
Chapter 3
Making the Artificial Real

3.1 Overview

Having established in Chaps. 1 and 2 a working understanding of the philosophical
underpinnings of computer simulation across disciplines, we turn now to a relatively
new field which has created a stir throughout the computer science community to
investigate questions of artificiality and its effect upon this type of inquiry. Can a
simulation create novel datasets which allow us to discover new things about natural
systems, or are simulations based on the natural world destined to be mere facsimiles
of the systems that inspire them?

For a possible answer we turn to Artificial Life, a field which jumped to
prominence in the late 1980s and early 1990s following the first international
conferences on the topic. Proponents of ‘Strong’ Alife argue that this new science
provides a means for studying ‘life-as-it-could-be’ through creating digital systems
that are nevertheless alive (Langton et al. 1989; Ray 1994).

Of course, such a bold claim invites healthy skepticism, so in this chapter we
will investigate the difficulties with strong Alife. By discussing first the nature
of artificiality in science and simulation, then investigating related theoretical and
methodological frameworks in Artificial Intelligence and more traditional sciences,
we attempt to uncover a way in which the strong Alife community might justify
their field as a bona fide method for producing novel living systems.

This discussion bears significant importance in the further discussion to come.
Providing a theoretical background for any given simulation can greatly impact
the modeller’s ability to link a simulation to conventional empirical science, and
also serves to illuminate the assumptions inherent in the model and their possible
impacts. These issues will be discussed further in the following chapter, in which
this first section of the text incorporates broader concerns regarding modelling from
the biological community in preparation for creating a framework that incorporates
social science in the second section.
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3.2 Strong vs. Weak Alife and AI

3.2.1 Strong vs. Weak AI: Creating Intelligence

The AI community has often been characterised as encompassing two separate
strands of research: Strong AI, and Weak AI. Strong AI aims to develop computer
programmes or devices which exhibit true intelligence; these machines would be
aware and sentient in the same way as a human being. Weak AI, in contrast, aims to
develop systems which display a facsimile of intelligence; these researchers do not
attempt to create an intelligent being electronically, but instead a digital presence
which displays the abilities and advantages of an intelligent being, such as natural
language comprehension and flexible problem-solving skills.

3.2.2 Strong vs. Weak Alife: Creating Life?

The title of the first international artificial life conference immediately identified
two streams of Alife research: the synthesis of living systems as opposed to their
simulation. Perhaps designed to echo the distinction made between strong and weak
artificial intelligence, this division has been readily adapted by the Alife community
in the following years. While strong Alife attempts to create real organisms in a
digital substrate, the weak strand of Alife instead attempts to emulate certain aspects
of life (such as adaptability, evolution, and group behaviours) in order to improve
our understanding of natural living systems.

3.2.3 Defining Life and Mind

Both intelligence and life suffer from inherent difficulties in formalisation; debate
has raged in psychology and biology about what factors might constitute intelligent
or living beings. AI has attempted to define intelligence in innumerable ways since
its inception, resulting in such notable concepts as the Turing Test, in which a
computer programme or device which can fool a blind observer into believing that
it is human is judged to be genuinely intelligent (Turing 1950).

Meanwhile, prominent philosophers of mind have pointed out the flaws in such
arguments, as exemplified in the oft-cited Chinese Room dilemma posed by Searle
(1980). In this thought experiment, an individual is locked inside a room with
an encyclopaedic volume delineating a set of rules allowing for perfect discourse
in Chinese. This individual engages in a dialogue with a native Chinese speaker
outside the room merely by following his rulebook. Searle contends that since
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the speaker himself does not have any innate knowledge of Chinese, his ability to
speak Chinese fluently and convincingly through his rulebook does not prove his
intelligence. Counter-arguments to Searle’s Chinese Room have attempted to evade
this apparent conundrum by claiming that, while the individual inside the room has
no comprehension of Chinese, the entire system (encompassing the room, rulebook,
and individual) does have an intelligent comprehension of Chinese, thus making
the system an intelligent whole; Searle of course offered his own rejoinder to this
idea (Searle 1980, 1982), though the controversy continues with connectionists and
other philosophers continuing to weigh in with their own analyses (Churchland and
Churchland 1990; Harnad 2005).

Similarly life as a phenomenon is perhaps equally difficult to define. While most
researchers in relevant fields agree that living systems must be able to reproduce
independently and display self-directed behaviour, this definition can fall apart
when one is presented with exceptional organisms such as viruses, which display
that reproductive component but consist of a bare minimum of materials necessary
to for that action. Are such organisms still alive, or are they no more than self-
reproducing protein strands? Alternatively, are even those protein strands in some
way ‘alive’? Researchers and philosophers alike continue to dispute the particulars.
Alife researchers’ claims that they can produce ‘real,’ digital life become more
problematic in this regard, as under such a nebulous framework for what constitutes
life, those researchers have quite a lot of latitude under which to make such
statements.

3.3 Levels of Artificiality

3.3.1 The Need for Definitions of Artificiality

The root of the problem of strong Alife is hinted at by the suggestion of unreality
or falsity that can be connoted by the terms thus far used to characterise Alife:
synthetic or simulated. A clarification of the type of artificiality under consideration
could provide a more coherent picture of the type of systems under examination
in this type of inquiry, rather than leaving Alife researchers mired in a morass of
ill-defined terminology.

