PQ security Lang. Keygen Sign Signer Verifier (b = 0) Verifier (b = 1)

Conf./Disv. Conf Disv Conf./Disv.

Huawei Nexus 6P ARMv8-A57 at 2.0 GHz

764 83 C 1,068 1,416 2,638 2,980 1,138

ASM 230 290 544 614 232

1014 110 C 2,646 3,592 6,854 7,726 2,918

ASM 512 684 1,310 1,466 552

Huawei Nexus 6P ARMv8-A53 at 1.55 GHz

764 83 C 2,024 2,595 4,834 5,463 2,085

ASM 516 652 1,213 1,378 549

1014 110 C 4,515 6,142 11,724 13,153 4,972

ASM 1,227 1,671 3,199 3,585 1,350

Desktop PC Intel x64 i7-6700 at 2.1 GHz

764 83 C 493 655 1,222 1379 684

1014 110 1,136 1,545 2,973 3,357 1,623

NVIDIA Jetson TK1 ARMv7-A15 at 2.3 GHz

764 83 C 3,433 4,549 8,473 9,574 3,657

1014 110 8,052 10,957 20,913 23,453 8,868

SIDH primes due to the smaller value of eA for the same prime size, the overall
performance of modular reduction is depreciated.

4.4 Finite Field Inversion

We implement field inversion using Fermat’s little theorem (FLT) with fixed
window-based addition chain. Although FLT method is much slower than other
non-constant time modular inversion algorithms such as Extended Euclidean
Algorithm or Kaliski’s inverse method in [20], since the total number of modular
inversions is scarce in our protocol, we prioritize security over a small amount
of performance improvement in using these algorithms. We implement modular
inversion by using fixed 6-bit window addition chain method. We remark that
constructing addition chains for the SIUS primes is different from the SIDH
primes and using more efficient method of computing addition chain, such as
hybrid-window method which is discussed in [21], yields negligible improvement
in performance due to the shorter chain of “1” in the lower half of the prime.

5 Implementation Results and Discussion

Since this work is the first empirical implementation of a quantum-resistant
undeniable signature, and the only other quantum-resistant undeniable signature
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[1] does not provide any performance results, we provide the performance mea-
surements on a variety of platforms: a Huawei Nexus 6P smart phone with a 2.0
GHz Cortex-A57 and a 1.55 GHz Cortex-A53 processors running Android 7.1.1,
a 2.3 GHz NVIDIA Jetson TK1 equipped with a 32-bit ARMv7 Cortex-A15
running Ubuntu 14.04 LTS, and a desktop PC with a 2.1 GHz Intel x64 i7-6700
running Ubuntu 16.04 LTS. We also include our efficient results on ARMv8 pro-
cessors to compare the efficiency of our optimized library. The binaries are com-
piled using -O3 -fomit-frame-pointer -march=native flags. Table 3 includes
benchmark results of our SIUS implementation for both proposed quantum secu-
rity levels. Results represent the average of 104 iterations reported in CPU clock
cycles to provide a fair comparison of the performance on different platforms.
Note that the verifier’s disavowal computations differ in terms of the protocol
value b, while signer’s confirmation and disavowal computations stay the same.

The implementation results show that our hand-optimized library is almost
4.8X and 5.2X faster than generic implementation on the high-performance
Cortex-A57 core over p764 and p1014, respectively. However, on the power-
efficient Cortex-A53 core, the improvement factor is less and shows a speedup of
3.9X over p764 and 3.6X over p1014. We remark that our generic C finite field
library is implemented in pure C without utilizing any multi-precision arithmetic
libraries such as GMP2 which implies that the more efficient generic implementa-
tion can be developed based on these libraries with the cost of extra dependencies
during the compilation procedure.

The performance results on Jetson TK1 board with a high-performance 32-bit
Cortex-A15 core is almost 3X slower than Cortex-A57 for the same implemen-
tation. It is because 64-bit platforms perform multi-precision arithmetic roughly
twice as fast as 32-bit platforms. Moreover, the total number of available gen-
eral registers in the ARMv8 processors is more compared to ARMv7-A which
provides faster and much compact arithmetic with less number of data transfer
to memory.

6 Conclusion

We have presented a constant-time software for supersingular isogeny-based
undeniable signature protocol providing two different quantum security levels.
We have built optimized libraries targeting the ARMv8-A family of processors
using A64 assembly instruction set to achieve a factor speedup of up to 5.2X on a
high-performance Cortex-A57 core. Moreover, taking advantage of reduced curve
coefficient technique, we have decreased 25% of the SIUS signature and public-
key sizes compared to its original scheme. To the best of our knowledge, this
work is the first practical implementation of any quantum-resistant undeniable
signatures found in the literature. We remark that since isogeny-based cryp-
tosystems are younger than other post-quantum cryptography candidates, their
performance and security are still required to be studied widely. For instance,

2 The GNU Multiple Precision Arithmetic Library.
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developing more efficient formulas for isogeny computations will result in remark-
able performance improvement of the overall protocol. Nevertheless, the signa-
ture size and performance of our software demonstrate the strong potential of
this scheme as a quantum-resistant undeniable signature candidate. We hope
that this work would be a paradigm shift towards motivating more investigation
in this area.
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