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Abstract. In this paper, we propose a post-quantum public-key encryp-
tion scheme whose security depends on a problem arising from a multi-
variate non-linear indeterminate equation. The security of lattice cryp-
tosystems, which are considered to be the most promising candidate for
a post-quantum cryptosystem, is based on the shortest vector problem or
the closest vector problem in the discrete linear solution spaces of simul-
taneous equations. However, several improved attacks for the underlying
problems have recently been developed by using approximation meth-
ods, which result in requiring longer key sizes. As a scheme to avoid such
attacks, we propose a public-key encryption scheme based on the “small-
est” solution problem in the non-linear solution spaces of multivariate
indeterminate equations that was developed from the algebraic surface
cryptosystem. Since no efficient algorithm to find such a smallest solution
is currently known, we introduce a new computational assumption under
which proposed scheme is proven to be secure in the sense of IND-CPA.
Then, we perform computational experiments based on known attack
methods and evaluate that the key size of our scheme is able to be much
shorter than those of previous lattice cryptosystems.
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1 Introduction

In 1994, Shor proposed quantum algorithms that can solve the factorization
problem and the discrete logarithm problem in polynomial time [30]. This implies
that elliptic curve cryptosystems and the RSA cryptosystem will no longer
be secure once a quantum computer is built. Due to this, the importance of
“Post-quantum cryptosystems” (PQCs) that will still be secure after the devel-
opment of quantum computers has been recognized. With the recent active stud-
ies to develop quantum computers, NIST announced that the process of PQC
standardization will begin in the end of 2017 [25]. Possible candidates for a
PQC include lattice-based encryptions, code-based encryptions, and multivari-
ate encryptions.

First lattice-based encryption was proposed in 1997 by Ajtai and Dwork [1].
Its security depends on the unique shortest vector problem in lattices. Goldreich
et al. proposed the GGH cryptosystem, whose security is based on the closest vec-
tor problem for an integer lattice [14]. However, According to Nguyen and Stern,
these schemes are not practical since they require large size parameters for secu-
rity reasons [23,24]. Hoffstein et al. proposed the NTRU cryptosystem, whose
security depends on the shortest vector problem for polynomial ring lattices [15].
In 2009, Regev proposed an LWE cryptosystem, whose security depends on the
“learning with error” (LWE) problem [28]. Currently, NTRU, LWE, and their
variants are relatively efficient among lattice-based encryption schemes.

However, there are several efficient approximation algorithms for finding the
(nearly) shortest/closest vectors, such as the LLL [19], BKZ [29], and BKZ2.0
[8] algorithms. Recently, several improved attacks for these underlying problems
using these methods, such as lattice decoding attacks [6] and subfield lattice
attacks [18] have been developed. In order to avoid these attacks, the public-key
sizes of lattice-based cryptosystems must be enlarged. Encryption schemes with
large key sizes require a large amount of memory in applications.

Code-based encryption was first proposed in 1978 by McEliece [22]. Its secu-
rity depends on the decoding problem for random linear codes, for which only
exponential algorithms are known. However, it requires a large public-key size, of
more than 1M bits. The multivariate public-key cryptosystem (MPKC) was first
introduced in 1989 by Matsumoto and Imai [16] and was improved by Patarin
[26]. Its security depends on the problem of solving non-linear equations (called
multivariate equations) over finite fields. While the problem is NP-hard in gen-
eral, almost all proposed schemes have been broken due to the special structure
of the equations that are used as public keys. Several schemes with resistance
against known attacks on MPKC have been proposed, but they still have large
public keys [27,32,33].

These candidates require large public-key sizes of more than 24 K bits (under
128-bit security) to avoid improved attacks that take advantage of the special
structure of the schemes. Even though many PQC candidates have been pro-
posed, none of them are efficient enough for practical use. This might be due
to their large public-key sizes and the large amount of memory that is therefore
required in applications. In an effort to find a more practical PQC, Akiyama et al.
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proposed the algebraic surface cryptosystem (ASC) [3], whose security depends
on the section-finding problem (the problem of solving some kind of indetermi-
nate equation). Although they claimed that their proposed scheme necessitates
much shorter public keys than the other candidates for PQC, the scheme was
broken by Faugére et al. [11]. In this paper, we intend to improve ASC by
modifying the underlying problem to make the scheme secure while keeping the
public-key size small relative to that of other PQC candidates.

Our Contribution. This paper proposes a post-quantum public-key encryption
scheme whose security is based on the smallest solution problem for non-linear
solution spaces of indeterminate equations, to which attack algorithms based
on approximation (e.g., LLL and BKZ) cannot be applied. Our scheme was
developed from ASC, which is designed such that its security depends on the
intractability of solving some non-linear indeterminate equation [3]. ASC was
broken by the ideal decomposition attack proposed in PKC 2010 [11]. We revise
the scheme to be secure against this attack by adding a noise term to the cipher
polynomial. Our scheme is provably secure in regards to IND-CPA under the
intermediate equation of LWE (IE-LWE) assumption, which is a new computa-
tional assumption coming from analogy to the LWE assumption. An IND-CCA2
secure scheme is obtained by using a well-known conversion technique [10].