Silverman and Bullock (2004) outline a simple two-part definition of the term
‘artificial,’ each intended to illuminate the disparity between the natural system and
the artificial system under consideration. First, the word artificial can be used to
denote a man-made example of something natural (hereafter denoted Artificial1).
Second, the word can be used to describe something that has been designed to
closely resemble something else (hereafter denoted Artificial2).
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3.3.2 Artificial1: Examples and Analysis

Artifical1 systems are frequently apparent in everyday reality. For example, artificial
light sources produce real light which consists of photons in exactly the same
manner as natural light sources, but that light is indeed manufactured rather than
being produced by the sun or bioluminescence. A major advantage for the ‘strong
artificial light’ researcher is that our current scientific understanding provides that
researcher with a physical theory which allows us to combine phenomena such as
sunlight, firelight, light-bulb light, and other forms of light into the singular category
of real light.

Brian Keeley’s example of artificial flavourings (Keeley 1997) shows the lim-
itations of this definition. While an artificial strawberry flavouring might produce
sensations in human tastebuds which are indistinguishable from real strawberry
flavouring, this artificially-produced compound (which we shall assume has a
different molecular structure from the natural compound) not only originates from
a different source than the natural compound, but is also a different compound
altogether. In this case, while initially appearing to be a real instance of strawberry
flavouring, one can make a convincing argument for the inherent artificiality of the
manufactured strawberry flavour.

3.3.3 Artificial2: Examples and Analysis

Artificial2 systems, those designed to closely resemble something else, are similarly
plentiful, but soon show the inherent difficulties of relating natural and artificial
systems in this context. Returning to the artificial light example, we could imagine
an Artificial2 system which attempts to investigate the properties of light without
producing light itself; perhaps by constructing a computational model of optical
apparatus, for example, or developing means for replicating the effects of light
upon a room using certain architectural and design mechanisms. In this case, our
Artificial2 system would allow us learn about how light works and why it appears
to our senses in the ways that it does, but it would not produce real light as in an
Artificial1 system.

Returning to the case of Keeley’s strawberry flavouring, we can place the man-
ufactured strawberry flavouring more comfortably into the category of Artificial2.
While the compound is inherently useful in that it may provide a great deal of insight
into the chemical and biological factors that produce a sensation of strawberry
flavour, the compound itself is demonstrably different from the natural flavouring,
and therefore cannot be used as a replacement for studying the natural flavouring.
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3.3.4 Keeley’s Relationships Between Entities

In an effort to clarify these complex relationships between natural and artificial
systems, Brian Keeley (1997) describes three fundamental ways in which natural
and artificial entities can be related:

. . . (1) entities can be genetically related, that is, they can share a common origin, (2) entities
can be functionally related in that they share properties when described at some level of
abstraction, and (3) entities can be compositionally related; that is, they can be made of
similar parts constructed in similar ways. (Keeley 1997, p. 3, original emphasis)

This description seems to make the Alife researcher’s position even more
intractable. The first category seems highly improbable as a potential relationship
between natural systems and Alife, given that natural life and digital life cannot
share genetic origins. The third category is more useful in the field of robotics per-
haps, in which entities could conceivably be constructed which are compositionally
similar, or perhaps even identical, to biological systems. The second category, as
Keeley notes, seems most important to Alife simulation; establishing a functional
relationship between natural life and Alife seems crucial to the acceptance of Alife
as empirical enquiry.

3.4 ‘Real’ AI: Embodiment and Real-World Functionality

3.4.1 Rodney Brooks and ‘Intelligence Without Reason’

Rodney Brooks began a movement in robotics research toward a new methodology
for robot construction with his landmark paper ‘Intelligence Without Reason’
(Brooks 1991). He advocated a shift towards a focus on embodied systems, or
systems that function directly in a complex environment, as opposed to systems
designed to emulate intelligent behaviours on a ‘higher’ level. Further, he posited
that such embodiment could produce seemingly intelligent behaviour without high-
level control structures at all; mobile robots, for example, could use simple rules to
walk which when combined with the complexities of real-world environments may
produce remarkably adaptable walking behaviours.

For Brooks and his contemporaries, the environment is not something to be
abstracted away in an AI task, but something which must be dealt with directly
and efficiently. In a manner somewhat analogous to the Turing Test, AI systems
must in a sense ‘prove’ their intelligence not through success in the digital realm
but through accomplishments rooted in real-world endeavour.
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3.4.2 Real-World Functionality in Vision and Cognitive
Research

While embodiment may appear to be less of a concern in AI research related to
vision and cognition, as these behaviours can be separated from the embodied
organism more readily, such research is often still rooted in real-world environ-
ments. Winograd’s well-known SHRDLU program (Winograd 1972) could answer
questions addressed in natural language that related to a ‘block world’ that it was
able to manipulate; the program could demonstrate knowledge of the properties of
this world and the relationships of the various blocks to one another. While the
‘block world’ itself was an artificial construct, the success of SHRDLU was based
upon its ability to interact with the human experimenter about its knowledge of that
virtual world, rather than just its ability to manipulate the virtual blocks and function
within that world.

