Chapter 36

Uncovering Chinese Pedagogy:
Spiral Variation—The Unspoken
Principle of Algebra Thinking Used
to Develop Chinese Curriculum
and Instruction of the “Two Basics”

Xuhua Sun

Abstract Many international research studies are conducted in the Western
deductive tradition strongly influenced by a geometric perspective. During the past
decades, the missing paradigm from an algebraic tradition has rarely been explored.
I intend to present the algebraic perspective that structures inductive tradition in an
effort to understand Chinese curriculum and instruction of the “Two Basics” and its
unspoken principle, spiral variation. This study can deepen our understanding how
the inductive reasoning that underpins early Chinese algebra provides a founda-
tional cultural perspective for interpreting “indigenous” principles and their appli-
cation. This discussion can enlighten our understanding of the Chinese tradition of
mathematics education, which can in turn shed light on the research into algebra
education from the perspective of problem variation.
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36.1 Introduction

Algebra is one of the most daunting branches of school mathematics (Radford
2015), yet it is generally considered an essential worldwide language for any study
of advanced mathematics, science, or engineering and also for such applications as
medicine and economics. Cross-national studies have provided insight into the
cultural and educational factors that may influence the learning of mathematics
(e.g., Cai and Wang 2006). A range of studies on the differences in the mathe-
matical thinking of students have found that Chinese students prefer to use
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symbol-based strategies and algebraic solutions and U.S. students prefer concrete,
pictorial-based strategies in problem solving (e.g., Cai 2000). A corresponding
difference in the approach of teachers is that U.S. teachers put more emphasis on the
use of concrete examples to aid student understanding, while Chinese teachers tend
to emphasize the abstract reasoning beyond the concrete after presenting concrete
examples (e.g., Cai and Wang 2006). Some corresponding studies have made an
effort to document and analyze how the Chinese curriculum and instructional
practice supports the development of algebraic thinking in students (e.g., Cai and
Knuth 2005). This historic-cultural aspect of algebraic development may allow us
to examine the deeper educational roots beyond the current curricula and instruc-
tion, which have been insufficiently explored. This study will examine the legacy of
ancient China’s algebraic development (China in this paper denotes mainland China
exclusively from a historical perspective). I intend to discuss how the inductive
reasoning that underpins early Chinese algebra provides a foundational cultural
perspective for interpreting “local” principles and their application. I will begin with
an introduction to the Chinese tradition of mathematical education from an alge-
braic perspective, where has been unknown in the West.

