Chapter 34
Enactive Metaphorising in the Learning
of Mathematics

Jorge Soto-Andrade

Abstract We argue that an approach to the learning of mathematics based on
enactive (bodily acted out) metaphorising may significantly help in alleviating the
cognitive abuse millions of children worldwide suffer when exposed to mathe-
matics. We present illustrative examples of enactive metaphoric approaches in the
context of problem posing and solving in mathematics education, involving
geometry and randomness, two critical subjects in school mathematics. Our
examples show to what extent the way a mathematical situation is metaphorised and
enacted by the learners shapes their emerging ideas and insights and how this may
help to bridge the gap between the ‘mathematically gifted” and those apparently not
so gifted or mathematically inclined. Our experimental background includes a
broad spectrum of prospective secondary math teachers, in-service primary teachers
and their pupils, first-year university students majoring in social sciences and
humanities and university students majoring in mathematics.
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34.1 Introduction

In our view, the most critical issue in mathematics education is the fact that millions
of schoolchildren worldwide are exposed to mathematics in a way that turns out to
be an inescapable torture for most of them. This phenomenon has been rather
recently acknowledged as ‘cognitive abuse’ or ‘cognitive bullying’ in the English
literature (Johnston-Wilder and Lee 2010; Watson 2008) and has been described as
a practice that is ‘at best marginally productive and at worst emotionally damaging’
(Watson 2008, p. 165).
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Indeed a consequence of this abuse, besides stress, frustration, math anxiety and
phobia, to begin with, is that many children and adolescents experience mathe-
matics as a senseless ritual and remain mathematically maimed and crippled for the
rest of their lives. Illusory understanding and amnesia follow, as pointed out by
Shulman (1999). The ‘fatal pedagogical error’, denounced by theologian Tillich
(cited by Weissglass 1979) as ‘throw[ing] answers like stones at the heads of those
who have not yet asked the questions’ (p. 59), is ubiquitous and recurrent. The same
point is made by Freire in his criticism of a pedagogy based on answers to
non-existent questions (Freire and Faundez 2014). Moreover, many teachers
unwittingly, or unwillingly under systemic pressure, are functional to this often
unseen and unacknowledged situation. Hall’s (1959) famous saying fully applies
here: ‘Culture hides more than it reveals, and strangely enough what it hides, it
hides most effectively from its own participants’ (p. 39).

From our perspective, there is an urgent need to democratize, even to humanize,
the learning of mathematics (Cantoral 2013; Freire 1970; Gattegno 1971), and we
hypothesise that an approach that takes advantage of metaphorising and acting out
—natural cognitive mechanisms evolved in our species, but thwarted by traditional
teaching—may significantly help in alleviating the current cognitive abuse and its
sequels.

In this paper then, we intend to investigate from an enactivistic perspective to
which extent the way a mathematical situation is metaphorised and enacted (i.e.,
acted out) by the learners shapes the ideas and insights that may emerge in them.
Also, how metaphorising and enacting may help to bridge the gap between the
‘mathematically gifted’ and those apparently not so gifted or mathematically
inclined and facilitate sense making of mathematics for the latter.

After recalling below the basics of (conceptual) metaphorising and enactivism in
cognitive science, and arguing about their implications for mathematics education,
we discuss some down-to-earth illustrative classroom examples of what we call
enactive metaphorising in the context of mathematical problem posing and problem
solving involving geometry and randomness, two especially critical subjects in
contemporary school mathematics and beyond.

34.2 Theoretical Background and Research Questions

34.2.1 Metaphorising in Mathematical Education

Increasing awareness has been emerging during the last decades in the mathematics
education community that metaphors are not just rhetorical devices but powerful
cognitive tools that help us in building or grasping new concepts, as well as in
solving problems in an efficient and friendly way (Chiu 2000; Diaz-Rojas and
Soto-Andrade 2015; English 1997; Lakoff and Nufiez 2000; Libedinsky and
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Soto-Andrade 2015; Sfard 2008, 2009; Soto-Andrade 2006, 2007, 2015; and many
others).1

In a broader perspective, increasing agreement has arisen in cognitive science
that metaphorising (looking at something and seeing something else) serves as the
often unknowing foundation for human thought (Gibbs 2008). As suggested by
Johnson and Lakoff (2003), our ordinary conceptual system, in terms of which we
think and act, is fundamentally metaphorical in nature. Lakoff and Nunez (2000)
highlight the intensive use we make of conceptual metaphors that appear—
metaphorically—as inference-preserving mappings from a more concrete ‘source
domain’ into a more abstract ‘target domain’, enabling us to fathom the latter in
terms of the former.