Computer vision researchers follow a similar pattern to the natural-language
community, focusing on systems which can display a marked degree of competence
while encountering realistic visual stimuli. Objection recognition is a frequent
example of such a problem, testing a system’s ability to perceive and recognize
images culled from real-world stimuli, such as recognising moving objects in team-
sports footage (Bennett et al. 2004). Similarly, the current popularity of CCTV
systems has lead to great interest in cognitive systems which can analyse the wealth
of footage provided from many cameras simultaneously (Dee and Hogg 2006).
In the extreme, modern humanoid roboticists must integrate ideas from multiple
disciplines related to human behaviour and physiology as well as AI in order to
make these constructions viable in a real-world environment (Brooks et al. 1999).

Within the AI research community, the enduring legacy of the Turing Test
has created a research environment in which real-world performance must be the
end goal; merely understanding basic problems or dealing exclusively in idealised
versions of real-world situations are not sufficient to prove a system’s capacity
for intelligent behaviour. The question of artificiality is less important than that of
practicality; as in engineering disciplines, a functional system is the end goal.

3.4.3 The Differing Goals of AI and Alife: Real-World
Constraints

Clearly, real-world constraints are vital to the success of most research endeavours
in AI. Intelligent systems, Strong or Weak, must be able to distinguish and respond
to physical, visual, or linguistic stimuli, among others, in a manner sufficient to
provide a useful real-world response. Without this, such systems would be markedly
inferior next to the notable processing abilities of even the most rudimentary
mammalian brain.
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For Alife, however, the landscape is far more muddled. Most simulations take
place in an idealised virtual context, with a minimum of complex and interacting
factors, in the hopes of isolating or displaying certain key properties in a clear
fashion. Given the disparity between the biological and digital substrates, and
the difficulties in defining life itself, the relationship between the idealised virtual
context of the simulated organisms and any comparable biological organism seems
quite wide.

In this sense, artificial intelligence has a great advantage, as ‘human’ intelligence
and reasoning is a property of a certain subset of living beings, but can be viewed
as a property apart from the biological nature of those living beings to a degree.
Artificial life, by its very nature, attempts to investigate properties which depend
upon that living substrate in a much more direct fashion.

3.5 ‘Real’ Alife: Langton and the Information Ecology

3.5.1 Early Alife Work and Justifications for Research

The beginnings of Alife research stemmed from a number of examinations into
the properties of life using a series of relatively recent computational methods.
Genetic algorithms, which allow programs to follow a process of evolution in
line with a defined ‘fitness function’ to produce more capable programs, were
applied to digital organisms which attempted to compete and reproduce rather than
simply solve a task (Ray 1994). Similarly, cellular automata displayed remarkable
complexity despite being derived from very simple rules; such a concept of
‘emergent behaviour’ came to underwrite much of Alife in the years to come.
Creating simulations which display life-like behaviours using only simple rule-sets
seemed a powerful metaphor for the complexity of life deriving from the interactions
of genes and proteins.

3.5.2 Ray and Langton: Creating Digital Life?

Ray (1994) and Langton (1992) were early proponents of the Strong Alife view.
Ray contended that his Tierra simulation, in which small programs competed for
memory space in a virtual CPU, displayed an incredible array of varied ‘species’ of
digital organisms. He further posited that such simulations might hail the beginnings
of a new field of digital biology, in which the study of digital organisms may teach
researchers about new properties of life that may be difficult to study in a natural
context; he argued that his digital biosphere was performing fundamentally the same
functions as the natural biosphere:
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Organic life is viewed as utilising energy, mostly derived from the Sun, to organize
matter. By analogy, digital life can be viewed as using CPU (central processing unit)
time, to organize memory. Organic life evolves through natural selection as individuals
compete for resources (light, food, space, etc.) such that genotypes which leave the
most descendants increase in frequency. Digital life evolves through the same process, as
replicating algorithms compete for CPU time and memory space, and organisms evolve
strategies to exploit one another. (Ray 1996, p. 373-4)

For Ray, then, an environment providing limited resources as a mechanism
for driving natural selection and an open-ended evolutionary process is sufficient
to produce ‘increasing diversity and complexity in a parallel to the Cambrian
explosion.’ He goes on to describe the potential utility of such artificial worlds
for a new variety of synthetic biology, comparing these new digital forms of ‘real’
artificial life to established biological life.

Langton (1992), in his investigation of cellular automata, takes this idea one
step further, describing how ‘hardware’ computer systems may be designed to
achieve the same dynamical behaviours as biological ‘wetware.’ He posits that
properly organised synthetic systems can provide these same seemingly unattainable
properties (such as life and intelligence), given that each of these types of systems
can exhibit similar dynamics:

. . . if it is properly understood that hardness, wetness, or gaseousness are properties of the
organization of matter, rather than properties of the matter itself, then it is only a matter of
organization to turn ‘hardware’ into ‘wetware’ and, ultimately, for ‘hardware’ to achieve
everything that has been achieved by wetware, and more. (Langton 1992, p. 84)

For Langton, life is a dynamical system which strives to avoid stagnation,
proceeding in a series of phase transitions from one higher-level evolved state to the
next. This property can be investigated and replicated in computational form, which
in his view seems to provide sufficient potential for hardware to develop identical
properties to wetware in the appropriate conditions (such as an appropriately-
designed cellular automata space).