36.2 The Legacy of Ancient China: Generalization
of a Solution Method, an Algebraic Development
Framework

The detailed Chinese tradition of algebra has rarely been reported in Western
historical literature. For example, Chinese history is omitted from the classic
mathematical literature edited by Kline (1972) and the history of algebra’s devel-
opment (Sfard 1995). As Wu (1995) points out: “there are two core thoughts/paths
through the mathematical history of the world. One is axiomatic thought from the
Greek Euclidean system. Another is mechanistic thought which originated in China
and influenced India and the whole world” (cited in Guo 2010). For example, the
Chinese remainder theorem, the solution of modular equations, was discovered in
the fifth century CE by the Chinese mathematician Sunzi and described by
Aryabhata in the sixth century. Special cases of the Chinese remainder theorem
were also known to Brahmagupta in the seventh century and appeared in
Fibonacci’s Liber Abaci in 1202 (Pisano and Sigler 2002; Li 2005). The axiomatic
method is renowned for its influence on the development of geometry and
non-Euclidean geometry, the foundation of real analysis, and Cantor’s set theory,
which stands for rigor, clarity, and absolute truth (Guo 2010). However, mecha-
nistic thought, also called the algorithmic method, which aims to find invariant
strategies by performing calculations, processing data, and automating reasoning,
has received little attention, despite being the representative system of traditional
Chinese arithmetic and algebra from which most of the classic works of ancient
Chinese mathematics originated. The most brilliant example of the application of
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the algorithmic method is the arithmetic algebra system known as The Nine Chapters
on the Mathematical Art (JZSS;1000 BC-200 AD). Using this logical tool, Chinese
mathematicians attempted to convert geometric problems into algebraic problems
(Guo 2010), in contrast to the Greek approach of converting algebraic problems into
geometric problems. This directly influenced Asian countries such as Korea, Japan,
Mongolia, Tibet, and Vietnam (Martzloff 1997, pp. 105-110). Although Chinese
algebraic development was limited by the nature of its language which lacks letters
(characters rather than letters were and continue to be used in China), a flourishing
series of advanced classic algebraic works were developed. In contrast to Greek
geometry, various algorithms for solving equations were the main focus, from
high-degree polynomial equations to linear equations. Even indefinite equations
were created from applied mathematics (Guo 2010; Li 2005), for example, by
providing algorithms to calculate the extraction of square/cube roots and the rules for
calculating positive and negative numbers as a foundation for solving equations and
equation systems (irrational numbers and negative numbers were first identified in
ancient China (Guo 2010)). Eighteen problem-solving methods for systems of linear
equations with 2, 3, 4, and 5 unknowns were presented in JZSS. Gaussian elimi-
nation (19th century), was first introduced about 2000 years earlier (Shen et al.
1999). Compared with the approaches to find two numbers, known as syncopated
algebra from the Arithmetica of Diophantus (250 AD), this was considerably earlier
and more systematic, presenting the first systematic use of irrational and negative
numbers. In fact, the concept of variable, called tian yuan shu (RITAK), was in
systematic use in China long before that of Francois Viete (1540-1603). Tian yuan
shu denotes a strategy of the heavenly unknown, which played an important role in
the Chinese algebraic approach to solving polynomial equations in the 13th century.
It first became known through the writing of Li Ye in his work Ceyuan Haijing ({V
[R]E5%) in 1248. Meanwhile, tian yuan shu spread to Japan, where it was called
tengen jutsu in Suanxue Qimeng (8%2F%%7), authored by Zhu Shijie, and played
important role in the development of Japanese mathematics (wasan) in the 17th and
18th centuries (Mikami 1913). In fact, the general root of high-degree equations to
solve the numerical solution of the program zheng fu kai fangshu (£ RFFJIAR), the
mechanical algorithm in Shushu Jiuzhang (3345 JLE), was written by Qin Jiushao.
The algorithm for eliminating and solving polynomial equations with four
unknowns, Si Yiian Yii Jian (JUTTEEE; The Jade Mirror of the Four Unknowns,
with the four elements, heaven, earth, man, and matter, representing the four
unknown quantities) was written by Zhu Shijie in 1303 AD. This deals with
simultaneous equations and with equations of degrees as high as 14, marking the
peak in the development of Chinese algebra (Guo 2010).

Shu (R), a term broadly used in problem solving, played an important role in the
development of the ancient Chinese mathematical system, which stemmed from the
spirit of “general methods” in the problem-oriented tradition of Asian mathematics “to
produce new methods from real problems, promote them to the level of a general
method, generalize them into shu, and deploy these shu to solve various similar
problems which are more complicated, more important, and more abstruse” (Wu
1995, p. 46). In some of Liu Hui’s commentary on JZSS, du shu (48K, “the basic
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algorithm”) was highlighted to describe basic algorithms that are much more gener-
alized than specific algorithms for a specific class, and can thus be applied to broader
classes of problems (Guo 2010). Jinyou shu (57H7R) is one of these (Guo 2010).
Although algebra (e.g., equations and systems of equations) existed in several ancient
civilizations, including the Babylonian, Greek, Egyptian, Indian, Chinese, Arab, and
European, the clear framework for a more generalized solution appeared only in the
Chinese literature in terms of the generalization pu shixing (353814 ) and du shu C&4BK,
“the basic algorithm”), an algebraic framework beyond a question-answer algorithm,
wen-da-shu (fBIER), which is in the form of a statement of a concrete problem
followed by a statement of the solution and an explanation of the procedure that led to
the solution. In contrast to the axiomatic approach—a strategy for deducing propo-
sitions from an initial set of axioms in the geometric tradition of Egypt and Greece that
has dominated the intellectual world since the time of Greek philosophers such as
Thales, Anaximander, and Aristotle—the inductive approach was always the more
dominant tool of abstraction in ancient China (Wu 1995). Other Chinese treatises that
contain structures similar to those in the JZSS usually emphasize the algebraic
framework too include Haidao Suanjing (1855 4%), Zhang Qiujian Suanjing (GRE
BELS), Wuchao Suanjing (LB B £8), Wujing Suanshu (BLESE D), Figu Suanjing
B ERE), Shushu Jivi (BUIaCi8), and Xiahou Yang Suanjing (R 1=P5HE).