The linear algebraic attack, one of the known attacks for ASC, can be applied
to the IE-LWE problem. Through this attack, the IE-LWE problem can be reduced
to a lattice problem, but the rank of the lattice is larger than that of present lattice-
based cryptosystems due to the properties of multivariate polynomials. This sug-
gests that the keys (both public and secret) can be expected to be much shorter
than those of lattice-based cryptosystems. Our scheme is, in this sense, a light PQC
constructed by combining the beneficial properties of multivariate cryptography
and lattice-based cryptography. According to our computational experiment on
attacks, our scheme requires a public key that is 3/4 the length of the public keys
in LWE and 1/3 the length of the public keys in NTRU. Moreover, our scheme
supports multi-bit homomorphism as well as NTRU.

This paper is organized as follows. Section 2 gives our notation and a short
overview of algebraic surface encryptions, which our scheme was developed from.
In Sect. 3, we define the smallest solution problem and propose our new encryp-
tion scheme. Section 4 defines the computational assumption that makes our
scheme provably secure and discusses the complexity of this assumption against
some considered attacks. In Sect. 5, we give a set of appropriate parameters that
make our scheme secure. We summarize the results and discuss directions for
future work in Sect. 6.

2 Preliminaries

2.1 Notation

We express a polynomial with two variables x, y as ξ(x, y) =
∑

(i,j)∈Γξ
τi,jx

iyj ,
where Γξ denotes the set of pairs (i, j) of the exponents of non-zero monomials
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xiyj in a polynomial ξ(x, y). We refer to Γξ as the term set of ξ(x, y). Note that
the cardinality #Γξ is equal to the number of monomials in ξ(x, y). Hereinafter,
we write ξ instead of ξ(x, y) when ξ is clearly a polynomial in two variables x, y.

The set of polynomials with two variables having the term set Γ over a ring
R is denoted by FΓ /R. This is defined as

FΓ /R =

⎧
⎨

⎩
f ∈ R[x, y] | f =

∑

(i,j)∈Γ

aijx
iyj

⎫
⎬

⎭
.

For simplicity, we write FΓ instead of FΓ /R when it is clearly over R.
In this paper, we take representative sets of Zp and Zq as Z+

p = {0, 1, · · · , p−
1} and Z

+
q = {0, 1, · · · , q − 1}, respectively. we refer to Zq[t]/(tn − 1) as Rq and

denote the subset of Rq whose elements have restricted coefficients to the range
of Z+

p to Rp. Then, we can define the maximum coefficient of the polynomial ξ,
which is denoted by MC(ξ), as follows:

MC(ξ) = max

⎧
⎨

⎩
τi,j |ξ(x, y) =

∑

(i,j)∈Γξ

τi,jx
iyj

⎫
⎬

⎭
, (1)

where τi,j is regarded as an integer instead of a representative element in Zp

or Zq to measure the size of the coefficients. Some properties of the maximum
coefficient are described in Appendix B.

These concepts can be defined in the same manner for polynomials with one
or three variables.

2.2 Algebraic Surface Cryptosystem

ASC was first introduced in 2006 by Akiyama and Goto [2]. The security of ASC
depends on the section-finding problem, defined as follows.

Definition 1 (Section-finding Problem). If X(x, y, t) = 0 is an algebraic
surface over field K, then the problem of finding a parameterized curve (x, y, t) =
(ux(t), uy(t), t) on X is called the section-finding problem on X.

A section can be considered as a solution of X(x, y) = 0, which is an indeter-
minate equation over the ring K[t]. In this paper, we write an algebraic surface
X(x, y) = 0 over Fp[t] instead of X(x, y, t) = 0 over Fp.

The problem of solving indeterminate equations over some rings or fields is
known to be difficult. For example, the case of indeterminate equations over the
integer ring Z, a class of problems called Diophantine equations, is undecidable
(Hilbert’s 10th problem). “Undecidable” in this context means that there is
no general algorithm to solve such indeterminate equations. The section-finding
problem has also been proven to be undecidable [9].

To show the concept for the scheme we propose in this paper, we give an
explanation of algebraic surface encryption. First, the simplest ASC can be
described as

c(x, y) = m(x, y) + X(x, y)r(x, y) , (2)
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where X(x, y) is the public key, which defines an algebraic surface with a section.
The polynomials c(x, y) and r(x, y) are a ciphertext polynomial and a random
polynomial, respectively. The polynomial m(x, y) is a plaintext polynomial in
which plaintext is embedded. In the decryption phase, we substitute the secret
key (a section of X(x, y)) into c(x, y). Using the relation X(ux(t), uy(t)) = 0,
we obtain c(ux(t), uy(t)) = m(ux(t), uy(t)). The plaintext can be recovered from
the polynomial m(ux(t), uy(t)) as follows. First, we write m(x, y) as m(x, y) =∑

(i,j,k)∈Γm
mijkxiyjtk, where mijk are unknowns, and substitute the section

into m(x, y). Then, we obtain m(ux(t), uy(t)) =
∑

(i,j,k)∈Γm
mijkux(t)iuy(t)jtk.

The simultaneous linear equations in mijk are constructed by comparing the
coefficients of t. When the number of variables is less than or equal to the rank
of the coefficient matrix, we can recover the correct plaintext by solving the
equations.

However, an attack that can break the scheme exists. We can expand the
cipher polynomial c(x, y) as

c(x, y) =
∑

(i,j,k)∈Γm

mijkxiyjtk +

⎛

⎝
∑

(i,j,k)∈ΓX

aijkxiyjtk

⎞

⎠

⎛

⎝
∑

(i,j,k)∈Γr

rijkxiyjtk

⎞

⎠ , (3)

where Γm, ΓX , and Γr are given as parameters and aijk are given coefficients of
the public key X; and mijk and rijk are variables. By comparing the coefficients
of the monomials, we obtain the simultaneous linear equations with the variables
mijk and rijk. The relation #Γm + #Γr < #ΓXr is required for the decoding.
However, in this case, the equations have unique solutions with high probability.
We refer to the attacks of this type as linear algebraic attacks.