Elementary examples of (conceptual) metaphors in mathematics education are
the two foremost metaphors for multiplication, to wit, the ‘area metaphor’ and the
‘grafting metaphor’ (Soto-Andrade 2014), illustrated in Fig. 34.1 for the case of 2
times 3 and 3 times 2.

Notice that the area metaphor allows us to see commutativity of multiplication as
invariance of area under rotation. We ‘see’ that 2 x 3 = 3 x 2, without counting
and knowing that it is 6. On the contrary, the grafting (or concatenated branching)
metaphor does not allow us to ‘see’ at a glance the commutativity of multiplication.
As realised by Lakoff and Nufez (Nuilez, personal communication, December
2012) this fact suggests that multiplication is not really commutative. In more
precise terms, there might be ‘multiplications’, inspired by the grafting metaphor,
that are not commutative! Indeed, think of composition of permutations, of matrices
and of operators. We have here then two different metaphors for the ‘same’
mathematical object, each with a different scope. The first one, the area metaphor,
which is quite close to East Asian crossing metaphor for multiplication, where you
count the number of crossings of, in this case, 2 lines and 3 lines, is quite friendly
and lets us see immediately the commutativity of multiplication. The second one
(multiplication is concatenation), points in a different direction, does not exhibit
commutativity (Mac Lane 1998) as an obvious property and is in fact more pro-
found: It reshapes our understanding of multiplication and it unfolds into category
theory in contemporary mathematics. A case of a felicitous metaphor opening up
the way to deep and far-reaching generalisations of a seemingly innocent ele-
mentary concept (see Manin 2007)!

Notice that, as argued by Sfard (1997), metaphorising appears here as a circular
autopoietic process (Maturana and Varela 1980) rather than as a unidirectional
mapping. So a more appropriate metaphor than the arrow metaphor to describe
metaphorising would be the ouroboros (the snake eating its own tail), an out-
standing metaphor of circularity, self-reference and organisational closure in living
systems (see Soto-Andrade et al. 2011). The ouroboros indeed plays an important
role in Maturana and Varela’s theory of autopoietic systems (Maturana and Varela
1980), appearing even on the cover of the first Spanish edition of their work

'For a recent survey of the role of metaphor in mathematics education, see Soto-Andrade (2014).
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Fig. 34.1 Area metaphor (left) and grafting metaphor (right) for multiplication

(Maturana and Varela 1973; see also Soto-Andrade et al. 2011, Fig. 34.1), and in
cognition as enaction (Varela et al. 1991). Recall that the latter was also
metaphorised by Varela by the famous Drawing Hands lithograph by Escher, where
each hand draws the other into existence.

Our approach to the learning of mathematics emphasises the poietic (from the
Greek poiesis = creation, production) role of metaphorising, which brings concepts
into existence. For instance, we bring the concept of probability into existence
when, while studying a symmetric random walk on the integers, we look at the
walker (a frog, say) and we see it splitting into two equal halves that go right and
left instead of jumping equally likely right or left (Soto-Andrade 2007, 2014, 2015).
This ‘metaphoric sleight of hand’ that turns a random process into a deterministic
one allows us to reduce probabilistic calculations to deterministic ones where we
just need to keep track of the walker’s splitting into pieces: The probability of
finding the walker at a given location after n jumps is just the portion of the walker
landing there after n splittings.

We remark that a different metaphoric way of bringing mathematical notions
into existence, called reification by Sfard (2008), where a process is seen as an
object, is exemplified by the case of fractions: Splitting a whole into 3 equal parts
and keeping 2 of them becomes the number 2/3. Of course, splitting the whole into
6 equal parts and keeping 4 is a different (but equivalent) process whose reification
is the same number, 4/6 = 2/3. Saying that 4/6 and 2/3 are just equivalent fractions
instead of equal fractions is here a sign of incomplete reification.