The inductive reasoning used within the algebraic framework, as opposed to
deductive reasoning, is in fact frequently used today in science, philosophy, and the
humanities because it can lead to unknown predictions and new knowledge, which
deductive reasoning cannot. Its application has been questionable, however, due to
uncertain conclusions drawn from relatively limited cases or experiences. However,
algebraic thinking is to some extent born of the inductive reasoning system rather
than deductive reasoning. It is worth noting that although algebra was developed in
the West from ancient Babylonian mathematics (Hayrup 2002), it does not use the
clear algebraic framework described above, but rather the concrete-problem and
concrete-solution method [e.g., the tablet AO8862 1800/1600 BC (Spagnolo and Di
Paola 2010, p. 52)]. The classic early algebra work of mathematician Mohammed
ibn Musa al-Khowarizmi, the author of Aljabr w’al muqgabala, which provided the
modern word algebra also failed to emphasize general solutions beyond the con-
crete in the way the Chinese mathematical literature did (Guo 2010). Chemla (2009)
showed that some of the algorithms in JZSS were built not just to solve a specific
problem but rather the general class of problems they represented. The whole
structure of JZSS seems to call for this general procedure and encourages the search
for general formulations in algebraic rhetoric, as pointed out by Spagnolo and Di
Paola (2010).

However, it is interesting to note that the ancient Chinese developed algebra
only, not geometry (Euclid’s Elements was introduced into China in the 17th
century). This encourages us to enquire whether there was a specific ecology in
China that was conducive to the development of algebra. The historical, social, and
cultural foundations of the development of algebra have been neglected from the
international perspective. In this paper, we attempt to fill in the gap of lack of
recognition of the historical beginnings of algebra in China and, in particular,
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provide an argument that the inductive reasoning that underpins early Chinese
algebra provides a foundational cultural perspective for interpreting pedagogical
approaches.

36.3 What Are the Key Features of Ancient Chinese
Mathematics?

Jiu Zhang Suan Shu (JLEEK), the most classic work of Chinese mathematics,
used 246 word problems categorized into nine categories to spread mathematical
knowledge, which also reflects ancient China’s pedagogical approach. The structure
of Jiu Zhang Suan Shu (as pointed out by Liu Hui) emphasizes lu (28; Sun and Sun
2012), jin you shu (“ratio equation”), and the gifong theorem as the core ideas (Sun
and Sun 2012), and its mathematical problems are arranged into nine categories by
the idea of categorization (Guo 2010).

The ideas of categorization stressing the above invariance-variation concept
appeared in the preface below as the central guiding spirit in Liu Hui’s commentary
in the 2000-year-old Chinese textbook, JZSS, which has played a similar role in
Asian countries to that of Euclid’s Elements: “Although they (knowledge tree) are
diverse, their branches grow from the same root” (“ERAIEEE T M[E) AR F03E
H—IHME"; Guo 2010, p. 178).

The invariance-variation relationship is represented by the idea of categorization
in the JZSS, described as the ideology of “categorizing to unite categories (LI¥8&
¥8)” in ancient China (Guo 2010, p. 76). The concept of categorization was
illustrated by classifying the 246 variant problems into the nine categories (3%£8)
below.

1. Fangtian (J7B): rectangular fields
2. Sumi (327K): millet and rice, the exchange of commodities at different rates,
pricing

3. Cuifen (£43): proportional distribution, the distribution of commodities and
money at proportional rates

. Shaoguang (4 J°): the lesser breadth, division by mixed numbers

. Shanggong (F&1}]): consultations on works, volumes of solids of various shapes

. Junshu (2%0): equitable taxation

. Yingbuzu (Z2F2): excess and deficit, linear problems solved using the prin-
ciple known later in the West as the rule of false position

. Fangcheng (JI}2): the rectangular array, systems of linear equations

. Gougu (EJB%): base and altitude, problems involving the principle known in the
West as the Pythagorean theorem.