3.5.3 Langton’s Information Ecology

Langton (1992) and Langton et al. (1989) attempted to justify his views regarding
artificial life by proposing a new definition for biological life. Given that natural life
depends upon the exchange and modification of genetic information through natural
selection, Langton suggests that these dynamics of information exchange are in fact
the essential components of life:

. . . in living systems, a dynamics of information has gained control over the dynamics of
energy, which determines the behavior of most non- living systems. (Langton 1992, p. 41)

Thus, the comparatively simple thermodynamically regulated behaviours of non-
living systems give way to living systems regulated by the dynamics of gene
exchange. From this premise, Langton proposes that if this ‘information ecology’
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were accepted as the defining conditions for life, then a computer simulation could
conceivably create an information ecology displaying the same properties.

3.6 Toward a Framework for Empirical Alife

3.6.1 A Framework for Empirical Science in AI

If we seek the construction of a theoretical framework to underwrite empirical
exploration in Alife, we can gather inspiration from Newell and Simon’s seminal
lecture (Newell and Simon 1976). The authors sought to establish AI as a potential
means for the empirical examination of intelligence and its origins. They argue that
computer science is fundamentally an empirical pursuit:

Computer science is an empirical discipline. . . . Each new machine that is built is an
experiment. Actually constructing the machine poses a question to nature; and we listen
for the answer by observing the machine in operation and analyzing it by all analytical and
measurement means available. (Newell and Simon 1976, p. 114)

However, the argument that computer science is fundamentally empirical due to
its experimental interactions with replicable, physical systems is not sufficient to
claim that an AI can be used as a means to study intelligence empirically. Newell
and Simon address this by proposing a definition of a physical symbol system, or
‘a machine that produces through time an evolving collection of symbol structures’
(Newell and Simon 1976, p. 116). The details of the definition and its full import are
beyond the scope of this text, but in essence, the authors argue that physical symbol
systems are capable of exhibiting ‘general intelligent action’ (Newell and Simon
1976, p. 116), and further, that studying any generally intelligent system will prove
that it is, in fact, a physical symbol system.

Newell and Simon then suggest that physical symbol systems can, by definition,
be replicated by a universal computer. This leads us to their famous Physical Symbol
System Hypothesis – or PSS Hypothesis – which we can summarise as follows:

1. ‘A Physical Symbol System has the necessary and sufficient means for general
intelligent action.’ (Newell and Simon 1976, p. 116)

2. A computer is capable of replicating a Physical Symbol System.

Thus, by establishing general intelligence as a process of manipulating symbols
and symbol expressions, and that computers are capable of replicating and perform-
ing identical functions – and indeed are quite good at doing so – Newell and Simon
present AI as an empirical study of real, physical systems capable of intelligence.
AI researchers are not merely manipulating software for the sake of curiosity, but
are developing real examples of intelligent systems following the same principles
as biological intelligence.
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3.6.2 Newell and Simon Lead the Way

Newell and Simon’s PSS Hypothesis (Newell and Simon 1976) largely succeeded
in providing a framework for AI researchers at the time, and one that continues to be
referenced and used today. Such a framework is notably absent in Alife, however,
given the difficulties in both defining Alife and in specifying a unified field of Alife,
which necessarily spans quite a few methodologies and theoretical backgrounds.
With Langton’s extension of the fledgling field of Alife into the study of ‘life-as-
it-could-be,’ a more unified theoretical approach seems vital to understanding the
relationship between natural and artificial life:

Artificial life is the study of artificial systems that exhibit behavior characteristic of natural
living systems. It is the quest to explain life in any of its possible manifestations, without
restriction to the particular examples that have evolved on Earth. This includes biological
and chemical experiments, computer simulations, and purely theoretical endeavors. Pro-
cesses occurring on molecular, social and evolutionary scales are subject to investigation.
The ultimate goal is to extract the logical form of living systems. (Langton, announcement
of Artificial Life: First International Conference on the Simulation and Synthesis of Living
Systems)

By likening Alife to the study of the very nature of living systems, Langton
appeals to the apparent flexibility and power of computer simulations. The sim-
ulation designer has the opportunity to create artificial worlds that run orders of
magnitude faster than our own and watch thousands of generations of evolution pass
in a short space of time, and thus seems to provide an unprecedented opportunity
to observe the grand machinery of life in a manner that is impossible in traditional
biology.

This, in turn, leads to an enticing prospect: can such broad-stroke simulations be
used to answer pressing empirical questions about natural living systems? Bedau
(1998), for example, sees a role for Alife in a thought experiment originally
proposed by Gould (1989). Gould asks what might happen if we were able to
rewind evolutionary history to a point preceding the first developments of terrestrial
life. If we changed some of those initial conditions, perhaps merely by interfering
slightly with the ‘primordial soup’ of self-replicating molecules, what would we see
upon returning to our own time? Gould suggests that while we might very well see
organisms much the same as ourselves, there is no reason to assume that this would
be the case; we may resume life in our usual time frame to discover that evolutionary
history has completely rearranged itself as a result of these manipulations.

For Bedau, this thought experiment presents an opening for Alife to settle a
question fundamentally closed to traditional biology. By constructing a suitable
simulation which replicates the most important elements of biological life and
the evolutionary process, and running through numerous simulations based on
variously-perturbed primordial soups, we could observe the resultant artificial
organisms and see for ourselves the level of diversity which results.

Other authors have proposed Alife simulations that fall along similar lines
(Bonabeau and Theraulaz 1994; Ray 1994; Miller 1995), noting that evolutionary
biologists are burdened with a paucity of evidence with which to reconstruct the
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evolutionary course of life on Earth. The fossil record is notoriously incomplete,
and our vanishingly small time on Earth has allowed precious few opportunities
to observe even the species which exist around us today. In addition, as Gould’s
thought experiment highlights, we only have the opportunity to observe those
organisms which have evolved on Earth, leaving us entirely uncertain of which
properties we observe in that life are particular to life on Earth, and which are
particular to life in any form.