For avoiding this attack, Akiyama, Goto, and Miyake constructed the latest
ASC scheme in 2009 [3]. From the cryptographic point of view, the ciphertext
is equivalent to

c(x, y) = m(x, y)s(x, y) + X(x, y)r(x, y). (4)

Here, s(x, y) is employed as another random polynomial, and the term set
m(x, y)s(x, y) is equal to that of X(x, y)r(x, y) (Γms = ΓXr). In order to
decrypt the ciphertext, we have to decompose m(ux(t), uy(t))s(ux(t), uy(t)) into
m(ux(t), uy(t)) and s(ux(t), uy(t)). Since polynomial factorization (over Fp) is
easy to compute by using the Berlekamp method, we can obtain m(ux(t), uy(t))
as a factor, and recover the plaintext from m(ux(t), uy(t)) in the same way as
the previous scheme.

When applying the linear algebra attack to this scheme, m(x, y)s(x, y) must
be considered as a single polynomial g(x, y) because the quadratic equations
are derived from the variables mijk and sijk. (It is difficult to solve systems of
quadratic equations in general.) Therefore, if the number of variables #Γr +
#ΓXr is greater than the number of equations #ΓXr, then the linear algebra
attack does not work.

Unfortunately, this scheme was also broken by the ideal decomposition
attack, which was introduced by Faugere et al. [11]. They found that the ideal
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(c,X) can be decomposed into (m,X) and (s,X) by calculating the resultant
Resx(c,X) or Resy(c,X). Ultimately, they were able to recover the plaintext m
by using this method to solve the linear equations.

3 Our Proposed Encryption Scheme

In this section, we propose a new ASC scheme that is resistant to the ideal
decomposition attack. We accomplish this by changing the underlying ring of
ASC to Zq[t]/(tn − 1) and adding a p divisible polynomial p · e(x, y) to the
simplest ASC cipher polynomial (2) as noise. Our cipher polynomial is

c(x, y) = m(t) + X(x, y)r(x, y) + p · e(x, y),

where e(x, y) is a random polynomial with small coefficients, and p and m are
a small prime and an element of Zq[t]/(tn − 1), respectively. The polynomial
e(x, y) works as a noise factor in the cipher, and the condition #Γe = #ΓXr is
required for resistance against the linear algebra attack. Also, a small solution
of X(x, y) is necessary in order to decrypt.

3.1 Algorithms

Parameters. In this section, we introduce our scheme’s parameters. Appropri-
ate parameters are discussed in Sect. 5. The parameters are as follows.

1. p, q: The cardinality of Zp,Zq, where p, q are primes and p � q
2. n: The degree of the modulus polynomial of Rq(= Zq[t]/(tn − 1))
3. ΓX : The term set of the indeterminate equation X(x, y)(= 0)
4. Γr: The term set of the random polynomial r(x, y)

The total degrees of X and r are denoted by wX and wr, respectively. The
relation between p and q is important to the decryption. The following condition
must be fulfilled:

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr , (5)

which reason is explained in Appendix B. It is evident that q is much greater
than p.

Keys. The secret-key is a small (smallest is not necessary) solution of the inde-
terminate equation X(x, y) = 0, which is denoted by u:

u : (x, y) = (ux(t), uy(t)), ux(t), uy(t) ∈ Rp, (6)

where deg ux(t) = deg uy(t) = n− 1. Note that p is much smaller than q. There-
fore, we call u a small solution. The public key is the indeterminate equation
X(x, y) = 0 that has the smallest solution u:

X(x, y) =
∑

(i,j)∈ΓX

aijx
iyj , (7)

where aij ∈ Rq.
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Key Generation. The key-generation algorithm, which accepts parameters
p, q, n, ΓX , andΓr as input, can be described as follows. The secret key is gen-
erated as the random polynomials ux(t), uy(t)(∈ Rp), whose degrees are n − 1.
The indeterminate equation X(x, y) = 0 is constructed according to the follow-
ing procedure.
1. Choose a coefficient for each non-constant monomial as follows.

(a) Set X = 0.
(b) For each (i, j) in ΓX :

i. Choose a coefficient aij(t), with degree n − 1 uniformly at random
from the set Rq.

ii. Set X = X + aij(t)xiyj .
2. Calculate the constant term a00(t) as

a00(t) = −∑
(i,j)∈ΓX−(0,0) aij(t)ux(t)iuy(t)j (∈ Rq).

Encryption

1. Embed a plaintext M into the coefficients of the plaintext polynomial m(t)(∈
Rp), whose degree is n − 1.

2. Choose a random polynomial r(x, y) in FΓr
/Rq as follows.

(a) Set r = 0.
(b) For each (i, j) in Γr:

i. Choose a coefficient rij(t), with degree n − 1 uniformly at random
from the set Rq.

ii. Set r = r + rij(t)xiyj .
3. Choose a noise polynomial e(x, y) for FΓXr

/Rp as follows.

