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als for post-quantum lattice-based cryptography, including the classic
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This paper (1) proposes NTRU Prime, which tweaks NTRU to use
rings without these structures; (2) proposes Streamlined NTRU Prime,
a public-key cryptosystem optimized from an implementation perspec-
tive, subject to the standard design goal of IND-CCAZ2 security; (3) finds
high-security post-quantum parameters for Streamlined NTRU Prime;
and (4) optimizes a constant-time implementation of those parameters.
The resulting sizes and speeds show that reducing the attack surface has
very low cost.
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Fig.1.1. Terminology in this paper for selected branches of the NTRU family tree.
This paper introduces the NTRU Prime branch. Streamlined NTRU Prime is specified
and analyzed in detail as a case study. See Sect. 3 for more options.

1 Introduction

This paper presents an efficient implementation of high-security prime-degree
large-Galois-group inert-modulus ideal-lattice-based cryptography. “Prime
degree” etc. are three features that we recommend because they take various
mathematical tools away from the attacker; see Appendix A in the full version of
this paper. The reader can, if desired, skip the appendix in favor of the following
short summary short summary (see also Fig. 1.1):

— “NTRU Classic”: Rings of the form (Z/q)[x]/(x? — 1), where p is a prime and
q is a power of 2, are used in the original NTRU cryptosystem [27], and are
excluded by our recommendation.

— “NTRU NTT”: Rings of the form (Z/q)[x]/(xP+1), where p is a power of 2 and
q € 1+ 2pZ is a prime, are used in typical “Ring-LWE-based” cryptosystems
such as [2], and are excluded by our recommendation.

— “NTRU Prime”: Fields of the form (Z/q)[z]/(z? — x — 1), where p is prime,
are used in this paper, and follow our recommendation.

Specifically, we use only 28682 cycles on one core of an Intel Haswell CPU for
constant-time multiplication in the field (Z/4591)[z]/(z"%! —z — 1).

We define a public-key cryptosystem “Streamlined NTRU Prime 45917617
using this field, aiming for the standard design goal of IND-CCAZ2 security at the
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standard 2!2® post-quantum security level. Streamlined NTRU Prime 459176}
uses just 59600 cycles for encryption (more precisely, “encapsulating” a 256-bit
session key), and just 97452 cycles for decryption (“decapsulation”).

Our public keys are field elements, easily squeezed into 1218 bytes. We explain
how to further squeeze ciphertexts into just 1047 bytes. Obviously these sizes
are not competitive with 256-bit ECC key sizes, but they are small enough for
many applications.’

Streamlined NTRU Prime provides several implementation advantages and
security-auditing advantages beyond the NTRU Prime choice of ring: for exam-
ple, it eliminates the annoying possibility of “decryption failures” that appear in
most lattice-based cryptosystems. Our security analysis indicates that Stream-
lined NTRU Prime 45917%! actually provides a large security margin beyond
our target security level, compensating for potential progress in estimating the
actual cost of lattice attacks.

To put our speed in perspective: Modern implementations [18,22] of the popu-
lar Curve25519 elliptic curve use more than 150000 Haswell cycles for scalar mul-
tiplication. However, one should not conclude that post-quantum lattice-based
cryptography is faster than pre-quantum ECC. The total time for cryptography
includes time to communicate keys and ciphertexts; lattice-based cryptography
has much larger keys and ciphertexts than ECC.?

1.1. Comparison to Previous Multiplication Speeds Aiming for High
Security. Before our work, the state of the art in implementations of lattice-
based cryptography was the November 2015 paper “Post-quantum key exchange:
a new hope” [2] by Alkim, Ducas, Péppelmann, and Schwabe, using about 40000
Haswell cycles for NTRU NTT multiplication. Most of the implementations
before [2] are, in our view, obviously unsuitable for deployment because they
access the CPU cache at secret addresses, taking variable time and allowing
side-channel attacks.

We announced 51488 cycles for NTRU Prime multiplication in May 2016, in
a preliminary version of this paper. Longa and Naehrig [38] announced 33000
cycles for NTRU NTT multiplication the same month. An update of [2] in August
2016 announced 31000 cycles for NTRU NTT multiplication.® We now announce
28682 cycles for NTRU Prime multiplication. See Table 1.1 for details.

! For example, our ciphertexts fit into the 1500-byte Ethernet MTU for plaintexts up to
a few hundred bytes, avoiding the implementation hassle of packet fragmentation.
If an operation takes 100000 cycles then one can imagine a typical quad-core 3 GHz
CPU completing 1 million operations in just 8 seconds. However, if each operation
involves 1000 bytes of network data, then the data for 1 million operations will take
80 seconds to be transmitted through a typical 100 Mbps network.

3 Each forward NTT in the updated version of [2] takes 8448 cycles (compared to 10968
cycles in the first version, and 9100 cycles in [38, Table 1]). A reverse NTT takes 9464
cycles (compared to 12128 and 9300). The time for pointwise multiplication is not
stated in [2] or [38] but can be extrapolated from [23] to take about 5000 cycles.

2
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Table 1.1. Comparison of multiplication results. “Rec” means that the ring follows this
paper’s recommendation to reduce attack surface. “Constant” means that the software
runs in constant time. “Cycles” is approximate multiplication time on an Intel Haswell.
All rings are used in public-key cryptosystems designed for at least 2'2® post-quantum
security. The estimated pre-quantum security levels are 224® for Streamlined NTRU
Prime 45917%%; 22°¢ for ntruees743ep1; 22%' for New Hope; not stated in [33].

Rec|Constant| Cycles Ring Technique Source
no yes| 11722 (7./8192)[x] /(™ — 1) Karatsuba etc. [33]
yes yes| 28682|(Z/4591)[x]/(z"®" — x — 1) Karatsuba etc. This paper
no yes| 31000 (Z/12289)[x]/(z'*** +1) NTT| New Hope [2], [38]
no no|<91056 (Z,/2048)[x] /(=™ — 1)| Sparse input ntruees743ep1 [35]

Like our paper, [2] and [38] target the Haswell CPU, require constant-time
implementations, and aim for more than 2'2% post-quantum security. Unlike
our paper, [2] follows the tradition from NTRU and Ring-LWE [41] of using
cyclotomic rings. More precisely, [2] is an example of Product NTRU NTT,
using the ring (Z/q)[x]/(xP + 1) with p = 1024 and ¢ = 12289 = 121024 + 1.

A disadvantage of requiring the lattice dimension p to be a power of 2, as
in [2], is that security levels are quite widely separated. In [2] there is a claim
of “94 bits of post quantum security” for one dimension-512 system; we are not
aware of any dimension-512 system that is claimed today to reach the standard
2128 post-quantum security target. Jumping to the next power of 2, namely
p = 1024, means at least doubling key sizes, ciphertext sizes, encryption time,
etc. This severe discontinuity in the security-performance graph means that [2]
is unable to offer any options truly comparable to the better-tuned p = 743 in
“ntruees743epl” (see [35]) or p = 761 in this paper. Of course one can view
p = 1024 as an additional buffer against the possibility of improved attacks; but
dimension is only one contributing factor to security, and size does matter.

The conventional wisdom is that, despite the large p, rings of the type used
in [2] are particularly efficient. These rings allow multiplication at the cost of
three “number-theoretic transforms” (NTTs), i.e., fast Fourier transforms over
finite fields, with only a small overhead for “pointwise multiplication”. This
multiplication strategy relies critically on choosing an NTT-friendly polynomial
such as 2924 + 1 and choosing an NTT-friendly prime such as 12289.