N O b b

O oo

After the emergence of the JZSS, the concept of categorizing became the model
for mathematical task design in traditional applied mathematics, which has played a
role as an associated pedagogy of the JZSS.
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Almost all problems in ancient China were placed into categories in the classic
mathematics texts by Wucao (A B H ) and Xiahouyang (21xp5HE 15, Wang
1996). Before the Western system was imposed on the Chinese curriculum, the
categorizing model was the unspoken task design framework. For example,
mathematical problems grouped into the following categories were typical of the
Chinese curriculum (Wang 1996):

. Difference/sum category
. Speed category

. Tree-planting category

. Age category

. Availing category

. Engineering category

. Profit category.

N O R W

Through the traditional logic of the Greeks, the axiomatic approach has remained
the cornerstone of mathematics in the West. Accordingly, a definition/theorem-based
model stressing content knowledge gradually formed the fundamental idea of
mathematical task design in the West. This has played an important role in the history
of Western mathematical education, where word problems, labeled application
problems (J¥ FfR), play a role in knowledge application. In contrast, the
problem-solving approach and applied mathematics in JZSS mainly remained the
cornerstone of mathematics in the East. Its associated categorization model in JZSS
gradually formed the unspoken but fundamental framework of mathematics task
organization/design in China (Sun 2013). It is interesting to note that this model
stresses the category-based inductive tradition rather than the definition/
theorem-based deductive tradition of the West, where word problems with varia-
tions play a role in relation-oriented knowledge introduction (Bartolini Bussi et al.
2013). In short, the idea of categorization reflects the ancient curriculum practice using
the variant—invariant (from concreteness to abstract logic) spirit above.

36.4 The Key Features of Chinese Pedagogy in Current
Teaching Practice: From a Single Problem to a Class
of Problems with Variation

The tradition of categorizing was not implemented after the Western mathematics
curriculum was imported into China in 1878 (Wang 1996). However, Chinese
curriculum developers emphasized the Two Basics and, after 1878, developed an
associated pedagogy with variation problems stressing the categorization process,
from the variant concreteness to the invariant abstract application. This pedagogy of
problem design centered on the idea of expanding a single problem to a class of
problems with variation problems. It also aimed to establish the necessary and
sufficient conditions to determine each category of problem set using two similar
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and important parameters of mathematical structure, the dimensions of possible
variation, and the associated range of permissible change, as pointed out by Watson
and Mason (2005, 2006). This practice is called bianshi (%3 in Chinese, where
bian stands for changing and shi means form. Although it has spread into a wide
range and variety of forms in China (Sun 2007), “indigenous” variation practice in
mathematics refers to the “routine” daily practice commonly accepted by Chinese
teachers, the local experience used broadly in the design of examples or exercises to
extend the original examples, known widely as “one problem, multiple changes”
(OPMC,—#8% %, “varying conditions and conclusions”), “one problem, multiple
solutions” (OPMS,—7#8 % f#%, “varying solutions”), and “multiple problems, one
solution” (MPOS, % f8—f%, “varying presentations”; Sun 2007, 2011a, 2016).

According to Kieran (2004, 2011), the global meta-level algebra activities
essential to the other generational, transformational activities of algebra include
studying change, generalizing, analyzing relationships, and noticing structure for
which algebra is used as a tool. The “routine” activities of varying conditions and
conclusions, varying solutions, and varying presentations above play the role of
concept connections, solution connections, and presentation connections (Sun
2011a, b, 2016). Systematically, they provide a platform to support analyzing
relationships and noticing structure and, therefore, can support meta-level algebra
development.

This practice, rarely apparent in the West, is a typical daily routine in the local
curriculum and regarded as a natural strategy for deepening understanding, which
perhaps makes this practice distinctive. This strategy, easily found in school
teaching materials (such as textbooks or teaching plans) and any piece of learning
material (such as student exercises or worksheets) is followed after school in China.
As mentioned before, Chinese arithmetic development, textbooks, textbook refer-
ence books, and particular variation practices provide useful clues for under-
standing the Chinese mathematics education system rarely known outside of the
Chinese community.