(a) Set e = 0
(b) For each (i, j) in ΓXr:

i. Choose a coefficient eij(t), with degree n − 1 uniformly at random
from the set Rp.

ii. Set e = e + eij(t)xiyj .
4. Construct the cipher polynomial c(x, y) as

c(x, y) = m(t) + X(x, y)r(x, y) + p · e(x, y). (8)

Decryption

1. Substitute the smallest solution u into c(x, y) as a solution of X over Fq[t]:

c(u) = m(t) + p · e(u), (9)
where c(u) denotes c(ux(t), uy(t)). When the parameters p and q satisfy the
relation described above (5), each coefficient of m(t) + p · e(u) ∈ Z/(tn − 1) is
within the range of Z+

q . The proof for this is given in Appendix B
2. Extract m(t) from c(u) as c(u) (mod p) = m(t), where we consider c(u) as an

element of Z[t].
3. Recover the plaintext M from the coefficients of m(t).

From now on, we will refer to the public-key encryption scheme as the inde-
terminate equation cryptosystem (IEC) encryption scheme.
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3.2 The Smallest-Solution Problem

Let us express the solution u = (ux(t), uy(t)) (∈ (Zq[t]/(tn − 1))2) of an indeter-
minate equation as

ux(t) =
n−1∑

i=0

αit
i, uy(t) =

n−1∑

i=0

βit
i.

Then, the norm of the solution is defined as follows.

Norm(u) = max{αi, βi ∈ Z
+
q | 0 ≤ i ≤ n − 1}

The security of our system depends on the smallest-solution problem, defined as
follows.

Definition 2 (Smallest-solution Problem). If X(x, y) = 0 is an indeter-
minate equation over the ring Zq[t]/(tn − 1), then the problem of finding the
solution (x, y) = (ux(t), uy(t)) on Zq[t]/(tn − 1) with the smallest norm is called
the smallest-solution problem on X.

We are not able to apply the approximate lattice reduction algorithms directly
to solving the problem because the solution space is non-linear.

4 Security

In this section, we introduce a computational assumption and discuss some pos-
sible attacks for the assumption, based on the attacks for ASCs.

4.1 Security Assumption

The polynomials over Zq whose coefficients are in the range of 0 to p − 1 are
called size-p polynomials. If a polynomial is size p, this means that its coefficients
are much smaller than those of an ordinary polynomial, since p is much smaller
than q. We define the set of polynomials that have zero points in size p as follows:

X(ΓX , p)/Rq = {X ∈ FΓX
/Rq | ∃ux(t), uy(t) ∈ Rp X(ux(t), uy(t)) = 0}.

When the sets of polynomials, such as X(ΓX , p)/Rq, FΓr
/Rq, and FΓXr

/Rp, that
satisfy the condition

(0, 0) ∈ ΓX , (0, 0) ∈ Γr

are given, we define the decisional problem as follows.

Definition 3 (IE-LWE problem). When we write the set UX , TX as

UX = X(ΓX , p)/Rq × FΓXr
/Rq, (10)

TX = {(X,Xr + e)|X ∈ X(ΓX , p)/Rq, r ∈ FΓr
/Rq, e ∈ FΓXr

/Rp}, (11)

respectively, the IE-LWE problem is to distinguish the multivariate polynomials
chosen from a ’noisy’ set TX of polynomials or from a set of UX − TX , where
TX is a subset of UX .
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We define the IE-LWE assumption.

Definition 4 (IE-LWE assumption). The IE-LWE assumption is the
assumption that the advantage

AdvIE-LWE
B (k) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣B(p, q, n, Γr, ΓX ,X, Y ) → 1

∣
∣
∣
∣
∣
∣
∣

(p, q, n, ΓX , Γr,X) R← GenG(1k);
r

U← FΓr
/Rq; e

U← FΓXr
/Rp;

Y := Xr + e

⎤

⎥
⎦

−Pr

⎡

⎢
⎣B(p, q, n, Γr, ΓX ,X, Y ) → 1

∣
∣
∣
∣
∣
∣
∣

(p, q, n, ΓX , Γr,X) R← GenG(1k);

Y
U← FΓXr

/Rq

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(12)

is negligible. In other words,

AdvIE-LWE
B (k) < ε(k),

where ε(k) is a negligible function in the security parameter k.

IE-LWE is an extended variation of R-LWE×
HNF, which is one of the variants

of R-LWE defined by the polynomial ring Rq. This is claimed by a provably
secure NTRU modification [31] and can be reduced to the shortest vector prob-
lem of the lattice derived from Rq. In this paper, we extend R-LWE×

HNF to the
multivariate polynomial ring Rq[x, y] so that the dimension of the lattice is larger
than that of the lattice derived from Rq.

Theorem 1. Under the IE-LWE assumption, the IEC encryption scheme Σ =
(Gen,Enc,Dec) is secure in the sense of IND-CPA. Specifically, if there is an
adversary that runs in polynomial time and breaks the IEC encryption scheme
Σ in the sense of IND-CPA, then there exists an algorithm B that solves the IE-
LWE problem in probabilistic polynomial time. Moreover, the following relation
holds:

AdvIND-CPA
Σ,A (k) = 2 · AdvIE-LWE

B (k).

Proof. Due to space constraints, we omit the proof. We carried out the proof by
using the same technique as in the proof of Lemma 13 in [31].

In addition, one can make the IEC encryption scheme IND-CCA2 secure
by using well-known conversions such as those in [10]. However, the converted
scheme is no longer a homomorphic one.