Although in the literature metaphor and representation are often used as syn-
onyms, we draw here a distinction: we metaphorise to construct concepts (as in the
above example) and we represent to explain concepts. Typically, metaphors are
arrows going upwards, from a down-to-earth domain to a more abstract one, and
representations are arrows going downwards, i.e., the other way around. In this
connection, it is pertinent to recall that in the German school of didactics of
mathematics, originally mostly concerned with primary mathematics education and
going back to Pestalozzi (Herbart 1804; vom Hofe 1995), representation and
metaphor were quite present: as Darstellung—representation aiming at explaining
something to others—and Vorstellung—a personal way to figure out or
fathom something, operationally equivalent to metaphor (Soto-Andrade and
Reyes-Santander 2011). So metaphorising was already recognised and appreciated
at the beginning of the 19th century in German didactics of mathematics, well
before its irruption from cognitive psychology and linguistics into mathematics
education (Lakoff and Nunez 2000).
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The ubiquity of metaphor in mathematics education should not be underesti-
mated: Besides bringing into existence mathematical concepts or objects or helping
learners to fathom them, unconscious metaphorising often dramatically shapes the
way teachers teach, for instance. A foremost example is afforded by the metaphor
‘teaching is transmitting knowledge’. Indeed, when confronted with it, many
teachers reply: This is not a metaphor, teaching is transmitting knowledge! What
else could it be? Unperceived here is the ‘acquisition metaphor’ (Sfard 2009;
Soto-Andrade 2007) for learning, dominant in mathematics education, that sees
learning as acquiring an accumulated commodity. The alternative, complementary
metaphor is the ‘Participation Metaphor’: learning as participation (Sfard 2009).
This dichotomy is well expressed in Plutarch’s metaphor: ‘A mind is a fire to be
kindled, not a vessel to be filled” (Sfard 2009, p. 41).

Paraphrasing Bachelard (1938), who advocated epistemological vigilance, we
suggest nowadays to practise metaphorical vigilance, i.e., the art of noticing (Mason
2002) our unconscious or implicit metaphors, that shape our way of interacting with
the world and particularly our approach to teaching and learning.

Last but not least, metaphorising plays also a key epistemological role: We have
claimed elsewhere (Diaz-Rojas and Soto-Andrade 2015) that—metaphorically—a
theory is in fact just the ‘unfolding’ of a metaphor (the involved unfolding process,
however, may be laborious and technical).

A paradigmatic example is the ‘tree of life’ metaphor in Darwin’s theory of
evolution. Also, Brousseau’s theory of didactical situations (Brousseau and
Warfield 2014) may be seen as an unfolding of the ‘emergence metaphor’ that sees
mathematical concepts emerging in a situation instead of being parachuted from
Olympus as in traditional and abusive teaching. The ‘grafting’ metaphor above for
multiplication (Soto-Andrade 2014) unfolds into category theory in mathematics
Mac Lane (1998). We use in fact the metaphorical approach as a meta-theory to
describe other theories relevant to us in terms of their generating metaphors,
something more helpful to fathoming how they arise than just describing them a
posteriori. We exemplify this below in the case of Varela’s enaction.

34.2.2 Enactivism in Mathematics Education

An unfolding metaphor for enaction is Antonio Machado’s famous poem (Machado
1988, p. 142; Thompson 2007; Malkemus 2012): ‘Caminante, son tus huellas el
camino, y nada més; caminante, no hay camino, se hace camino al andar’ [ Wanderer,
your footsteps are the path, nothing else; there is no path, you lay down a path in
walking.’], cited by Varela (1987, p. 63) himself when he introduced what he called
the enactive approach in cognitive science (Varela et al. 1991). In his own words:
“The world is not something that is given to us but something we engage in by moving,
touching, breathing, and eating. This is what I call cognition as enaction since enaction
connotes this bringing forth by concrete handling’ (Varela 1999, p. 8).
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Notice en passant to what extent the ‘laying a path in walking” metaphor is
transversal to the traditional one for learning as following a well-marked path given
in advance.

Before proceeding any further, however, to avoid confusion given the somewhat
polysemic current status of the terms enactivism, enactivist, enaction, enact, en-
acting and enactive, we will adhere to the following usage.