Tweaking the polynomial and prime, as we recommend, would make the
NTTs several times more expensive. A typical NTT-based method to multiply
in, e.g., (Z/8819)[x]/(x'°%! —x—1) would replace 202! —z —1 with 2248 — 1 and
would also replace 8819 with two or three NTT-friendly primes. The conventional
wisdom therefore implies that we pay a very large penalty for requiring a large
Galois group (NTT-friendly polynomials always have small Galois groups) and
an inert modulus (NTT-friendly primes are never inert).

We do much better by scrapping the NTTs and multiplying in a completely
different way. The May 2016 version of this paper presented details of a combina-
tion of several layers of Karatsuba’s method and Toom’s method. This approach
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does not need NTT-friendly polynomials, and it does not need NTT-friendly
primes. (The approach is like NTTs in that a significant part of the work is
for separately transforming each input, allowing transforms to be skipped in
many settings.) We now do even better by tweaking various details, as explained
later in this paper; in particular, our current software uses purely Karatsuba’s
method. The resulting multiplication speed is slightly faster than in [2,38], and
the sizes are smaller.

We are not saying that the NTRU Prime rings have zero cost. Last month
Hiilsing, Rijneveld, Schanck, and Schwabe [33] announced 11722 cycles for NTRU
Classic multiplication, specifically multiplication in the ring (Z/q)[z]/(a? — 1)
with p = 701 and ¢ = 8192, again using a combination of several layers of Karat-
suba’s method and Toom’s method. The power-of-2 moduli in NTRU Classic
avoid the cost of reducing modulo medium-size primes. These moduli force a
moderate discontinuity in the security-performance graph® but it seems likely
that taking (Z/q)[z]/(x? — 1) with prime g would be slightly faster than NTRU
Prime at every security level.

1.2. Priority Dates and Additional Followup Work. Our recommen-
dation to switch lattice-based cryptography to prime-degree large-Galois-group
inert-modulus lattice-based cryptography was announced in February 2014.

In 2016, the NTRU authors posted a draft [28] that they had circulated
at Crypto 1996. Page 21 of the draft says “One could also consider variants of
standard NTRU by using rings such as A = Z[X]/(X"™ — X —1). This would slow
computations somewhat, while providing greater mixing of the coefficients.” Our
announcement was published earlier; pinpoints stronger mathematical reasons to
use these rings (not merely “providing greater mixing” but also taking subfields
and automorphisms away from the attacker); adds the further requirement to
use quotient fields; and is a recommendation, not merely a “could”.

We posted a preliminary version of this paper in May 2016, as mentioned
above. That version included, among other things, an improved cryptosystem, a
detailed security analysis, and new performance results showing that the NTRU
Prime ring recommendation is compatible with high speed. All of this was writ-
ten independently of the above quote from [28].

Lyubashevsky, in response to the possibility that “some rings could give
rise to more difficult instances of Ring-SIS and Ring-LWE than other rings”,
introduced a signature system [39] in August 2016 for which a polynomial-time
attack would imply a polynomial-time attack against similar problems for all
rings. Rosca, Sakzad, Steinfeld, and Stehlé introduced an encryption system [47]
in June 2017 with similar properties. The concrete performance of these systems
is unclear.

In June 2017, Bos—Ducas—Kiltz—Lepoint—Lyubashevsky—Schanck—Schwabe—
Stehlé [14] announced 119652 cycles for encapsulation and 125736 cycles for
decapsulation using a new public-key cryptosystem “Kyber”. (Preliminary

* The security level in [33] seems somewhat lower than the security level of Streamlined
NTRU Prime 45917%. Taking a larger p in [33] would require jumping to ¢ = 16384,
and the resulting ciphertext expansion seems likely to outweigh any small speed gap.
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speeds announced in January 2017 [6] were slower.) This system uses Module-
LWE [37] with three elements of (Z/7681)/(x?56 4 1), for a total of 768 coeffi-
cients. Ciphertexts occupy 1184 bytes.

In March 2017, Peikert, Regev, and Stephens—Davidowitz [45] argued briefly
that “one might wish to use Ring-LWE over non-Galois number fields”. The
argument is essentially one of the arguments from this paper, without credit.
The main result of [45] is a worst-case-to-average-case reduction; see Appendix C
in the full version of this paper.

Acknowledgements We wish to thank John Schanck for detailed discussion of
the security of NTRU and for suggesting the “transitional security” terminology;
Dan Shepherd and Manuel Pancorbo Castro for pointing out a stronger bound for
Theorem 2.1; and Sean Parkinson for helpful comments.

2 Streamlined NTRU Prime: An Optimized
Cryptosystem

This section specifies “Streamlined NTRU Prime”, a public-key cryptosystem.
The next section compares Streamlined NTRU Prime to alternatives.

We emphasize that Streamlined NTRU Prime is designed for the standard
goal of IND-CCA2 security, i.e., security against adaptive chosen-ciphertext
attacks. A server can reuse a public key any number of times, amortizing the
costs of key generation and key distribution. The cost of setting up a new session
key, including post-quantum server authentication, is then just one encryption
for the client and one decryption for the server. This gives Streamlined NTRU
Prime important performance advantages over unauthenticated key-exchange
mechanisms such as [2]; see Appendix E in the full version of this paper for a
precise comparison.

We are submitting our complete implementation to eBACS [11] for bench-
marking. However, we caution potential users that many details of Streamlined
NTRU Prime were first published in May 2016 and still require careful security
review. We have not limited ourselves to the minimum changes that would be
required to switch to NTRU Prime from an existing version of the NTRU public-
key cryptosystem; we have taken the opportunity to rethink and reoptimize all of
the details of NTRU from an implementation and security perspective. We recom-
mend NTRU Prime, but it is too early to recommend Streamlined NTRU Prime.

2.1. Parameters. Streamlined NTRU Prime is actually a family of cryptosys-
tems parametrized by positive integers (p, q,t) subject to the following restric-
tions: p is a prime number; ¢ is a prime number; t > 1; p > 3t; ¢ > 32t + 1;
P — x — 1 is irreducible in the polynomial ring (Z/q)|x].

We abbreviate the ring Z[z]/(a? — x — 1), the ring (Z/3)[z]/(2P — z — 1),
and the field (Z/q)[x]/(z? — 2z — 1) as R, R/3, and R/q respectively. We refer
to an element of R as small if all of its coefficients are in {—1,0,1}. We refer
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to a small element as t-small if exactly 2¢ of its coefficients are nonzero, i.e., its
Hamming weight is 2¢.

Our case study in this paper is Streamlined NTRU Prime 4591761, This spe-
cific cryptosystem has parameters p = 761, ¢ = 4591, and ¢t = 143. The following
subsections specify the algorithms for general parameters but the reader may
wish to focus on these particular parameters. Figures Z.1 and Z.2 in the full
version of this paper show complete algorithms for key generation, encapsula-
tion, and decapsulation in Streamlined NTRU Prime 4591751, using the Sage
[48] computer-algebra system.

2.2. Key Generation. The receiver generates a public key as follows:

— Generate a uniform random small element g € R. Repeat this step until g is
invertible in R /3.

— Generate a uniform random ¢-small element f € R. (Note that f is nonzero
and hence invertible in R /g, since t > 1.)

— Compute h = ¢g/(3f) in R/q. (By assumption ¢ is a prime larger than 3, so
3 is invertible in R/q, so 3f is invertible in R/q.)

— Encode h as a string h. The public key is h.

— Save the following secrets: f in R; and 1/¢ in R/3.

See keygen in Fig. Z.2.