Quite obviously such an experiment could be potentially revolutionary, and yet
the methodological problems are vast despite the inherent flexibility of computer
simulation. How could we possibly confirm that these artificial organisms are
Artificial1 rather than Artificial2? Given our lack of a definition for biological life,
determining whether a digital organism is alive seems a matter of guesswork at best.
Further, how detailed must the simulation be to be considered a reasonable facsimile
of real-world evolutionary dynamics? Should they select on the level of individuals,
or genes, or perhaps even artificial molecules of some sort? If by some measure we
determine the simulation to be Artificial2 rather than Artificial1, can we truly claim
that this simulation in any way represents the development of natural living systems,
or is it merely a fanciful exploration of poorly-understood evolutionary dynamics?

3.6.3 Theory-Dependence in Empirical Science

Beyond these methodological considerations, some troubling philosophical issues
appear when considering such large-scale applications of the Alife approach. Some
have argued that Alife simulations should not, and in fact cannot, be considered
useful sources of empirical data given that they are loaded with inherent biases from
their creators (Di Paolo et al. 2000). Simulations must necessarily adopt varying
levels of abstraction in order to produce simulations which are both computable and
analysable; after all, simulations which replicate the complexities of real biology in
exacting detail would gain the experimenter very little time-saving and eliminate
one of the major benefits of computational modelling. These abstractions are
tacitly influenced by the experimenter’s own biases, relying upon the simulation
creator’s perception of which aspects of the biological system can be simplified or
even removed from the simulation entirely. Similarly, the parameter settings for
that simulation will come with their own biases, resulting in simulations which
could produce vastly different results depending on the theoretical leanings of the
programmer.

While one might claim that conventional empirical science suffers from very
similar shortfalls, Chalmers points out that biases within such fields must necessarily
end when the results of an experiment contradict those biases:

. . . however informed by theory an experiment is, there is a strong sense in which the results
of an experiment are determined by the world and not by theories. . . we cannot make [the]
outcomes conform to our theories. (Chalmers 1999, p. 39–40)
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In the case of computer simulations this conclusion seems more difficult. After
all, we are in essence adding an additional layer – in addition to the two layers of
the physical world and the theory that describes it, we now have a model layer as
well, which approximates the world as described by our theory. Clearly this adds
additional complications: when not only the experiment but the very world in which
that experiment takes place are designed by that biased experimenter, how can one
be sure that pre-existing theoretical biases have not completely contaminated the
simulation in question?

To return to our central bird migration example, one can imagine various ways in
which our migration researcher could introduce theoretical bias into the simulation.
That researcher’s ideas regarding the progression of bird migration, the importance
of individual behaviours or environmental factors in migration, and other pre-
existing theoretical frameworks in use by the researcher will inform the assumptions
made during construction of the model. In such a scenario, removing such biases is
difficult for the modeller, as on some level the model requires certain assumptions
to function; the researcher needs to develop a theoretical framework in which this
artificial data remains usable despite these issues.

3.6.4 Artificial Data in Empirical Science

An examination of more orthodox methods in empirical science may shed some
light on how some methodologies use artificially-generated data to answer empirical
questions. While these methods are more based in the natural world than an Alife
simulation, they still rely upon creating a sort of artificial world in which to examine
specific elements of a process or phenomenon.

Despite the artificiality of this generated data, such disciplines have achieved a
high degree of acceptance amongst the research community. A brief look at some
examples of the use of such data in empirical research will provide some insight
into possible means for using artificial data derived from simulation.

3.6.4.1 Trans-Cranial Magnetic Stimulation

Research into brain function often employs patients who have suffered brain damage
through strokes or head injuries. Brains are examined to determine which areas are
damaged, and associations between these damaged areas and the functional deficits
exhibited by the patients are postulated. The technique of trans-cranial magnetic
stimulation, known as TCMS or TMS, has allowed psychology researchers to extend
the scope of this approach by generating temporary artificial strokes in otherwise
healthy individuals.

TMS machinery produces this effect through a set of electrodes which are
placed on the outside of the subject’s skull. The researcher first maps the subject’s
brain using an MRI scan, and then begins using the TMS apparatus to fire brief
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magnetic pulses at the surface of the brain. These pulses in effect overstimulate the
affected neurons, causing small areas of the brain to ‘short-circuit,’ which replicates
the effects of certain types of brain injury. TMS researchers have managed to
replicate the effects of certain types of seizure (Fujiki and Steward 1997), and have
examined the effects of stimulation of the occipital cortex in patients with early-
onset blindness (Kujala et al. 2000). TMS has even produced anomalous emotional
responses; after inhibition of the prefrontal cortex via TMS, visual stimuli that might
normally trigger a negative response were much more likely to cause a positive
response (Padberg 2001).

Such methods provide a way for neuroscientists and psychologists to circumvent
the lack of sufficient data from lesion studies. Much of cognitive neuropsychology
suffers from this paucity of raw data, forcing researchers to spend inordinate
amounts of time searching through lengthy hospital records and medical journals
for patients suffering from potentially appropriate brain injuries. Even when such
subjects are found, normal hospital testing may not have revealed the true nature of
the subject’s injury, meaning that potentially valuable subjects go unnoticed as some
finely differentiated neurological deficits are unlikely to be discovered by hospital
staff. Assuming that all of these mitigating factors are bypassed, the researcher is
still faced with a vanishingly small subject pool which may adversely affect the
generalisability of their conclusions.