In contrast to variation problems, contextualization problems are prioritized as
the general curricular trend in the West (Clarke 2006). However, contextualization
problems to facilitate engagement mainly provide examples of the same concept
and solution method, missing the chance to make timely connections between
concepts and methods. In this light, variation problems suggest a way in which
Western counterparts can learn from the content-oriented curricula in China.
Compared to contextualization problems, variation problems are clearly a
double-edged sword that can increase the learning challenge because they require
the use of multiple concepts, solutions, and conceptual development.
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36.5 Why Is the Task Design Principle Important?

In seeking a basic algorithm as a demonstration tool, the problem variations
described earlier aim to avoid heuristic trial and error (such as arithmetic) by
eliciting reasoning, using variation as scaffold for discerning the invariant, a kind of
pre-algebraic thinking. It could be a helpful transition from arithmetic thinking to
algebra. For example, here is a prototype example of an OPMC variation in which
the concept of subtraction is always introduced in the Chinese textbook below as:
1+2=3,2+1=3,and 3 — 1 =2. Within the problem set, there are two con-
cepts of addition and subtraction behind three similar problems made with 3, 2, and
1. Clearly, this OPMC provides a setting in which learners can reflect and gener-
alize between the concepts of addition and subtraction in order to concentrate on the
relationships, a kind of pre-algebraic thinking, involved. In contrast, the concept of
subtraction is introduced in some U.S. textbooks using a problem set such as this: 4
—1=3,5-3=2,and 3 — 2 = 1. Within the problem set, instead of embedding
two concepts as done above, only the concept of subtraction is included. Clearly,
the variation of solutions, conditions/conclusions, and presentations can be used to
emphasize the invariant elements as a possible way of generalization, providing
the transition from arithmetic thinking to algebra. In contrast, the
“one-thing-at-the-time” design based on the notion of consolidating one topic or
skill before moving on to another that is broadly used in most textbook develop-
ment in Europe and throughout the world would clearly provide fewer opportunities
for “making connections” (Sun 2011a, b) compared to those of contemporaneous
variation approaches (e.g., Rowland 2008).

The variations described earlier elicit the idea that variability is at the heart of
algebra, and aim to provide a platform to transit from arithmetic thinking to the
relational algebraic thinking. Variation plays the role of meta-logic to access
algebra. From the perspective of the Chinese philosophy (Hua 1999) and language,
it is an important framework for algebraic thought development from the arithmetic
stage rooted in Chinese cultural logic (Sun 2016). In contrast to the deductive
Western cultural thinking derived from Euclid’s Elements and Aristotle’s logic,
variation can support another kind of inductive reasoning to discern invariance,
which does not rely on logic to refer to the type of divalent but rather on extensive
use of the idea of variability as the initial form of expression. This serves as a bridge
or a schema for relational thinking to transition from arithmetic to algebra, which
indicates the process of generalization: a new logic for algebraic development using
the idea of variability (Sun 2016).

Based on this perspective, it is easy to note the difference when we compare
Chinese and Western curricula (Sun et al. 2013). For example, different task design
features for addition and subtraction are found in Chinese versus Portuguese
textbooks, featuring invariant versus variant concept/solution methods embedded in
their examples. In Chinese textbooks, addition and subtraction are almost always
connected using the OPMC transformation principle rather than separated into
different chapters as in a Portuguese textbook. Although Chinese textbook authors
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appear to use multiple concepts for every example, the underlying invariant concept
is about part-part-whole relations and the invariant knowledge is about relations
between numbers. In contrast, the addition examples in the Portuguese textbook use
multiple underlying concepts, such as counting, combining, and adding. The sub-
traction examples also use multiple concepts such as subtracting, comparing, and
identifying inverse operations, but do not connect these simultaneously to addi-
tional concepts.