The encoding of public keys as strings is another parameter for Streamlined
NTRU Prime. Each element of Z/q is traditionally encoded as [log, ¢] bits, so
the public key is traditionally encoded as p[log, q] bits. If ¢ is noticeably smaller
than a power of 2 then one can easily compress a public key by merging adjacent
elements of Z/q, with a lower limit of plog, ¢ bits. For example, 5 elements of
Z/q for ¢ = 4591 are easily encoded together as 8 bytes, saving 1.5% compared
to separately encoding each element as 13 bits, and 20% compared to separately
encoding each element as 2 bytes. See Fig. Z.1 for further encoding details.

2.3. Encapsulation. Streamlined NTRU Prime is actually a “key encapsula-
tion mechanism” (KEM). This means that the sender takes a public key as input
and produces a ciphertext and session key as output. See Sect. 3.5 for compari-
son to older notions of public-key encryption, and for an explanation of how to
use a KEM to encrypt a user-provided message.

Specifically, the sender generates a ciphertext as follows:

— Decode the public key h, obtaining h € R/q.

— Generate a uniform random t-small element r € R.

— Compute hr € R/q.

— Round each coeflicient of hr, viewed as an integer between —(¢ — 1)/2
and (¢ — 1)/2, to the nearest multiple of 3, producing ¢ € R. (If ¢ €
1 + 37Z, as in our case study ¢ = 4591, then each coefficient of ¢ is in
{-(¢g—-1)/2,...,—6,-3,0,3,6,...,(¢ —1)/2}. If ¢ € 2+ 3Z then each coef-
ficient of ¢ is in {—(¢ +1)/2,...,-6,-3,0,3,6,...,(¢+ 1)/2}.)
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— Encode ¢ as a string ¢.
— Hash r, obtaining a left half C' (“key confirmation”) and a right half K.
— The ciphertext is the concatenation C'¢. The session key is K.

See encapsulate in Fig. Z.2.

The hash function for r is another parameter for Streamlined NTRU Prime.
We encode r as a byte string by adding 1 to each coefficient, obtaining an element
of {0,1,2} encoded as 2 bits in the usual way, and then packing 4 adjacent
coefficients into a byte, consistently using little-endian form. See encodeZx in
Fig. Z.1. We hash the resulting byte string with SHA-512, obtaining a 256-bit
key confirmation C' and a 256-bit session key K.

The encoding of ciphertexts ¢ as strings ¢ is another parameter for Stream-
lined NTRU Prime. This encoding can be more compact than the encoding of
public keys because each coefficient of ¢ is in a limited subset of Z/q. Concretely,
for ¢ = 4591 and p = 761, we use 32 bits for each 3 coefficients of ¢ and a total
of 8120 bits (padded to a byte boundary) for ¢, saving 16% compared to the
size of a public key, 18% compared to separately encoding each element of Z/q
as 13 bits, and 33% compared to separately encoding each element of Z/q as
2 bytes. See encoderoundedRq in Fig. Z.1. Key confirmation adds 256 bits to
ciphertexts.

2.4. Decapsulation. The receiver decapsulates a ciphertext C'¢ as follows:

— Decode ¢, obtaining c € R.

— Multiply by 3f in R/q.

— View each coefficient of 3fc in R/q as an integer between —(q¢ — 1)/2 and
(¢ —1)/2, and then reduce modulo 3, obtaining a polynomial e in R/3.
Multiply by 1/g in R/3.

— Lift e/g in R/3 to a small polynomial 7’ € R.

— Compute ¢/, C’, K’ from 7’ as in encapsulation.

— If v’ is t-small, ¢’ = ¢, and C’ = C, then output K’. Otherwise output False.

See decapsulate in Fig. Z.2.

If C'¢ is a legitimate ciphertext then ¢ is obtained by rounding the coefficients
of hr to the nearest multiples of 3; i.e., ¢ = m+ hr in R/q, where m is small. All
coefficients of the polynomial 3fm + gr in R are in [—16¢, 16¢] by Theorem 2.1
below, and thus in [—(¢—1)/2, (¢—1)/2] since ¢ > 32t+1. Viewing each coefficient
of 3fc = 3fm+ gr as an integer in [— (¢ —1)/2, (¢ — 1)/2] thus produces exactly
3fm+ gr € R, and reducing modulo 3 produces gr € R/3; i.e., e = gr in R/3,
so e/g = r in R/3. Lifting now produces exactly r since r is small; i.e., 7’/ = r.
Hence (¢/,C",K') = (¢,C, K). Finally, ' = r is t-small, ¢ = ¢, and C' = C, so
decapsulation outputs K’ = K, the same session key produced by encapsulation.

Theorem 2.1. Fix integersp > 3 andt > 1. Let m,r, f, g € Z[z] be polynomials
of degree at most p — 1 with all coefficients in {—1,0,1}. Assume that f and r
each have at most 2t nonzero coefficients. Then 3fm + gr mod 2P — x — 1 has
each coefficient in the interval [—16t, 16t].
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3 The Design Space of Lattice-Based Encryption

There are many different ideal-lattice-based public-key encryption schemes in
the literature, including many versions of NTRU, many Ring-LWE-based cryp-
tosystems, and now Streamlined NTRU Prime. These are actually many different
points in a high-dimensional space of possible cryptosystems. We give a unified
description of the advantages and disadvantages of what we see as the most
important options in each dimension, in particular explaining the choices that
we made in Streamlined NTRU Prime.

Beware that there are many interactions between options. For example, using
Gaussian errors is incompatible with eliminating decryption failures, because
there is always a small probability of large samples combining with large values.
Using truncated Gaussian errors is compatible with eliminating decryption fail-
ures, but requires a much larger modulus ¢. Neither of these options is compatible
with the simple tight KEM that we use.

3.1. The Ring. The choice of cryptosystem includes a choice of a monic
degree-p polynomial P € Z[z] and a choice of a positive integer ¢. As in Sect. 2,
we abbreviate the ring Z[z]/P as R, and the ring (Z/q)[x]/P as R/q.

The choices of P mentioned in Sect.1 include P — 1 for prime p (NTRU
Classic); 2P + 1 where p is a power of 2 (NTRU NTT); and xP — 2 — 1 for prime
p (NTRU Prime). Choices of ¢ include powers of 2 (NTRU Classic); split primes
¢ (NTRU NTT); and inert primes ¢ (NTRU Prime).

Of course, Streamlined NTRU Prime makes the NTRU Prime choices here.
Most of the optimizations in Streamlined NTRU Prime can also be applied to
other choices of P and ¢, with a few exceptions noted below.

3.2. The Public Key. The receiver’s public key, which we call h, is an element
of R/q. It is invertible in R/q but has no other obvious public structure.

3.3. Inputs and Ciphertexts. In the original NTRU system, ciphertexts are
elements of the form m + hr € R/q. Here h € R/q is the public key as above,
and m, r are small elements of R chosen by the sender.

Subsequent systems labeled as “NTRU” have generally extended ciphertexts
to include additional information, for various reasons explained below; but these
cryptosystems all share the same core design element, sending m + hr € R/q
where m, r are small secrets and & is public. We suggest systematically using the
name “NTRU” to refer to this design element, and more specific names (e.g.,
“NTRU Classic” vs. “NTRU Prime”) to refer to other design elements.