TMS thus seems a remarkable innovation, one which suddenly widens the
potential pool of subjects for cognitive neuropsychology to such a degree that any
human being may become a viable subject regardless of the presence or lack of
brain injury. However, there are a number of shortcomings to TMS which could
cause one to question the validity of associated results. The inhibition of neural
activity produced by TMS causes neurons to explode into such activity that normal
firing patterns become impossible; while this certainly effectively disrupts activity
in the brain area underneath the pulse, TMS is not necessarily capable of replicating
the many and varied ways in which brain injuries may damage the neural tissue.
Similarly, the electromagnetic pulse used to cause this inhibition of activity is only
intended to affect brain areas which are near to the skull surface; the pulse does
penetrate beyond those areas, but the effects of this excess inhibition are not fully
understood. Despite these shortcomings, and the numerous areas in which standard
examinations of brain-injury patients are superior, TMS has continued to become a
rapidly-growing area of research in cognitive neuropsychology.

The data derived from TMS is strongly theory-dependent in nature, in a similar
fashion to computer simulation. In order to use this data as a reasonable method
of answering empirical questions requires that TMS researchers adopt a theoretical
‘backstory.’ This backstory is a framework that categorises TMS data and lesion data
together as examples of ‘real’ brain-damage data. Despite the fact that TMS brain
damage is generated artificially, it is deemed admissible as ‘real’ data as long as
neuroscientists consider this data Artificial1 rather than Artificial2 in classification.
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3.6.4.2 Neuroscience Studies of Rats

Studies of rats have long been common within the field of neuroscience, given the
complex methodological and ethical difficulties involved in studying the human
brain. Though such studies allow much greater flexibility due to their more
uncontroversial participants, certain fundamental limitations still prohibit certain
techniques; while ideally, researchers would prefer to take non-invasive, in situ
recordings of the neural activity of normal, free-living rats, such recordings are well
beyond the current state of the art.

Instead, neuroscientists must settle for studies of artificially prepared rat brains
or portions thereof; such a technique would be useful if the researcher wishes to
determine the activity of specific neural pathways given a predetermined stimulus,
for example. One study of the GABA-containing neurons within the medial
geniculate body of the rat brain required that the rats in question were anaesthetised
and dissected, with slices of the brain then prepared and stimulated directly (Peruzzi
et al. 1997). Through this preparatory process, the researchers hoped to determine
the arrangement of neural connections within the rat’s main auditory pathway, and
by extension gain some insight into the possible arrangement of the analogous
pathway in humans.

Given how commonplace such techniques have become within modern neu-
roscience, most researchers in that community would not question the empirical
validity of this type of procedure; further, the inherent difficulties involved in
attempting to identify such neural pathways within a living brain makes such
procedures the only known viable way to take such measurements. However,
one might argue that the behaviour of cortical cells in such a preserved culture,
entirely separate from the original brain, would certainly differ significantly from
the behaviour of those same cells when functioning in their usual context. The entire
brain would provide various types of stimulus to the area of cortex under study, with
these stimuli in turn varying in response to both the external environment and the
rat’s own cognitive behaviour.

With modern robotics and studies of adaptive behaviour focusing so strongly
upon such notions of embodiment and situatedness, the prevailing wisdom within
those fields holds that an organism’s coupling to its external environment is
fundamental to that organism’s cognition and behaviour (Brooks 1991). In that
case, neuroscience studies of this sort might very well be accused of generating
and recording ‘artificial’ neural data, producing datasets that differ fundamentally
from the real behaviour of such neurons. How then do neuroscientists apply such
data to the behaviour of real rats, and in turn to humans and other higher mammals?

In fact, research of this type proceeds on the assumption that such isolation of
these cortical slices from normal cognitive activity actually increases the experimen-
tal validity of the study. By removing the neurons from their natural environment,
the effects of external stimuli can be eliminated, meaning that the experimenters
have total control over the stimulus provided to those neurons. In addition, the
chemical and electrical responses of each neuron to those precise stimuli can be
measured precisely, and the influence of experimenter error can be minimised.
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With respect to the artificiality introduced into the study by using such means,
neuroscience as a whole appears to have reached a consensus. Though removing
these cortical slices from the rat is likely to fundamentally change the behaviour
of those neurons as compared to their normal activation patterns, the individual
behaviour of each neuron can be measured with much greater precision in this way;
thus, the cortical slicing procedure can be viewed as Artificial1, as the individual
neurons are behaving precisely as they should, despite the overall change in the
behaviour of that cortical slice when isolated from its natural context. Given the
(perhaps tacit) agreement that these methods are Artificial1 in nature, the data from
such studies can be agreed to consist of ‘real’ neuroscience data.

3.6.5 Artificial Data and the ‘Backstory’

The two examples above drawn from empirical science demonstrate that even com-
monplace tools from relatively orthodox fields are nevertheless theory-dependent in
their application, and further that such dependence is not necessarily immediately
obvious or straightforward. The tacit assumptions underlying the use of TMS and rat
studies in neuroscience are not formalised, but they do provide a working hypothesis
which allows for the use of data derived from these methods as ‘real’ empirical data.
The lack of a conclusive framework showing the validity of these techniques does
not exclude them from use in the research community.