4.2 Possible for Attacks

In this subsection, we introduce two possible attacks for the IE-LWE assumption.
Other attacks against ASC, which this scheme was developed from, cannot be
applied to this problem. For example, the ideal decomposition attack described
in Sect. 2.2 does not work on our scheme because our scheme does not have a
multiple structure such as m(x, y)s(x, y) in (4).
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The Linear Algebra Attack. Given a pair of polynomials (X,Y ), we can
determine that (X,Y ) is sampled from TX if we find r ∈ FΓr

/Rq and e ∈
FΓXr

/Rp such that Y = Xr + e. The problem of finding such polynomials r
and e can be solved by using the linear algebra attack introduced in Sect. 2.2 as
follows. We construct a system of linear equations by comparing the coefficients
of xiyj in the relation

∑

(i,j)∈ΓXr

dijx
iyj =

⎛

⎝
∑

(i,j)∈ΓX

aijx
iyj

⎞

⎠

⎛

⎝
∑

(i,j)∈Γr

rijx
iyj

⎞

⎠ +

⎛

⎝
∑

(i,j)∈ΓXr

eijx
iyj

⎞

⎠ ,

(13)
where rij and eij are Rq-valued and Rp-valued variables, respectively.

In the case of deg X = deg r = 1, we can set X, r, e, and Y in the following
manner.

X(x, y) = a10x + a01y + a00

r(x, y) = r10x + r01y + r00

e(x, y) = e20x
2 + e11xy + e02y

2 + e10x + e01y + e00

Y (x, y) = d20x
2 + d11xy + d02y

2 + d10x + d01y + d00

From the equation

X(x, y)r(x, y) = a10r10x
2+(a10r01+a01r10)xy+a01r01y

2+(a10r00+a00r10)x
+ (a01r00 + a00r01)y + a00r00 ,

we obtain a system of linear equations as follows:

a10r10 + e20 = d20

a10r01 + a01r10 + e11 = d11

a01r01 + e02 = d02

a10r00 + a00r10 + e10 = d10

a01r00 + a00r01 + e01 = d01

a00r00 + e00 = d00 .

(14)

The system has a solution space with dimension at least three since the number
of variables is more than the number of equations by three. In general, a linear
system obtained with this attack has a solution space with a dimension at least
#Γr since the system has #ΓXr + #Γr variables and #ΓXr equations.

When we can find a solution such that eij are valued in Rp, we conclude
that (X,Y ) is in TX . We may find it exactly with a brute force attack on the
polynomial e, but this attack can be avoided by increasing #ΓXr to

((p − 1)pn−1)#ΓXr > 2k ,

where k is a security parameter.
We employ a lattice-reduction attack to find such a small eij . Let us represent

a ∈ Rq as a vector (a0, a1, · · · , an−2, an−1) for

a = a0 + a1t + · · · + an−2t
n−2 + an−1t

n−1 .
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When the elements b, c ∈ Rq are represented in the same manner as a, we can
express ab + c as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

an−1 an−2 · · · a1 a0

an−2 an−3 · · · a0 an−1

an−3 an−4 · · · an−1 an−2

...
...

...
...

...
a0 an−1 · · · a2 a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

...
bn−2

bn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

cn−1

cn−2

...
c1

c0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The first equation of (14) is described as

A10r10 + e20 = d20

when a10 is expressed as

A10 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

an−1 an−2 · · · a1 a0

an−2 an−3 · · · a0 an−1

an−3 an−4 · · · an−1 an−2

...
...

...
...

...
a0 an−1 · · · a2 a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and r10,e20,d20 are denoted by

r10 =
(
r0 r1 · · · rn−2 rn−1

)T
,

e20 =
(
en−1 en−2 · · · e1 e0

)T
,

d20 =
(
dn−1 dn−2 · · · d1 d0

)T
,

respectively. By adding the integer vector u20 = (un−1, · · · , u0)T , we obtain the
equation over the integers, as follows.

A10r10 + qu20 + e20 = d20

Now, we can consider an integer lattice L =
(
A10 qIn

)
, where In denotes the

n×n unit matrix. If we can find a point v closest to the d20 in the lattice L, then
we can detect ±e20 from v − d20 with high possibility. In the same way, ±e11
can be detected from a point w closest to the d11 in the lattice

(
A10 A01 qIn

)
.

However, we cannot distinguish whether the sample (X,Y ) is sampled from TX

if the aij ’s are invertible in Rq. For the equation a10r10 + e20 = d20, we can
calculate r10 ∈ Rq from any short vector e20 as r10 = a−1

10 (d20 − e20). This
implies that any sample (X,Y ) ∈ UX satisfies the relation. This is true for any
equation in (14).

Therefore, we need to simultaneously consider all equations in (14). Then, we
see that the linear algebraic attack can be reduced to the closest vector problem
(CVP) on the lattice
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A10 qIn

A01 A10 qIn

A01 qIn

A00 A10 qIn

A00 A01 qIn

A00 qIn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)

and the vector (d20 d11 d02 d10 d01 d00)T
. Here, blank entries are zero matrices.