The multiplication of h by r is the main bottleneck in encryption in all of
these systems and the main target of our implementation work; see Sect. 6. We
refer to (m,r) as “input” rather than “plaintext” because in any modern public-
key cryptosystem the input is randomized and is separated from the sender’s
plaintext by symmetric primitives such as hash functions; see Sect. 3.5.
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In the original NTRU specification [27], m was allowed to be any element of
R having all coefficients in a standard range. The range was {—1,0,1} for all of
the suggested parameters, with ¢ not a multiple of 3, and we focus on this case
for simplicity (although we note that some other lattice-based cryptosystems
have taken the smaller range {0,1}, or sometimes larger ranges).

Current NTRU specifications such as [26] prohibit m that have an unusu-
ally small number of 0’s or 1’s or —1’s. For random m, this prohibition applies
with probability <271 and in case of failure the sender can try encoding the
plaintext as a new m, but this is problematic for applications with hard real-
time requirements. The reason for this prohibition is that the original NTRU
system gives the attacker an “evaluate at 17 homomorphism from R /g to Z/q,
leaking m(1). The attacker scans many ciphertexts to find an occasional cipher-
text where the value m(1) is particularly far from 0; this value constrains the
search space for the corresponding m by enough bits to raise security concerns.
In NTRU Prime, R/q is a field, so this type of leak cannot occur.

Streamlined NTRU Prime actually uses a different type of ciphertext, which
we call a “rounded ciphertext”. The sender chooses a small r as input and com-
putes hr € R/q. The sender obtains the ciphertext by rounding each coefficient
of hr, viewed as an integer between —(¢—1)/2 and (¢—1)/2, to the nearest mul-
tiple of 3. This ciphertext can be viewed as an example of the original ciphertext
m + hr, but with m chosen so that each coefficient of m + hr is in a restricted
subset of Z/q.

With the original ciphertexts, each coefficient of m + hr leaves 3 possibilities
for the corresponding coefficients of hr and m. With rounded ciphertexts, each
coefficient of m + hr also leaves 3 possibilities for the corresponding coefficients
of hr and m, except that the boundary cases —(¢—1)/2 and (¢—1)/2 (assuming
q € 1+ 3Z) leave only 2 possibilities. In a pool of 264 rounded ciphertexts, the
attacker might find one ciphertext that has 15 of these boundary cases out of
761 coefficients; these occasional exceptions have very little impact on known
attacks. It would be possible to randomize the choice of multiples of 3 near the
boundaries, but we prefer the simplicity of having the ciphertext determined
entirely by r. It would also be possible to prohibit ciphertexts at the boundaries,
but as above we prefer to avoid restarting the encryption process.

More generally, we say “Rounded NTRU” for any NTRU system in which
m is chosen deterministically by rounding hr to a standard subset of Z/q, and
“Noisy NTRU?” for the original version in which m is chosen randomly. Rounded
NTRU has two advantages over Noisy NTRU. First, it reduces the space required
to transmit m + hr; see, e.g., Sect. 2.3. Second, the fact that m is determined by
r simplifies protection against chosen-ciphertext attacks; see Sect. 3.5.

[43, Sect.4] used an intermediate non-deterministic possibility to provide
some space reduction for a public-key cryptosystem: first choose m randomly, and
then round m + hr, obtaining m’ + hr. The idea of rounded hr as a deterministic
substitute for noisy m + hr was introduced in [7] in the context of a symmetric-
key construction, was used in [4] to construct another public-key encryption
system, and was further studied in [3,13]. All of the public-key cryptosystems in
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these papers have ciphertexts longer than Noisy NTRU, but applying the same
idea to Noisy NTRU produces Rounded NTRU, which has shorter ciphertexts.

3.4. Key Generation and Decryption. In the original NTRU cryptosys-
tem, the public key h has the form 3g/f in R/q, where f and g are secret.
Decryption computes fc = fm + 3gr, reduces modulo 3 to obtain fm, and
multiplies by 1/f to obtain m.

The NTRU literature, except for the earliest papers, takes f of the form
14 3F, where I is small. This eliminates the multiplication by the inverse of f
modulo 3. In Streamlined NTRU Prime we have chosen to skip this speedup for
two reasons. First, in the long run we expect cryptography to be implemented in
hardware, where a multiplication in R /3 is far less expensive than a multiplica-
tion in R /q. Second, this speedup requires noticeably larger keys and ciphertexts
for the same security level, and this is important for many applications, while
very few applications will notice the CPU time for Streamlined NTRU Prime.

Streamlined NTRU Prime changes the position of the 3, taking h as g/(3f)
rather than 3¢g/f. Decryption computes 3fc = 3fm + gr, reduces modulo 3 to
obtain gr, and multiplies by 1/g to obtain r. This change lets us compute (m,r)
by first computing r and then multiplying by h, whereas otherwise we would first
compute m and then multiply by 1/h. One advantage is that we skip computing
1/h; another advantage is that we need less space for storing a key pair. This 1/h
issue does not arise for NTRU variants that compute r as a hash of m, but those
variants are incompatible with rounded ciphertexts, as discussed in Sect. 3.5.

More generally, we say “Quotient NTRU” for NTRU with h computed as a
ratio of two secret small polynomials. An alternative is what we call “Product
NTRU”, namely NTRU with h of the form e + Af, where e and f are secret
small polynomials. Here A € R/q is public, like h, but unlike h it does not need
a hidden multiplicative structure: it can be, for example, a standard chosen
randomly by a trusted authority, or output of a long hash function applied to
a standard randomly chosen seed, or (as proposed in [2]) output of a long hash
function applied to a per-receiver seed supplied along with h as part of the public
key.

Product NTRU does not allow the same decryption procedure as Quotient
NTRU. The first Product NTRU system, introduced by Lyubashevsky, Peikert,
and Regev in [41] (originally in talk slides in 2010), sends d + Ar as additional
ciphertext along with m + hr + M, where d is another small polynomial, and
M is a polynomial consisting of solely 0 or |g/2] in each position. The receiver
computes (m + hr + M) — (d+ Ar)f = M + m + er — df, and rounds to 0 or
|g/2] in each position, obtaining M. Note that m + er — df is small, since all of
m,e,r,d, f are small.

The ciphertext size here, two elements of R /¢, can be improved in various
ways. One can replace hr with fewer coefficients, for example by simply summing
batches of three coefficients [46], before adding M and m. Rounded Product
NTRU rounds hr + M to obtain m + hr + M, rounds Ar to obtain d + Ar, and
(to similarly reduce key size) rounds Af to obtain e + Af. Decryption continues
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to work even if m + hr + M is compressed to two bits per coefficient. “NTRU
LPRime” is an example of Rounded Product NTRU Prime in which r is chosen
deterministically as a hash of M.

A disadvantage of Product NTRU is that r is used twice, exposing approx-
imations to both Ar and hr. This complicates security analysis compared to
simply exposing an approximation to hr. State-of-the-art attacks against Ring-
LWE, which reveals approximations to any number of random public multiples
of r, are significantly faster for many multiples than for one multiple. Perhaps
this indicates a broader weakness, in which each extra multiple hurts security.

Quotient NTRU has an analogous disadvantage: if one moves far enough
in the parameter space [34] then state-of-the-art attacks distinguish g/f from
random more efficiently than they distinguish m + hr from random. Perhaps
this indicates a broader weakness. On the other hand, if one moves far enough
in another direction in the parameter space [54], then g/f has a security proof.

We find both of these issues worrisome: it is not at all clear which of Product
NTRU and Quotient NTRU is a safer option.> We see no way to simultaneously
avoid both types of complications. Since Quotient NTRU has a much longer his-
tory, we have opted to present details of Streamlined NTRU Prime, an example
of Quotient NTRU Prime.