This is of course welcome news for the strong Alife community, given that a
tangible and formal definition of what constitutes a living system is quite far from
being completed. However, strong Alife also lacks this tacit ‘backstory’ that is
evident in the described empirical methods; without this backstory those methods
may fall afoul of the Artificial1/Artificial2 distinction. With this in mind, how might
the Alife community describe a similar backstory which underwrites this research
methodology as a valid method for producing new empirical datasets?

The examples of TMS and rat neuroscience offer one possibility. In each of
those cases, the investigative procedure begins with an uncontroversial example of
the class of system under investigation (i.e., in the case of TMS, a human brain).
This system is then prepared in some way in order to become more amenable
to a particular brand of investigation; rat neuroscientists, by slicing and treating
the cortical tissue, allow themselves much greater access to the functioning of
individual neurons. In order to justify these modifications to the original system,
these preparatory procedures must be seen as neutral in that they will not distort the
resulting data to such a degree that the data becomes worthless. Indeed, in both TMS
and rat neuroscience, the research community might argue that these preparatory
procedures actually reduce some fairly significant limitations placed upon them by
other empirical methodologies.

At first blush such a theoretical framework seems reasonable for Alife. After
all, other forms of ‘artificial life’ such as clones or recombinant bacteria begin
with such an uncontroversial living system and ‘prepares’ it while still producing
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a result universally accepted to be another living system. However, this does fall
substantially short of one of the central goals of strong artificial life, as these systems
certainly produce augmented datasets regarding the living systems involved, but
they do not generate entirely novel datasets. While recombinant bacteria and
mutated Drosophila may illuminate elements of those particular species that we
may have been unable to uncover otherwise, the investigation of ‘life-as-it-could-
be’ remains untouched by these efforts.

In addition to these shortcomings, the preparatory procedures involved in a
standard Alife simulation are quite far removed from those we see in standard
biology (or the neuroscience examples discussed earlier). These simulated systems
exist entirely in the digital realm, completely removed from the biological substrate
of living systems; though many of these simulated systems may be based upon the
form or behaviour of natural living systems, those systems remain separate from
their simulated counterparts.

Further, this computer simulation is ‘prepared’ in this digital substrate through
a process of programming to produce this artificial system. Programming is
inherently a highly variable process, the practice of which differs enormously from
one practitioner to the next, in contrast to the highly standardised procedures of
neuroscience and biology. The result of these preparations is to make the system
amenable to creating life, rather than simply taking a previously-existing system
and making it more amenable to a particular type of empirical observation. While
characterising this extensive preparatory process as benign, as in neuroscience and
biology, would be immensely appealing to the Alife community, the argument that
preparing a computer and somehow creating life upon its digital substrate is a benign
preparatory procedure is a difficult one to make.

3.6.6 Silverman and Bullock’s Framework: A PSS Hypothesis
for Life

Thus, while we have seen that even orthodox empirical science can be considered
strongly theory-dependent, the gap between natural living systems and Alife
systems remains intimidatingly wide. From this perspective, characterising Alife
as a useful window onto ‘life-as-it-could-be’ is far from easy; in fact, Alife appears
dangerously close to being a quintessentially Artificial2 enterprise.

Newell and Simon’s seminal paper regarding the Physical Symbol System
Hypothesis offers a possible answer to this dilemma (Newell and Simon 1976).
Faced with a similar separation between the real system of interest (the intelligence
displayed by the human brain) and their own attempt to replicate it digitally,
the PSS Hypothesis offered a means of justifying their field. By establishing a
framework under which their computers offer the ‘necessary and sufficient means’
for intelligent action, Newell and Simon also establish that any computer is only a
short (albeit immensely complicated) step away from becoming an example of real,
Artificial1 intelligence.
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The PSS Hypothesis also escapes from a potential theoretical conundrum by
avoiding discussion of any perceived similarities between the behaviour of AI
systems and natural intelligence. Instead Newell and Simon attempt to provide
a base-level equivalence between computation and intelligence, arguing that the
fundamental symbol-processing abilities displayed by natural intelligence are repli-
cable in any symbol-processing system of sufficient capability. This neatly avoids
the shaky ground of equating AI systems to human brains by instead equating
intelligence to a form of computation; in this context, the idea that computers can
produce a form of intelligence follows naturally.

With this in mind, we return to Langton’s concept of the information ecology
(1992). If we accept the premise that living systems have this ecology of information
as their basis, then can we also argue that information-processing machines may also
lead to the development of living systems? Following Newell and Simon’s lead,
Silverman and Bullock (2004) offer a PSS Hypothesis for life:

1. An information ecology provides the necessary and sufficient conditions for life.
2. A suitably-programmed computer is an example of an information ecology. (Silverman

and Bullock 2004, p. 5)

Thus, assuming that the computer in question was appropriately programmed
to take advantage of this property, then an Alife simulation could be regarded as
a true living system, rather than an Artificial2 imitation of life. As in Newell and
Simon, the computer becomes a system that is a sort of blank slate, needing only
the appropriate programming to become a repository for digital life.

This PSS Hypothesis handily removes the gap between the living systems
which provide the inspiration for Alife and the systems produced by an Alife
simulation. Given that computers inherently provide an information ecology, an
Alife simulation can harness that property to create a living system within that
computer. Strong Alife then becomes a means for producing entirely new datasets
derived from genuine digital lifeforms rather than simply a method for creating
behaviours that are reminiscent of natural life.