The now prevalent terms enactivism and enactivist will always refer to Varela’s
anti-representationalist ‘enactive program’ (Varela et al. 1991, p. xx), which sees
cognition as embodied action, more precisely, cognition as enaction, as metapho-
rised by Machado’s verse. Key aspects of enaction are: perceptually guided action,
embodiment and structural coupling through recurrent sensorimotor patterns
(Varela et al. 1991; Reid and Mgombelo 2015). In an aphorism: ‘All doing is
knowing, and all knowing is doing’ (Maturana and Varela 1992, p. 26). We will
speak then of an ‘enactivist approach’ to problem solving or to mathematics edu-
cation. We will also use the term ‘enaction’ exclusively in Varela’s sense (Maturana
and Varela 1992).

On the other hand, unless otherwise explicitly stated, ‘enact’, ‘enacting’ and
‘enactive’ are to be understood in the sense of everyday language and also in the
sense of Dewey (1997) and Bruner (1966), i.e., as synonyms of ‘acting out’ or
‘acted out’, in an embodied way. So ‘enacting a metaphor’ just means ‘to act it out’,
with your body (see Example 34.4.1). This fully coincides with the use of ‘enactive’
in Gallagher and Lindgren (2015), where they refer to ‘enactive metaphors’
(metaphors in action, that we act out bodily) as opposed to what they call ‘sitting
metaphors’. We use ‘enactive metaphorising’ below in this sense.

As mentioned above, in mathematics education the term enaction may be traced
back to Bruner (1966), who was following the traces of Dewey’s (1997) ‘learning
by doing’. Bruner’s enaction, which means essentially acting out or doing, is
however far less radical than Varela’s, in that it does not challenge the notion of a
given reality ‘out there’ that we perceive or represent more or less successfully.
Dewey, however, already emphasised the role of sensorimotor coordination in
perception, acknowledging that movement is primary and sensation is secondary
(Dewey 1896; Gallagher and Lindgren 2015).

In particular, the enactivist notions of structural determinism and structural
coupling (Maturana and Varela 1992; Varela 1999; Varela et al. 1991) have pro-
vided new insights on learning, problem solving and problem-posing processes:
Learning is not determined by a didactical environment but arises from the inter-
action of the learner’s structure and environment, which plays at most the role of a
‘trigger’. Traditionally, however, problem solving entails problems given before-
hand, lying ‘out there’ in the world, waiting to be solved, independently of us as
cognitive agents. In the enactivist perspective, because of our structural coupling
with the world (Varela 1996; Varela et al. 1991), we bring forth emergent prob-
lematic situations instead. This is what Varela calls problem posing. This diverges
from the usual gas fitter metaphor for problem solving, where solvers look into their
toolboxes of predefined strategies and choose the appropriate one for solving the
problem at hand (Soto-Andrade 2007; Proulx 2008). In the enactivist perspective,
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mathematical strategies emerge continually in the interaction of solver and prob-
lematic situation (Proulx 2013; Thom et al. 2009).

At present, an enactivist didactics of mathematics unfolds where the teacher is an
enactivist practitioner acting in situation and learning appears as an emergent,
situated and embodied process (Brown 2015; Brown and Coles 2012; Proulx 2008,
2013; Proulx and Simmt 2013). For a recent survey of enactivist theories, see
Goodchild (2014).

According to Varela, we are always ‘enacting’ a world, most of the time
unconsciously. So we cannot choose to enact or not to enact (in Varela’s sense);
enaction is just the way we cognise as living beings. We may nevertheless entertain
the ‘representationalist illusion’ (a privilege of humankind!) that we are perceiving
and representing an objective reality ‘out there’. Also, we can choose to enact (in
the everyday sense of the word of bodily acting out) a given metaphor or situation
or not, for instance. Paradoxically, we are definitely able to teach in a way that
ignores enaction (in Varela’s sense) and does not allow for enacting (as bodily
acting out): a non-enactivist stance that paves the way for cognitive bullying. Our
enactivist approach to education, distilled in the ‘lying down a path in walking’
metaphor for cognition and learning, leads us on the contrary to foster metaphor
enacting among the learners.

34.2.3 Research Questions

Along the lines of our stated research aim in the Introduction, we intend to address
here the following research questions:

— When and how does metaphorising arise from learners in a problem-solving
situation, particularly idiosyncratic metaphorising?