3.5. Padding, KEMs, and the Choice of g. In Streamlined NTRU Prime
we use the modern “KEM+DEM” approach introduced by Shoup; see [51]. This
approach is much nicer for implementors than previous approaches to public-
key encryption. For readers unfamiliar with this approach, we briefly review the
analogous options for RSA encryption.

RSA maps an input m to a ciphertext m® mod n, where (n, e) is the receiver’s
public key. When RSA was first introduced, its input m was described as the
sender’s plaintext. This was broken in reasonable attack models, leading to the
development of various schemes to build m as some combination of fixed padding,
random padding, and a short plaintext; typically this short plaintext is used as
a shared secret key. This turned out to be quite difficult to get right, both in
theory (see, e.g., [52]) and in practice (see, e.g., [42]), although it does seem
possible to protect against arbitrary chosen-ciphertext attacks by building m in
a sufficiently convoluted way.

The “KEM+DEM” approach, specifically Shoup’s “RSA-KEM” in [51] (also
called “Simple RSA”), is much easier:

— Choose a uniform random integer m modulo n. This step does not even look
at the plaintext.

5 Peikert claimed in [44], modulo terminology, that Product NTRU is “at least as hard”
to break as Quotient NTRU (and “likely strictly harder”). This claim ignores the
possibility of attacks against the reuse of r in Product NTRU. There are no theorems
justifying Peikert’s claim, and we are not aware of an argument that eliminating this
reuse is less important than eliminating the g/f structure. For comparison, switching
from NTRU NTT and NTRU Classic to NTRU Prime eliminates structure used in
some state-of-the-art attacks without providing new structure used in other attacks.
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— To obtain a shared secret key, simply apply a cryptographic hash function
to m.
— Encrypt and authenticate the sender’s plaintext using this shared key.

Any attempt to modify m, or the plaintext, will be caught by the authenticator.

“KEM” means “key encapsulation mechanism”: m® mod n is an “encapsula-
tion” of the shared secret key H(m). “DEM” means “data encapsulation mech-
anism”, referring to the encryption and authentication using this shared secret
key. Authenticated ciphers are normally designed to be secure for many mes-
sages, so H(m) can be reused to protect further messages from the sender to
the receiver, or from the receiver back to the sender. It is also easy to combine
KEMs, for example combining a pre-quantum KEM with a post-quantum KEM,
by simply hashing the shared secrets together.

When NTRU was introduced, its input (m,r) was described as a sender
plaintext m combined with a random r. This is obviously not secure against
chosen-ciphertext attacks. Subsequent NTRU papers introduced various mecha-
nisms to build (m,r) as increasingly convoluted combinations of fixed padding,
random padding, and a short plaintext.

It is easy to guess that KEMs simplify NTRU, the same way that KEMs
simplify RSA; we are certainly not the first to suggest this. However, all the
NTRU-based KEMs we have found in the literature (e.g., [49,53]) construct the
NTRU input (m,r) by hashing a shorter input and verifying this hash during
decapsulation; typically r is produced as a hash of m. These KEMs implicitly
assume that m and r can be chosen independently, whereas rounded ciphertexts
(see Sect.3.3) have r as the sole input. It is also not clear that generic-hash
chosen-ciphertext attacks against these KEMs are as difficult as inverting the
NTRU map from input to ciphertext: the security theorems are quite loose.

We instead follow a simple generic KEM construction introduced in the ear-
lier paper [19, Sect. 6] by Dent, backed by a tight security reduction [19, Theorem
8] saying that generic-hash chosen-ciphertext attacks are as difficult as inverting
the underlying function:

— Like RSA-KEM, this construction hashes the input, in our case 7, to obtain
the session key.

— Decapsulation verifies that the ciphertext is the correct ciphertext for this
input, preventing per-input ciphertext malleability.

— The KEM uses additional hash output for key confirmation, making clear
that a ciphertext cannot be generated except by someone who knows the
corresponding input.

Key confirmation might be overkill from a security perspective, since a random
session key will also produce an authentication failure; but key confirmation
allows the KEM to be audited without regard to the authentication mechanism,
and adds only 3% to our ciphertext size.

Dent’s security analysis assumes that decryption works for all inputs. We
achieve this in Streamlined NTRU Prime by requiring ¢ > 32t + 1. Recall that
decryption sees 3fm + gr in R/q and tries to deduce 3fm + gr in R; the
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condition ¢ > 32t+1 guarantees that this works, since each coefficient of 3 fm-+gr
in R is between —(¢—1)/2 and (¢—1)/2 by Theorem 2.1. Taking different shapes
of m,r, f, g, or changing the polynomial P = z? —x — 1, would change the bound
32t + 1; for example, replacing g by 1+ 3G would change 32t 4+ 1 into 48t + 3.

In lattice-based cryptography it is standard to take somewhat smaller values
of q. The idea is that coefficients in 3 fm + gr are produced as sums of many +1
and —1 terms, and these terms usually cancel, rather than conspiring to produce
the maximum conceivable coefficient. However, this idea led to attacks that
exploited occasional decryption failures; see [30] and, for an analogous attack
on code-based cryptography using QC-MDPC codes, [24]. Tt is common today
to choose ¢ so that decryption failures will occur with, e.g., probability 2789;
but this does not meet Dent’s assumption that decryption always works. This
nonzero failure rate appears to account for most of the complications in the
literature on NTRU-based KEMs. We prefer to guarantee that decryption works,
making the security analysis simpler and more robust.

3.6. The Shape of Small Polynomials. As noted in Sect. 3.3, the coeffi-
cients of m are chosen from the limited range {—1,0,1}. The NTRU literature
[25—-27,32] generally puts the same limit on the coefficients of r, g, and f, except
that if f is chosen with the shape 1+ 3F (see Sect. 3.4) then the literature puts
this limit on the coefficients of F'. Sometimes these “ternary polynomials” are
further restricted to “binary polynomials”, excluding coefficient —1.

The NTRU literature further restricts the Hamming weight of r, g, and f.
Specifically, a cryptosystem parameter is introduced to specify the number of
1’s and —1’s. For example, there is a parameter ¢ (typically called “d” in NTRU
papers) so that r has exactly ¢ coefficients equal to 1, exactly t coefficients equal
to —1, and the remaining p — 2t coefficients equal to 0. These restrictions allow
decryption for smaller values of ¢ (see Sect. 3.5), saving space and time. Beware,
however, that if ¢ is too small then there are attacks; see our security analysis in
Sect. 4.

We keep the requirement that r have Hamming weight 2¢, and keep the
requirement that these 2t nonzero coefficients are all in {—1,1}, but we drop
the requirement of an equal split between —1 and 1. This allows somewhat more
choices of r. The same comments apply to f. Similarly, we require g to have all
coefficients in {—1,0, 1} but the distribution is otherwise unconstrained.

These changes would affect the conventional NTRU decryption procedure:
they expand the typical size of coefficients of fm and gr, forcing larger choices
of ¢ to avoid noticeable decryption failures. But we instead choose ¢ to avoid all
decryption failures (see Sect.3.5), and these changes do not expand our bound
on the size of the coefficients of fm and gr.

Elsewhere in the literature on lattice-based cryptography one can find larger
coefficients: consider, e.g., the quinary polynomials in [21], and the even wider
range in [2]. In [54], the coefficients of f and g are sampled from a very wide
discrete Gaussian distribution, allowing a proof regarding the distribution of
g/ f. However, this appears to produce worse security for any given key size.
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Specifically, there are no known attack strategies blocked by a Gaussian dis-
tribution, while the very wide distribution forces ¢ to be very large to enable
decryption (see Sect. 3.5), producing a much larger key size (and ciphertext size)
for the same security level. Furthermore, wide Gaussian distributions are practi-
cally always implemented with variable-time algorithms, creating security prob-
lems, as illustrated by the successful cache-timing attack in [15].