Key-Recovery Attack. If a solution ũ := (ũx(t), ũy(t)) ∈ R2
q to X(x, y) = 0

(not necessarily the secret key) in which all coefficients are less than p is found,
then the IE-LWE problem can be solved with high probability, as follows. For
an IE-LWE instance (X,Y ), if all coefficients of p · Y (ũ) are multiples of p, then
it can be concluded that (X,Y ) is sampled from TX . In fact, sampling (X,Y )
from TX implies that

p · Y (ũ) = p(X(ũ)r(ũ) + e(ũ)) = p · e(ũ),

and MC(e(ũ)) < q implies that all coefficients of p · e(ũ) are multiples of p.
On the other hand, if (X,Y ) is sampled from UX , then the probability that all
coefficients of p · Y (ũ) are multiples of p is about 1/pn. Therefore, if a small
solution, such as ũ, can be found, then the IE-LWE problem can be solved with
a probability higher than 1−1/pn by checking whether all coefficients of p ·Y (ũ)
are multiples of p. Since n, p ≥ 2, the probability 1 − 1/pn is at least 3/4, which
is non-negligible.

In the following, we consider the key-recovery attack on our encryption
scheme (i.e., finding the smallest solution to X(x, y) = 0 over Rq by using
lattice-reduction techniques). First, we consider the case of deg X = 1. In this
case, we need to find ux(t), uy(t) ∈ R2

p satisfying

a10ux(t) + a01uy(t) + a00 = 0. (16)

We write this equation with a matrix and vectors in the same manner as the
algebraic attack described above, as follows:

A
(
ux uy u

)T =
(−a00

)
, (17)

where u is the vector corresponding to u ∈ Z[t]/(tn−1) and satisfying a10ux(t)+
a01uy(t) + qu + a00 = 0 in Z[t]/(tn − 1) and A =

(
A10 A01 qIn

)
. We consider

the lattice LA = {x|Ax = 0} and let v be a solution to the system (17). Then,
any solution of (17) can be written as v +w (w ∈ LA). Observe that our target
solution (ux ,uy ,u) of (17) is expected to be relatively short among the solutions
of (17), because all of the coefficients of ux(t) and uy(t) are much smaller than q.
This observation leads us to an approach to the key-recovery attack, as follows.
First, we solve the system and find its solution space LA and a solution v.
Second, we solve CVP to find the vector w closest to v, and then v − w is the
smallest solution of (17) and is expected to be our target solution (ux ,uy ,u)T .
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In the case of deg X = 2, our approach to the key-recovery attack is similar to
the approach in the case of deg X = 1. Now, our goal is to find ux(t), uy(t) ∈ Rp

satisfying
A

(
u2
x uxuy u2

y ux uy u
)T

=
(−a00

)
, (18)

where A =
(
A20 A11 A02 A10 A01 qIn

)
. A = (A20 A11 A02 A10 A01 qIn) . Note

that each entry of the vector (u2
x ,uxuy ,u2

x)T is in Znp2 . We observe that the
key-recovery attack for deg X = 2 is much more difficult than that for deg X = 1
because the solution has the non-linear parts u2

x , uxuy , and u2
x , which are

hard to handle with lattice-reduction techniques. In fact, the key-recovery attack
for deg X = 2 did not succeed at all in our experiments, while the attack for
deg X = 1 succeeded for some n. Moreover, Babai’s nearest-plane algorithm
could not find closer vectors than the correct vector with n ≥ 20. (See Table 2
in Sect. 4.3 for these results.)

We also considered the latest lattice attacks, such as the lattice-decoding
attack and the subfield-lattice attack. As discussed in Appendix A, these are
not applicable to our scheme.

4.3 Computational Experiment

In this subsection, we show our experimental results for the two attacks above in
order to estimate the parameters that make the IE-LWE problem intractable. In
our experiments, we used Babai’s nearest-plane algorithm [5], which is a standard
algorithm for solving CVP approximately. A lattice basis-reduction algorithm,
such as the LLL algorithm [19] or BKZ [29] algorithm, is used in Babai’s nearest-
plane algorithm.

We use the root of Hermite factor (RHF) as an index to evaluate the
quality of Babai’s nearest plane algorithm. RHF is larger than or equal to 1 in
general, and the quality improves as RHF decreases.

The LLL algorithm is expected to achieve RHF = 1.0219. In the case of the
BKZ algorithm, RHF depends on the block sizes β. For example, β = 20 and
β = 28 suggest RHF = 1.0128 and RHF = 1.0109, respectively. (See [12] for
these values of RHF).

Our computing environment is as follows.

– CPU: AMD Opteron (TM) Processor 848
– Memory: 64 GB
– OS: Linux version 2.6.18-406.el5.centos.plus
– Software: Magma Ver2.21-5

Experimental Results for the Linear Algebra Attack. After choosing X,
r, and e uniformly at random as in the encryption process in Sect. 3.1, we set
(Y,Z) = (X,Xr+e) and conducted experiments to determine whether the target
e or a polynomial with small coefficients < p could be found. Our experiments
were conducted for the cases of deg X = deg r = 1 and deg X = deg r = 2,
and we set p = 3 and increased n in each case. We generated three IE-LWE
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instances for each parameter set and applied the linear algebra attack described
in Sect. 4.2 against each instance.

In Table 1, we show our experimental results for the linear algebra attack,
where “Time” is the average time that it took to conduct the linear algebra
attack and q is the smallest prime number satisfying (5).