Although Chinese textbook authors use multiple solution methods in every
example, the particular methods in the Portuguese textbook that depend on counting
and doubling are rarely introduced. Only one specific solution method, “make 10,”
is explicitly addressed among all the addition/subtraction examples in the first six
chapters (Sun et al. 2013). In contrast, the additional examples in the Portuguese
textbook suggest multiple solution methods, such as “doubles,” “doubles plus 1,”
“compensation,” (e.g., 6 +8 =7+ 7 =14), and “reference number” (e.g.,
6+7=5+1+5+2=10+ 3 =13). The subtraction examples use multiple
solution methods such as “counting back,” “tables for addition to subtraction,” and
“identifying the inverse operation of subtraction as addition.” Thus the learner
might get a temporary sense of these methods from being offered a variety of
suitable examples without getting an overall understanding of the whole additive
relation. The underlying Portuguese design principle is not made explicit, but we
can infer that it is about learning “one thing at a time” and is hence more frag-
mented and less dependent on laying down basic foundational principles for future
work (Sun et al. 2013).

36.6 The “Indigenous Principles” in Mathematics: Spiral
Variation

In addition to the Chinese philosophy and language conductive to algebraic
thinking mentioned above (Sun 2016), it is not surprising to note that the Two
Basics is not only regarded as the explicit principle of local curriculum design (Sun
et al. 2013) but also the central aspect of the unified teaching framework of the
Ministry of Education (1963, 2001). The Two Basics, i.e., basic knowledge and
basic skills, is a Chinese term stressing the basic facts, basic concept, basic prin-
ciples, invariant aspects behind the variant—invariant (from concreteness to abstract
logic) idea or inductive, algebraic thinking mentioned above. They are described as
“indigenous” principles for designing educational tasks (Zhang 2006). However,
some research indicates that variation plays a more important role in the Chinese
curriculum. For example, as Marton (2008) argued:

Chinese students do very well when compared to students from other cultures. Teachers
spend much more time on planning and reflecting than teachers in other countries, and they
develop their professional capabilities by the teaching, in which patterns of variation and
invariance, necessary for learning (discerning) certain things, are usually brought about by
juxtaposing problems and examples, such as illustrations that have certain things in
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common while resembling each other in other respects. By such careful composition, the
learner’s attention is drawn to certain critical features ... instead of just going through
problems that are supposed to be examples of the same method of solution. ... [There] is a
very powerful pedagogical tradition in the Chinese culture. (p. 1)

In fact, the statement above is consistent with the two most repeated local terms in
the Chinese mathematical pedagogy, the Two Basics and “variation teaching” (53
#1%7), which indicates that, on one hand, the invariant aspect should be stressed for
curriculum development and, on the other, the variation aspect should be stressed for
instruction as its tool. They indicate the original local notions of teaching practice,
stressing the invariant and variant elements, respectively, which may be related to
the categorization approach of Chinese language, “grasping ways beyond cate-
gories” (vifa tongli, L1 T828) and “categorizing to unite categories” (yilei xiang-
cong, L) XAMELE), discussed above. Here, a distinct instructional feature of the
problems is to develop the ability to identify the category to which a problem (IRZE
belongs and to discern the different categories (J33), in other words, to discern the
invariant from the variant elements of different problems and recognize the category
each problem belongs to (Sun 2011a, 2016). The process of discerning the invariant
from the variant elements can provide the chance to generalize the common feature
and see the deep structure behind different problems, which is needed in the process
of algebraization (Mason 1996, 2011). Obviously, both Two Basics in the traditional
Chinese curriculum and instruction and the model of the spiral variation focus on the
variant-invariant (from concreteness to abstract logic) idea. The Two Basics stress
the aspect of knowing the invariant aspect: the cognitive product. The model of
spiral variation stresses the aspect of the cognitive tool: the variation process. To
elucidate the “hidden” principles of task design, we use spiral variation to illustrate
the structural aspects, emphasizing the core (“month” is the central idea for month
naming in Chinese) and line variation (the naming stresses the expression of order in
a linear way). This directly reflects the meta-rule of grouping by category (LIJA&
¥8) of the Chinese language and philosophy (Sun 2016). In our past and present
research, we follow previous studies (e.g., Gu et al. 2004; Marton 2008; Sun 2007)
in seeking a theoretical model for designing a mathematical curriculum based on
China’s local language (Marton et al. 2010), philosophy, and practice. We thus
propose the spiral variation curriculum model: an invariant, relation-oriented model
based on the practice of variation (Fig. 36.1).