4 Pre-quantum Security of Streamlined NTRU Prime

In this section we adapt existing pre-quantum NTRU attack strategies to the
context of Streamlined NTRU Prime and quantify their effectiveness. In partic-
ular, we account for the impact of changing xP — 1 to P —z — 1, and using small
f rather than f =1+ 3F with small F.

Underestimating attack cost can damage security, for reasons explained in
[12, full version, Appendix B.1.2], so we prefer to use accurate cost estimates.
However, accurately evaluating the cost of lattice attacks is generally quite dif-
ficult. The literature very often explicitly resorts to underestimates. Compre-
hensively fixing this problem is beyond the scope of this paper, but we have
started work in this direction, as illustrated by Appendix M in the full version
of this paper. At the same time it is clear that the best attack algorithms known
today are much better than the best attack algorithms known a few years ago,
so it is unreasonable to expect that the algorithms have stabilized. We plan to
periodically issue updated security estimates to reflect ongoing work.

4.1. Meet-in-the-Middle Attack. Odlyzko’s meet-in-the-middle attack [29,
31] on NTRU works by splitting the space of possible keys F into two parts such
that F = F; @ F». Then in each loop of the algorithm partial keys are drawn
from F; and F; until a collision function (defined in terms of the public key h)
indicates that f; € F; and fo € F5 have been found such that f = fi + fo is the
private key.

The number of choices for f is (V) (" t_t) in NTRU Classic and (})2? in
Streamlined NTRU Prime. A first estimate is that the number of loops in the
algorithm is the square root of the number of choices of f. However, this estimate
does not account for equivalent keys. In NTRU Classic, a key (f, g) is equivalent
to all of the rotated keys (z'f, x'g) and to the negations (—z'f, —2'g), and the
algorithm succeeds if it finds any of these rotated keys. The 2p rotations and
negations are almost always distinct, producing a speedup factor very close to
V2p.

The structure of the NTRU Prime ring is less friendly to this attack. Say
f has degree p — ¢; typically c¢ is around p/2t, since there are 2t terms in f.
Multiplying f by x,22,...,2z°"! produces elements of F, but multiplying f by
¢ replaces xP~¢ with 2P mod 2P — x — 1 = & + 1, changing its weight and thus
leaving F. It is possible but rare for subsequent multiplications by x to reenter
F. Similarly, one expects only about p/2t divisions by z to stay within F, for a
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total of only about p/t equivalent keys, or 2p/t when negations are taken into
account. We have confirmed these estimates with experiments.

One could modify the attack to use a larger set F, but this seems to lose
more than it gains. Furthermore, similar wraparounds for g compromise the
effectiveness of the collision function. To summarize, the extra term in z? —x —1
seems to increase the attack cost by a factor around v/t, compared to NTRU
Classic; i.e., the rotation speedup is only around 4/2p/t rather than /2p.

On the other hand, some keys f allow considerably more rotations. We have
decided to assume a speedup factor of 1/2(p — t), since we designed some patho-
logical polynomials f with that many (not consecutive) rotations in the set. For
random 7 the speedup is much smaller. This means that the number of loops
before this attack is expected to find f is bounded by

L:HG’;)Q%/\/W. (1)

In each loop, t vectors of size p are added and their coefficients are reduced
modulo q. We thus estimate the attack cost as Lpt. The storage requirement of
the attack is approximately Llog, L. We can reduce this storage by applying
collision search to the meet-in-the-middle attack (see [55,56]). In this case we
can reduce the storage capacity by a factor s at the expense of increasing the
running time by a factor /s.

4.2. Streamlined NTRU Prime Lattice. As with NTRU we can embed
the problem of recovering the private keys f, g into a lattice problem. Saying
3h =g/f in R/q is the same as saying 3hf 4+ gk = ¢ in R for some polynomial
k; in other words, there is a vector (k, f) of length 2p such that

(k) ((‘g?):(’ff)B:(gf)a

where H is a matrix with the i’th vector corresponding to z*-3h mod z? —x — 1
and I is the p x p identity matrix. We will call B the Streamlined NTRU Prime
public lattice basis. This lattice has determinant ¢P. The vector (g, f) has norm
at most 1/2p. The Gaussian heuristic states that the length of the shortest vector
in a random lattice is approximately det(B)/(?P), /rep = ,/mepq, which is much
larger than /2p, so we expect (g, f) to be the shortest nonzero vector in the
lattice.

Finding the secret keys is thus equivalent to solving the Shortest Vector
Problem (SVP) for the Streamlined NTRU Prime public lattice basis. The fastest
currently known method to solve SVP in the NTRU public lattice is the hybrid
attack, which we discuss below.

A similar lattice can be constructed to instead try to find the input pair
(m,r). However, there is no reason to expect the attack against (m,r) to be
easier than the attack against (g, f): r has the same range as f, and m has
essentially the same range as g. Recall that Streamlined NTRU Prime does not
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have the original NTRU problem of leaking m(1). There are occasional boundary
constraints on m (see Sect. 3.3), and there is also an R /3 invertibility constraint
on g, but these effects are minor.

4.3. Hybrid Security. The best known attack against the NTRU lattice
is the hybrid lattice-basis-reduction-and-meet-in-the-middle attack described
in [29]. The attack works in two phases: the reduction phase and the meet-
in-the-middle phase.

Applying lattice-basis-reduction techniques will mostly reduce the middle
vectors of the basis [50]. Therefore the strategy of the reduction phase is to
apply lattice-basis reduction, for example BKZ 2.0 [16], to a submatrix B’ of the
public basis B. We then get a reduced basis T'= UBY:

I,/0]0 ql, 0] 0 I, 00 ql,| 0 0
0 U0 * B’ 0 0 Y0 * (T 0
00 Iw/ * Iw/ 00 Iw/ * | ok I’w’

Here Y is orthonormal and T” is again in lower triangular form.

In the meet-in-the-middle phase we can use a meet-in-the-middle algorithm
to guess options for the last w’ coordinates of the key by guessing halves of the
key and looking for collisions. If the lattice basis was reduced sufficiently in the
first phase, a collision resulting in the private key will be found by applying a
rounding algorithm to the half-key guesses. More details on how to do this can
be found in [29].

To estimate the security against this attack we adapt the analysis of [26] to
the set of keys that we use in Streamlined NTRU Prime. Let w be the dimension
of I, and w’ be the dimension of I,,/. For a sufficiently reduced basis the meet-
in-the-middle phase will require on average

>

0<a<min{(}2¢,w’)

- % <log2(2(p — 1))+ 2 (il)v(a) logz(v(a))> (2)

work, where the log,(2(p — t)) term accounts for equivalent keys and

20t _ 27 ()
v(a) = = 3
=5y B ¥

The quality of a basis after lattice reduction can be measured by the Hermite
factor § = ||by||/det(B)'/P. Here ||by|| is the length of the shortest vector among
the rows of B. To be able to recover the key in the meet-in-the-middle phase,
the (2p — w — w') x (2p — w — w') matrix T' has to be sufficiently reduced. For
given w and w’ this is the case if the lattice reduction reaches the required value
of §. This Hermite factor has to satisfy

log2(9) < 2p— (w+w))?  2p— (w +w)
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We use the BKZ 2.0 simulator of [16] to determine the best BKZ 2.0 parameters,
specifically the “block size” 8 and the number of “rounds” n, needed to reach a
root Hermite factor §. To get a concrete security estimate of the work required
to perform BKZ-2.0 with parameters 5 and n we use the conservative formula
determined by [26] from the experiments of [17]:

Estimate(3, p, n) = 0.0007843143% + 0.3660783 — 6.125 + log,(p - n) + 7. (5)

This estimate and the underlying experiments rely on “enumeration”; see
Appendix M in the full version of this paper for a comparison to “sieving”.
This analysis also assumes that the probabily of two halves of the key colliding
is 1. We will also conservatively assume this, but a more realistic estimate can
be found in [57]. Using these estimates we can determine the optimal w and w’
to attack a parameter set and thereby estimate its security.