Table 1. Experimental results for the linear algebra attack

n q Degree of X RHF Rank Results Time (s)

Target Babai

10 14401 1 0.9831 0.9831 60 Success 2.27

20 57601 1 0.9903 0.9903 120 Success 48.08

30 129607 1 0.9930 0.9930 180 Success 189.9

40 230431 1 0.9944 0.9944 240 Success 1023.97

50 360007 1 0.9954 1.016 300 Failure 4847.95

60 518411 1 0.9959 1.015 360 Failure 19233.13

10 14400011 2 0.9860 0.9860 150 Success 396.62

20 230400007 2 0.9913 0.9913 300 Success 11680.77

30 1166400007 2 0.9936 0.9936 450 Success 79429.53

40 3686400041 2 0.9948 0.9948 600 Success 223644.52

The experimental results show that the linear algebra attack for deg X = 1
failed for n ≥ 50 and the attack for deg X = 2 succeeded for n ≤ 40. In the case
of deg X = 2, it took too much time to complete the attack when n was more
than 40, since the rank of the lattice (15) increases in proportion to the square
of deg Xr (3n × 9n for deg X = 1, 6n × 21n for deg X = 2). The linear algebra
attack appears to fail for values of n large enough that RHF > 1.

Experimental Results for the Key-Recovery Attack. We conducted the
key-recovery attack described in Sect. 4.2 for the same instances as the linear
algebra attack. We consider the key-recovery attack as having succeeded even if
we find two polynomials with small coefficients < p that differ from the correct
secret key (ux(t), uy(t)).

The experimental results described in Table 2 show that the key-recovery
attack for deg X = 1 failed for n ≥ 50 and that the key recovery attack for
deg X = 2 did not succeed at all.

Moreover, in the case of deg X = 2, Babai’s nearest-plane algorithm could
not find closer vectors than the correct vector when n ≥ 20. This implies that
the algorithm is not able to find the correct vector when n ≥ 20.
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Table 2. Experimental results for the key-recovery attack

n q Degree of X RHF Rank Results Time (s)

Target Babai

10 14401 1 0.8541 0.8541 20 Success 0.08

20 57601 1 0.9143 0.9143 40 Success 1.62

30 129607 1 0.9374 0.9374 60 Success 9.37

40 230431 1 0.9508 0.9508 80 Success 35.84

50 360007 1 0.9589 0.9981 100 Failure 107.48

60 518411 1 0.9646 1.018 120 Failure 268.56

10 14400011 2 1.022 1.017 50 Failure 2.06

20 230400007 2 1.017 1.021 100 Failure 48.70

30 1166400007 2 1.014 1.021 150 Failure 391.84

40 3686400041 2 1.011 1.021 200 Failure 2182.66

5 Appropriate Parameter Values

In this section, we design appropriate parameter values using the experimental
results in Sects. 4.3. Both the linear algebra attack and the key-recovery attack
for deg X = 1 failed when n ≥ 50. However, a key-recovery attack could also
be done by using a brute force method, as follows. Choose ũx(t) randomly until
the correct uy(t) (or a polynomial with sufficiently small coefficients) is found
by solving the one-variable equation X(ũx(t), y) = 0 over Rq. In order to resist
the brute force attack, the parameter n must be set such that the number of
candidates for ux(t) is at least 2k, where k is the security parameter. Therefore,
we need to set n ≥ 80 when we keep 128 bit security. Note that n ≥ 80 is also
required in the case of deg X = 2 because the brute-force attack is independent
of the degree of X. In addition, n is preferred to be prime since our scheme
employs the same algebra as NTRU [13]. Using the above argument, we designed
appropriate parameter values for our encryption scheme, shown in Table 3.

Table 3. Appropriate parameter values for our scheme

p q (bit) n deg X deg r #ΓXr Secret Key (bit) Public Key (bit) Ciphertext (bit)

3 20 83 1 1 6 264 4980 9960

3 36 83 2 2 15 264 17928 44820

Using [7], we show a comparison of our encryption scheme with other
lattice-based encryption schemes known as efficient ring-homomorphic encryp-
tion schemes, in Table 4. Table 4 shows that the size of the ciphertext in our
scheme is larger than that in LWE, but the sizes of public and secret keys in our
scheme are the smallest among those in the schemes in Table 4.
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Table 4. Comparison of our scheme with NTRU and LWE

Scheme Secret Key Public Key Ciphertext

Theory Actual (Kb) Theory Actual (Kb) Theory Actual (Kb)

NTRU [31] n�log2 q� ≥ 70 n�log2 q� ≥ 70 n�log2 q� ≥ 70

LWE [20] n�log2 q� 12 2n�log2 q� 24 2n�log2 q� 24

Our scheme 2n�log2 p� 0.3 n#ΔX�log2 q� 18 n#Δe�log2 q� 45

From the point of view of solving indeterminate equations, the difference
between the key-recovery attacks for our encryption scheme and the NTRU
encryption scheme is the following. Our scheme for deg X = 2 is based on the
difficulty of finding a solution (a pair of univariate polynomials with small coeffi-
cients satisfying the non-linear indeterminate equation X(x, y) = 0. In contrast,
the NTRU is based on the difficulty of finding polynomials f and g with small
coefficients that satisfy the linear indeterminate equation hx ≡ g mod q. Based
on this difference, we conclude that the lattice basis-reduction in the NTRU is
easier than that in our scheme. Moreover, this leads to the difference in the sizes
of public and secret keys between our scheme and NTRU (and LWE).