The spiral variation theory of learning emphasizes perception of the underlying
invariant as a necessary condition for learners to be able to discern the old aspects
of an object of algebra learning. Thus, spiral variation theory spells out the con-
ditions of inductive learning and explains algebra learning failures in a specific
way: When learners do not learn what was intended, they have not discerned the
necessary invariant aspects. So, the very core idea of spiral variation theory is that
perception of the underlying invariant aspects is a necessary condition of algebra
learning: What aspects we attend to or discern are of decisive significance for how
we understand or experience the object of algebra learning. Algebra learning cannot
happen without the learner having perceived the underlying invariant, local term of
“Two Basics.” The spiral variation model for curriculum design denotes how a
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Intended procedure Intended
design: concept design:
Discerning the Eliciting new
invariance by concepts from
variations old ones

new
Applying
invariance to Transforming
\'.:tmu.n new concepts
situations

into old ones

Fig. 36.1 Spiral variation model for curriculum design based on Chinese practice (Sun 2016,
p. 22)

relationship-oriented model aims to achieve the “Two Basics” through systematic
problem variation. The model is situated in the context of a content-focused and an
exam-driven, textbook-centered system. It emphasizes three important aspects of
variation in task design to develop the hypothetical learning trajectory (Sun et al.
2006; Sun 2007, 2013).

1.

Variation (the vertical aspect of task design) is key to developing learning in a
new light and provides a chance to link new concepts with old ones. The issue
of variation in problem sets directly reflects the old Chinese proverb, “no
clarification, no comparison” (Y275 ELER 1R E ZE A1), rather than “consolidat-
ing one topic or skill before moving on to another,” and highlights invariance
through variation (22 h& I %) and the application of invariance to variant
situations (LA EEEEE). It also reflects “grasping ways beyond categories”
and “categorizing to unite categories,” namely, the dynamic categorization
approach above.

. Emphasizing of the underlying invariance (a lesson’s key points [E /&, difficult

points [MEFS], and critical points [R5 5] as the central aspects of Chinese
lesson plans (Yang and Ricks 2012); “key” pieces or “concept knots” as the
central aspect of Chinese knowledge organization (Ma 1999); “Two Basics” as
the central aspect of the Chinese curriculum goal) is necessary condition for
developing algebra learning (making learning stable and coherent).

. The horizontal, vertical, and central aspects combine to form a spiral structure (a

similar principle in physics states that spiral movement can be decomposed into
horizontal, vertical, and centripetal movements).

Many international research studies are conducted in the Western deductive

tradition based on a geometric perspective. During the past decades, the missing
paradigm from algebraic tradition has rarely been explored. The rationale for the
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model to articulate the framework is more aligned to the cultural roots of algebra. In
addition, it is in line with the argument that the variation theory of learning
emphasizes variation as a necessary condition for learners to be able to discern new
aspects of an object of learning and how variation can be used to enhance students’
learning, evidence of which been reported (e.g., Huang and Yeping 2017; Watson
and Mason 2006). This framework enriches the specific perspective from algebra
development. It could be helpful to reconsider the significance of algebra devel-
opment through the widespread daily practice of variation (Sun 2011a, b; Sun et al.
2007), its curriculum significance (Sun et al. 2006), its significance for the reform of
the Chinese curriculum (Sun 2016), and its relationship to the cultural background
of Chinese mathematical education (Sun 2011b). It has also been piloted with
efficient results in non-mainland China as a proposed practical design framework
for curriculum development (Sun 2007, 2016; Wong et al. 2009). The explicit
discussion on the curriculum framework of design and variation practice in task
design in China for development of algebraic thinking could be helpful in reflecting
China’s own hidden tradition. For example, the current reform in China that
completely follows the Western strand model may not be wise for development of
the algebraic thinking (Ma 2013; Sun 2016). Due to space limitations, we will not
elaborate further.