Lastly we note that this analysis is easily adaptable to generalizing the coef-
ficients to be in the set {—d, —(d — 1),...,d — 1,d} by replacing base 2 in the
exponentiations in Eqs. 1, 2 and 3 with 2d. In this case however the range of t,
by a generalization of Theorem 2.1, decreases to ¢ > 16(d° + d?)t.

4.4. Algebraic Attacks. The attack strategy of Ding [20], Arora—Ge [5], and
Albrecht—Cid-Faugere-Fitzpatrick—Perret [1] takes subexponential time to break
dimension-n LWE with noise width o(y/n), and polynomial time to break LWE
with constant noise width. However, these attacks require many LWE samples,
whereas typical cryptosystems such as NTRU and NTRU Prime provide far less
data to the attacker. When these attacks are adapted to cryptosystems that
provide only (say) 2n samples, they end up taking more than 2°-5" time, even
when the noise is limited to {0,1}. See generally [1, Theorem 7] and [40, Case
Study 1].

5 Parameters

Algorithm 1 searches for (p,q,t,A), where A is Sect.4’s estimate of the pre-
quantum security level for parameters (p, ¢, t). For example, we used Algorithm 1
to find our recommended parameters (p,q,t) = (761,4591, 143) with estimated
pre-quantum security 2248, We expect post-quantum security levels to be some-
what lower (e.g., [36] saves a factor 1.1 in the best known asymptotic SVP
exponents), and lattice security remains a tricky research topic, but there is a
comfortable security margin above our target 2128,

In the parameter generation algorithm the subroutine nextprime(i) returns
the first prime number > i. The subroutine viableqs(p, ¢5) returns all primes ¢
larger than p and smaller than ¢ for which it holds that z? —x—1 is irreducible in
(Z/q)[z]. The subroutine mitmcosts uses the estimates from Eq. (1) to determine
the bitsecurity level of the parameters against a straightforward meet-in-the-
middle attack. To find w,w’, 3,n we set w to the hybridbkzcost of the previous
iteration (initially 0) and do a binary search for w’ such that the two phases of
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Algorithm 1. Determine parameter sets for security level above /.

Input: Upper bound g for g, range [p1, p2] for p, lower bound ¢ for security level
Result: Viable parameters p, ¢ and t with security level \.
p < p1 — 1 (the prime we are currently investigating)
while p < p2 do
p < nextprime(p)
Q « viableqs(p, g»)
for ¢ € Q do
t— min{|(a — 1)/32] , |p/3]}
A1 < mitmcosts(p, t)
if A1 > /¢ then
Find w, w’, 8, n such that BKZ-2.0 costs are approximately equal
to meet-in-the-middle costs in the hybrid attack.
A2 «— max{hybridbkzcost, hybridmitmcost}
return p, ¢, t, min{A1, A2}

the hybrid attack are of equal cost. For each w’ we determine the Hermite factor
required with Eq. (4), use the BKZ-2.0 simulator to determine the optimal 3 and
n to reach the required Hermite factor and use Egs. (5) and (2) to determine the
hybridbkzcost and hybridmitmcost.

Note that this algorithm outputs the largest value of ¢ such that there are
no decryption failures according to Theorem 2.1 and that no more than 2/3 of
the coefficients of f are set. Experiments show that decreasing ¢ to ¢; linearly
decreases the security level by approximately ¢ — ¢;.

The results of the algorithm for g, = 20000, [p1, p2] = [500,950], and ¢ = 128
can be found in Appendix P in the full version of this paper.

6 Vectorized Polynomial Multiplication

Our optimized implementation of Streamlined NTRU Prime 45917%! takes a
total of 157052 Haswell cycles for encapsulation and decapsulation. Almost 75%
of this time is spent on four multiplications of polynomials modulo z? — x — 1.
(Another 15% is spent on generating a t-small element; see Appendices S and
T in the full version of this paper.) This section explains how we perform each
multiplication in under 30000 cycles.

6.1. Sizes of Inputs and Intermediate Results. Three of the multiplica-
tions are in R/q = (Z/q)[x]/(x? — x — 1). Specifically, encapsulation multiplies
the public key h by r; decapsulation multiplies the ciphertext ¢ by 3f, and later
multiplies h by 7.

Each element of Z/q is conventionally represented as an element of Z between
0 and ¢ — 1. Each element of R/q is then represented as an element of Z[x] with
p coefficients between 0 and g — 1. The product of two such elements in Z[x] has
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coefficients between 0 and p(q — 1)2. The product in R = Z[z]/(2? — x — 1) has
coefficients between 0 and 2p(g — 1)?; see the proof of Theorem 2.1. Reducing
these coefficients modulo ¢ produces the desired product in R/q.

A standard improvement, “signed digits” or “signed coeflicients”, is to instead
represent each element of Z/q as an element of Z between —(¢—1)/2 and (¢—1)/2.
This is an improvement because the product in Z[z] then has coefficients between
—p(q — 1)?/4 and p(q — 1)?/4, an interval just half as long as before. This fits
each coefficient into fewer bits, and allows the coefficient arithmetic to use less
precision.

We use signed digits but go much further by observing that, in NTRU and
its variants, each multiplication has an input that is guaranteed to be small.
For example, r in Streamlined NTRU Prime has coefficients in {—1,0, 1}, so the
product in Z[z] has coefficients between —p(q — 1)/2 and p(q — 1)/2, a much
smaller interval than before. Even better, » has Hamming weight 2¢, so the
product in Z[x] has coefficients between —t(q — 1) and ¢(¢ — 1), and the product
in R has coefficients between —2t(q¢ — 1) and 2¢(¢ — 1), as in Theorem 2.1. Note
that 2t(q — 1) = 1312740 < 2294 for Streamlined NTRU Prime 459176,

The same bounds apply to the multiplication by 7', since r’ is constructed
to have coefficients in {—1,0,1} and is (eventually) checked to have Hamming
weight 2¢. Similar comments apply to 3f, except for a factor 3 in the bounds.
We actually multiply by f, so identical bounds apply, and then multiply each
output coefficient by 3.

The fourth multiplication is in R/3 = (Z/3)[z]/(aP — z — 1): decapsulation
multiplies e by a precomputed 1/g. For simplicity we currently reuse the same
R/q code for this multiplication in R /3. The output coefficients here are bounded
by 2p in absolute value; 2p is below ¢ /2 for Streamlined NTRU Prime 4591761, We
could save time by performing arithmetic on more tightly packed R /3 elements.

6.2. Choosing Haswell Multiplication Instructions. The Haswell
instruction set includes “AVX” and “AVX2” instructions operating on 256-bit
vectors. We now compare various multiplication instructions to the requirements
of the polynomial multiplications in Streamlined NTRU Prime 45917%'. For this
subsection we assume schoolbook multiplication of polynomials; later we con-
sider the impact of polynomial-multiplication techniques that use fewer arith-
metic operations.