6 Conclusion

In this study, we constructed a post-quantum encryption scheme whose security
is based on an IE-LWE problem and related to the smallest-solution problem
in non-linear spaces. This paper gave the algorithms for key generation, encryp-
tion/decryption, and the security proof in the sense of IND-CPA. Then, we dis-
cussed two attacks that can be applied to the IE-LWE problem and estimated the
key size of our scheme according to the results of the computational experiment
for these attacks. The sizes of the keys are estimated to be much smaller than
those of lattice-based cryptosystems such as LWE and NTRU since no efficient
approximation algorithms are known for non-linear spaces. Finally, we described
our computational experiment to solve the problem using Babai’s nearest-plane
algorithm with LLL. In the future, we plan to conduct experiments using the
lattice decoding attack and the subfield lattice attack to solve the problem.

Acknowledgments. The authors thank Keita Xagawa for suggesting us the attack
[4,13] may work against our scheme when we choose the parameter n to be composite.
The authors also thank anonymous referees for careful reading of our manuscript and
for giving helpful comments.
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A Further Discussion on Lattice Attacks

In this section, we discuss and analyze whether other lattice attacks, such as a
lattice-decoding attack [6] and a subfield-lattice attack [18], can be applied to
our scheme. The discussion and analysis of these attacks given here is rough. We
plan to conduct more careful discussion and analysis in future work. In addition,
analyzing the enumeration methods for CVP (e.g., [21]) is another important
area for future study.

A.1 Lattice-Decoding Attack

The lattice decoding attack consists of three techniques: Kanan’s embedding
technique for reducing CVP to SVP [17], the BKZ algorithm for solving SVP,
and the re-scaling of lattices. More precisely, the attack first reduces the search
binary-LWE problem to the inhomogeneous short integer solution (ISIS) prob-
lem and then tries to solve the ISIS problem by reducing it to CVP. Kanan’s
embedding technique and the BKZ algorithm are used to solve the CVP. The
re-scaling technique is required because some elements in the target vector are
unbalanced in size. This approach seems to be applicable to the original search-
LWE [28] as well as our scheme, but the shortness of the secret vector s is
used in the analysis of the lattice decoding attack. However, for our scheme, the
vector r, which corresponds to s in the binary-LWE problem, is not short in
general since the scheme requires that the vector r be chosen uniformly at ran-
dom from Zq. Therefore, the lattice-decoding attack on the binary-LWE problem
does not appear to be applicable to our scheme.

However, the embedding technique is applicable to the key-recovery and lin-
ear algebra attacks described in previous subsections. In fact, when we applied
the technique to them, we obtained almost the same results as for our scheme.

A.2 Subfield-Lattice Attack

Here, we discuss the subfield-lattice attack on our scheme. This attack can be
applied to homomorphic variants of NTRU. The attack reduces the lattice prob-
lem on certain number fields to the problem on their appropriate subfields by
using norm maps from the original number fields to the subfields.

NTRU variants (i.e., the NTRU on Zq[x]/(x2k

+ 1) and Zq[x]/(xp − x − 1)
with prime numbers p and positive integers q) have been addressed in previous
experiments by Kirchner et al. [18, Sect. 5]. There is no subfield of the number
field Q[x]/(xp − x − 1), but the attack on Zq[x]/(xp − x − 1) succeeds for many
parameters. We infer that the size of the parameter q is strongly related to
the success of the attack. As the size of q increases, the volume of the lattice
becomes larger, and the SVP on the lattice becomes easier. In fact, the subfield
attacks on NTRU with relatively small q fail in some cases (see [18, Figs. 1 and
2]). Moreover, the form h = f/g of the public key for NTRU seems to have a
positive effect on the attack, where f and g are secret polynomials with small
coefficients and f is invertible in Zq[x] = (x2k

+ 1) or Zq[x] = (xp − x − 1).
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However, when comparing Table 3 in this paper with [18, Figs. 1 and 2], it is
evident that the size of q in our scheme is much smaller than that of the NTRU
variants. Moreover, there is a gap between the forms of the keys (public/secret-
keys) in our scheme and those in the above NTRU variants. The data shows that
the lattices derived from the two attacks on our scheme are very different from
those derived from the subfield attacks on the above NTRU variants. Therefore,
the subfield attack does not appear to be applicable to our scheme. In future
work, we plan to consider a variant of the subfield attack on our scheme.

B Maximum Coefficient of Noise Term e

For our scheme, the condition MC(p·e(u)) < q is required in order to decrypt. In
this section, we describe several properties of MC(f(t)) and use them to prove
the condition (5).

For any a in Z
+
q and any f(t), g(t) in Rq, the relation

MC(af(t)) ≤ a · MC(f(t))
MC(f(t) + g(t)) ≤ MC(f(t)) + MC(g(t))
MC(f(t)g(t)) ≤ n · MC(f(t))MC(g(t)),

(19)

are satisfied, where the equality is satisfied when all the coefficients of f(t) and
g(t) are the same.

Considering the worst case gives us ux(t) = uy(t) =
∑n−1

i=0 (p − 1)ti. By
applying (19) repeatedly, we obtain the following:

MC(e(u)) = MC(
∑

(i,j)∈ΓXr
eij(t)ux(t)iuy(t)j)

≤ ∑
(i,j)∈ΓXr

MC(eij(t)ux(t)iuy(t)j)
≤ ∑

(i,j)∈ΓXr
ni+jMC(eij(t))MC(ux(t))iMC(uy(t))j

≤ ∑
(i,j)∈ΓXr

(p − 1) · (n(p − 1))i+j

≤ #ΓXr · (p − 1) · (n(p − 1))wX+wr .

The relation leads to the following condition:

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr . (20)

This is the condition (5), so the condition (5) is proven.
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