36.7 Application in Italy and Hong Kong:
Transposition of Problems with Variation
in Italy and in Hong Kong

Bartolini Bussi et al. (2013) reported two cases of transposition of problems with
variation in Italy and Hong Kong. To try to find “cues” in the problem text and link
addition to subtraction, the system of the nine problems in Table 36.1 has been used
as a prompt in teacher education and development and tested by practicing teachers
in several classrooms from second grade onwards to foster this approach to alge-
braic reasoning as early as possible. Teacher-researchers who collaborated in the
pilot study did not implement the same Chinese task but redesigned it to tailor it to
the Italian tradition (see Table 36.1) and to their individual teaching styles and
belief systems.

This is a system of nine problems involving addition and subtraction where the
organization in rows refers to the already mentioned combination, change, or
comparison categorization and the organization in columns refers to the same
arithmetic operation (either addition or subtraction; see MPOS above). In each row
there is a problem (in the shaded cell) and two variations (see OPMC above). The
“routine” activities of varying the conditions above play the role of concept
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Table 36.1 A summary system of problems with variation in second grade from Bartolini Bussi

et al. (2013, p. 558)

finding relationships.

First solve the nine problems below. Then explain why they have been arranged in rows and columns in this way,

(1) In the river there are 45 white
ducks and 30 black ducks. Altogether,
how many ducks are there?

(1) In the river there is a group of
ducks. 30 ducks swim away. 45 ducks
are still there. How many ducks were
in the group at the beginning?

(1) In the river there are 30 black
ducks. There are 15 more white ducks
than black ducks. (There are 15 fewer
black ducks than white ducks.) How
many white ducks are there?

(2) In the river there are white ducks
and black ducks. Altogether there are
75 ducks. 45 are white ducks. How
many black ducks are there?

(2) In the river there are 75 ducks.
Some ducks swim away. There are
still 45 ducks. How many ducks
swam away?

(2) In the river there are 30 black
ducks and 45 white ducks. How many
more white ducks are there than black
ducks? (How many fewer black ducks
are there than white ducks?)

(3) In the river there are white ducks
and black ducks. Altogether there are
75 ducks. 30 are black ducks. How
many white ducks are there?

[ R T—

(3) In the river there are 75 ducks. 30
ducks swim away. How many ducks
are still there?

—_————

(3) In the river there are 45 white
ducks. There are 15 fewer black
ducks than white ducks. (There are 15
more white ducks than black ducks.)
How many black ducks are there?

connections that provide a platform to support analyzing relationships and noticing

structure. Therefore, they can support the meta-level algebra development.

In 2006, an experiment was carried out and tested in three schools on a treatment
group where a textbook was developed that heavily emphasized relationships with
problem variations in the division of fractions. In the control group in another three
schools, the traditional Hong Kong textbook was used, which was heavily influ-
enced by English principles and placed only light emphasis on relationships. The
experimental treatment group achieved a better conceptual understanding of frac-
tions, division, and multiplication compared with the control group (Sun 2007).
Similar experiments in other content areas (ratio, volume, and columns) confirmed
these findings (e.g., Wong et al. 2009).
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36.8 Conclusion

Obviously, many international studies are conducted from a Western perspective
under the influence of Western deductive tradition dominated by the geometric
perspective (Spagnolo and Di Paola 2010). The rationale of algebraic education is
mainly transferred from the Western system. The rationale of algebraic education
from the Eastern system has rarely been explored. In this paper, I attempt to present
the algebraic perspective derived from the inductive tradition dominant in China in
the hope of understanding the Chinese curriculum with its instructions on the Two
Basics and its unspoken principle, spiral variation, derived from the local philos-
ophy and language (Sun 2016). These have been neglected to date. In the light of
cultural aspects of mathematical education, such as ethnomathematics (D’ Ambrosio
1992) and mathematical enculturation (Bishop 1988), this study can deepen our
understanding of the Chinese tradition of mathematical education and shed light on
research into algebra education. Specially, a Chinese rationale of mathematical
education based on its own historical tradition rather than the Western system could
be far more meaningful for both local and non-local curriculum and instruction
development. This rationale could be useful for task design in developing algebra
curricula in ways that avoid missing the chance to develop the concept of gener-
alization at the arithmetic stage using problem variation.
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