3.6.7 The Importance of Backstory for the Modeller

As discussed in earlier sections about examples of the theoretical backstory in
empirical disciplines, the presence of such a backstory allows the experimenter to
justify the usefulness of serious alterations to the system under study. In the case
of rat neuroscience and TMS research, their back-stories allow them to describe the
changes and preparations they make to their subjects as necessary means for data
collection.

In the case of Alife, such a claim is difficult to make, as noted previously, given
that the simulation is creating data rather than collecting it from a pre-existing source
as is the case in our empirical examples. The PSS Hypothesis for Life avoids this
difficulty by stating that any given computer hardware substrate forms the necessary
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raw material for life; in a sense, our simulation is merely activating this potential to
create an information ecology, and then collecting data from the result. Thus, we
may say that our programming of the simulation has prepared this digital substrate
for empirical data-collection in a manner similar to that of empirical studies.

Of course, such a backstory is significant in scope, and could invite further
criticism. However, such a statement is difficult to refute, given the unsophisticated
nature of our current definitions for biological life, and a lack of agreement on
whether life may exist in other substrates. Either way, the importance for the
modeller is that such a simulation takes on a different character. The focus of
such a theoretical justification is on implementing a model which produces some
empirical data collection that may bear on our overall understanding of life, not on
simply tweaking an interesting computational system to probe the results. The PSS
Hypothesis for Life gives us some basis on which to state that this view of Alife
models has some theoretical validity.

3.6.8 Where to Go from Here

Now that we have produced a theoretical backstory which underwrites Alife
research as a means for generating new empirical data points, what is missing? The
PSS Hypothesis for Life allows us to pursue simulations of this type as a means
for understanding life as a new form of biology, investigating the properties and
behaviours of entirely novel organisms. One can imagine how such endeavours
could provide interesting insight for those interested in the broader questions of
what makes something alive.

However, none of this allows us to provide any direct relevance in our results in
Alife to the biological sciences. The biologist who views our bird migration model,
justified as an information ecology under the PSS Hypothesis for Life, as interesting,
but irrelevant to the concerns of the empirical ornithologist. Indeed, if our simulation
is producing merely a bird-like manifestation of digital life, then we have no basis
on which to state that what we see in our results can tell us anything about real birds,
completely removed from the virtual information ecology we have implemented.

This issue becomes the focus of the next chapter, the final chapter of Part I.
How might we apply Alife modelling techniques and agent-based models to the
broader canvas of biological science? An in-depth discussion of methodological and
theoretical issues related to modelling in population biology will provide us with the
context necessary to begin to answer this question. The concerns of the strong Alife
modeller as depicted in this chapter differ in several important respects to those of a
modeller with a weak Alife orientation, and those concerns focus largely on creating
a relationship to external empirical data rather than creating their own empirical data
as the PSS Hypothesis for Life describes.
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3.7 Summary and Conclusions

ALife by its very nature is a field which depends upon the use and acceptance
of artificially-generated data to investigate aspects of living systems. While some
members of this research community have posited that artificial systems can be
alive in a manner identical to biological life, there are numerous philosophical and
methodological concerns inherent in such a viewpoint.

The comparison with artificial intelligence laid out in this chapter illustrates
some of the particular methodological difficulties apparent in ALife. ALife seeks to
replicate properties of life which are heavily dependent on the biological substrate,
in contrast with AI, which seeks to emulate higher-level properties of living
organisms which seem more easily replicable outside of the biological realm.

AI does not entirely escape the problem of artificiality in its data and methods
however, nor for that matter does conventional empirical science. Some disciplines
are able to make use of a great deal of artificial data by tying it to a theoretical
‘backstory’ of a sort. ALife up to now has lacked this backstory, while AI has Newell
and Simon’s PSS Hypothesis (Newell and Simon 1976) as one example of such a
theoretical endeavour.

Silverman and Bullock (2004) used Newell and Simon’s account as an inspiration
for a PSS Hypothesis for life, a framework which could be used to underwrite
strong ALife as a form of empirical endeavour. By accepting that life is a form of
information ecology which does not depend exclusively on a biological substrate, a
researcher signing up to this backstory may argue for the use of strong ALife data
as a form of empirical data. Initially such an idea is appealing; after all, the strong
ALife proponent seeks to create forms of ‘life-as-it-could-be’ in a digital space, and
this variant of the PSS Hypothesis describes such instances of digital life as a natural
consequence of life itself being an information ecology.

However, this framework does not account for the more pragmatic methodologi-
cal concerns which affect modelling endeavours of this type, and in fact modelling
in general. Constructing a computational model requires a great deal more than a
useful theoretical justification to function appropriately and provide useful data. As
one example, accepting ALife simulations as a form of empirical enquiry does not
simplify the task of relating that data to similar data derived from entirely natural
systems. As exciting as the prospect of digital life may be, creating self-contained
digital ecosystems which are unrelatable to natural ecosystems seems of limited
utility for the biologist. Such issues, examined in the context of mathematical
models in population biology in the following chapter, will provide greater insight
into these crucial elements of our growing theoretical framework for simulation
research. This framework can then be expanded to bear on our upcoming discussion
of simulation for the social sciences in the second overall section of this text.
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