The vpmullw instruction performs 16 separate multiplications of integers
modulo 26, A new vpmullw instruction can start every cycle. Using vpmullw to
perform p? separate multiplications modulo 26 thus takes p?/16 ~ 36195 cycles.

Polynomial multiplication involves a similar number of additions, which one
might think take extra time. However, the same Haswell core can start a new
vpaddw instruction, which performs 16 separate additions mod 2!, twice every
cycle, in parallel with the vpmullw instructions. The multiplication instructions
occupy “port 0”7 on the core, while the addition instructions are handled by “port
17 and “port 5”; the “ports” in a core operate in parallel.
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A more serious problem is that 26 is not large enough for the output coef-
ficients in Z[z], which as noted above can range from —t(q — 1) = —656370 to
t(¢g—1) = 656370. One can safely add as many as 14 integers between —(¢—1)/2
and (g — 1)/2 while staying within an interval of length 14(g — 1) < 216, but to
safely add more integers one must first “squeeze” the sums. This means reduc-
ing the sums modulo ¢ into a smaller range, although not necessarily “freezing”
them into the minimum range, —2295 through 2295.

The best squeezing method we found uses vpmulhrsw, which performs 16
separate copies of the following operation: multiply two integers between —2'°
and 2'°, divide by 2'°, and round to an integer. We take the second integer as 7;
then the output is round(7z/2'%) where x is the first integer. This is not always
exactly round(z/4591) but it is close. We then multiply by 4591 and subtract
from x, obtaining something that cannot be much larger than 2295 in absolute
value. The exact bound depends on exactly how big x is allowed to be; for
example, if x is between —32000 and 32000, then the output is between —2881
and 2881. (At the end of the computation we use several more instructions to
freeze x.)

An alternative is to switch to vpmulld, which performs 8 separate multipli-
cations of integers modulo 232, and vpaddd, which performs 8 separate additions
of integers modulo 232. This has the advantage of not requiring any reductions
until the end of the computation, but it has two much larger disadvantages:
first, each instruction handles only 8 operations instead of 16; second, vpmulld
occupies port 0 for 2 cycles instead of 1.

A better alternative is to switch to vfmadd231ps, which performs 8 separate
operations of the form ab+ ¢ on single-precision floating-point inputs a, b, c. Port
0 and port 1 can each handle a new vfmadd231ps instruction every cycle, for a
total of 16 ab + ¢ operations every cycle. The advantage over vpmullw is that a
single-precision floating-point number can exactly represent any integer between
—224 and 2%%. Again no reductions are required until the end of the computation.

There are some slowdowns not discussed above, but quite concise schoolbook-
polynomial-multiplication code using vfmadd231ps performs a multiplication in
R/q in just 50000 cycles. The number of coefficient multiplications here is an
order of magnitude larger than the number of coefficient multiplications inside
NTT-based multiplication in (Z/12289)[z]/(x'%2* + 1), but this cycle count is
only 1.6x more than the New Hope software [2], which relies on double-precision
floating-point arithmetic. This illustrates the importance of keeping intermediate
results small, so that one can efficiently use small multipliers without spending
much time on reductions.

6.3. Karatsuba’s Method. Karatsuba’s method uses a linear amount of
extra work to reduce a 2n-coefficient multiplication to three n-coefficient multi-
plications We use specifically the “refined Karatsuba identity” from [9, Sect. 2]:

(FO + iCnFl)(GO + iCnGl) = (]. — xn)(FoGo — an1G1) + l'n(FO + Fl)(G() + Gl)
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The initial computations of Fy+ F; and Gy + G each take n additions. The final
computations take 5n — 3 additions. For simplicity we actually use 5n additions,
zero-padding each intermediate product from 2n—1 coefficients to 2n coefficients.
For schoolbook multiplication our main concern was the Haswell multipli-
cation instructions: 16 single-precision floating-point multiplications per cycle
sounded better than 16 16-bit integer multiplications per cycle, since floating-
point operations have more precision. Karatsuba’s method adds emphasis to the
addition instructions, and here the integer story might sound clearly better:

— The Haswell can start two vpaddw instructions per cycle: as noted above, one
on port 1 and one on port 5. This is a total of 32 separate additions modulo
216 per cycle.

— The Haswell floating-point addition instruction vaddps is limited to port 1,
for a total of 8 single-precision floating-point additions per cycle. One can do
better by using vfmadd231ps for additions (artificially multiplying by 1), for
a total of 16 single-precision floating-point additions per cycle, but this is still
just half as many additions per cycle as the integer case.

— Furthermore, floating-point numbers occupy more space than 16-bit integers,
and floating-point additions have higher latency. These are not problems for
schoolbook multiplication, which (at the size we use) easily fits into level-1
cache and is highly parallel, but Karatsuba’s method uses more space and is
less parallel.

On the other hand, floating-point numbers still have the advantage of more preci-
sion. Two Karatsuba layers applied to integers between —2295 and 2295 produce
results between —9180 and 9180, still fitting into 16-bit integers; meanwhile the
same layers applied to integers in {—1,0, 1} produce results between —4 and 4;
but then the products can overflow 16-bit integers. There is a vpmulhd instruc-
tion that produces the high 16 bits of each product, but reduction then costs
many more instructions.

Our current software starts with 768-coefficient polynomials (zero-padded
from the 761-coefficient inputs) stored as vectors of 16-bit integers. We use
multiple layers of Karatsuba’s method: specifically, 5 layers, down to 24 x 24
schoolbook multiplications. To avoid reductions, we use floating-point arithmetic
for the schoolbook multiplications, and we squeeze inputs partway through the
Karatsuba layers: specifically, we squeeze 96-coefficient polynomials. We also
convert from integers to floating-point numbers partway through the Karatsuba
layers, trying to minimize the total cost of conversions and Karatsuba additions.
We use floating-point operations to squeeze 192-coefficient products, convert
those products back to integers, and then squeeze intermediate results in the
final Karatsuba additions so as to avoid overflowing 16-bit integers.

6.4. Other Multiplication Methods. Karatsuba’s method is asymptoti-
cally superseded by Toom’s method and various FFT-based methods. For large
input sizes, it is clear that FFT-based methods are the best. However, for small
to medium input sizes, it is unclear which methods or combinations of methods
are best.
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We have analyzed many different combinations of schoolbook multiplication,
refined Karatsuba, the arbitrary-degree variant of Karatsuba for degrees 3, 4, 5,
or 6, and Toom’s method for splitting into 3, 4, 5, or 6 pieces. Many methods
involve multiplications by large constants, spoiling the smallness of our second
polynomial, but this is not a problem in double-precision floating-point arith-
metic. Our best double-precision result so far is 46784 cycles, achieved as fol-
lows: use Toom’s method with evaluation points 0,1, —1,2,—-2,3,—3,4, —4, 5, 0
to reduce a 768 x 768 product to 11 separate 128 x 128 products; then use 5
layers of refined Karatsuba.

We also experimented with variants of the Schonhage—Strassen multiplication
method, starting from the framework of [8, Sect.9]. The Schonhage—Strassen
multiplication method is like Karatsuba’s method in that it does not involve
multiplications by large constants, but as n — oo it uses only n'+t°(!) arithmetic
operations. The conventional wisdom is that the Schénhage—Strassen method is
of purely asymptotic interest, but we found a tuned variant to be surprisingly
competitive, around 32000 cycles, again mixing 16-bit integer arithmetic with
floating-point arithmetic.
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