— How does metaphorising correlate with the emergence of new ideas or insights
to tackle challenging situations?

— Is metaphorising enactive most of the time? How relevant for learning are
action-based enactive metaphors?

— What is the influence of learners’ non-metaphoric enacting in mathematical
problem-solving situations?

34.3 Methodology

Our methodology adheres to the enactivist perspective, where we focus on the
learners doing and knowledge is not metaphorised—by the researcher—as an object
to be captured or held by a learner (Sfard 2008, 2009).
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According to this and our research objectives, we suggest and propose various
challenging situations to the learners and observe how they tackle them. We pay
attention to the whole spectrum of emerging strategies, to whether they metaphorise
or enact and how the emergence and the quality of their ideas and insights correlate
with their metaphorising and enacting. We do not focus on trying to measure their
knowledge over time but on monitoring their being mathematical as a means to
tackle a challenge co-emergent with their doing.

Our experimental methodology relies on qualitative approaches and field
observation, especially multiple case study (Yin 2003); participant observation
techniques and ethnographic methods (Spradley 1980; Brewer and Firmin 2006).
Our experimental background includes a broad spectrum of learners (seven cohorts)
with whom we carried out didactical experiences based on a metaphor-intensive
enactivist approach in 2015 and 2016 that included the following:

A. Fifty students in a one-semester first-year mathematics course in the social
sciences and humanities option of the Baccalaureate Programme of the
University of Chile (two cohorts: 2015 and 2016).

B. Thirty-five prospective secondary school physics and mathematics teachers in a
one-semester course in probability and statistics at the same university (two
cohorts: 2015 and 2016).

C. Twenty (5 graduate and 15 undergraduate) students majoring in mathematics in
an optional course on random walks at the University of Chile (2015).

D. Fifty participants in a two-session workshop, each session consisting of 1.5 h,
on enactive metaphoric approaches to mathematical problem solving, held at
the annual meeting of the Chilean Mathematics Education Society, in
Valparaiso (2016). Participants included in-service secondary and primary
school teachers, prospective secondary teachers, post-graduate students in
mathematics education, researchers in mathematics education and some
undergraduate and graduate math students.

E. Twenty in-service primary school teachers engaged in a 15-month professional
development programme (mathematics option) at the University of Chile at
Santiago (2016).

These cohorts were chosen because they constituted a rather broad spectrum
of learners with whom our overarching approach could be tested while performing
our usual teaching duties at the university and facilitating invited workshops
elsewhere.

Regarding data recollection, learners, working most of the time in random
groups of three to four, were observed by the teacher or facilitator and an assistant,
the latter assuming the role of participant observer or ethnographer. Field notes and
transcripts of the generated dynamics were taken (especially of critical moments of
the work sessions, such as emergence of metaphors, horizontal confrontations
between the students, and didactic tension build up), snapshots of their written
output (on paper or whiteboard) in problem-solving activities were taken,
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short videos of their enacting moments were recorded. We recall that all these data
are also acts of interpretation, where a researcher learns in co-emergence with a
research situation (Reid 1996).

Regarding data analysis, categories involved in the initial phase of the obser-
vation included:

— Learners’ participation and engagement (level estimates).

— Questions and answers (from teacher and learners, frequency, relative weight,
spaces for pondering).

— Horizontal (peer) interaction (level estimate).

— Metaphors, especially idiosyncratic ones (emergence, spontaneously or under
prompting, variety).

— Arising of gestural language of learners and teacher.

— Expression and explicit acknowledgement of affective reactions from the
learners.

— Enacting (acting out) of metaphors and situations by the learners.

Recall that in an enactivist methodological framework the initial categorical grid
evolves according to the flow of activity in the classroom and the reactions of
learners and teachers in an autopoietic way (Reid 1996; Maheux and Proulx 2015).

To address our research objective we kept track of ideas and actions emerging
after either spontaneous or prompted metaphorising (see examples below).

From data analysis, we compared cognitive and affective reactions of the dif-
ferent cohorts and inferred the profile and strength of the prevailing didactical
contract (Brousseau et al. 2014), usually installed during secondary math education
for most learners.

Moreover, learning in Cohorts A, B and E was assessed through monthly tests
(where students had to solve contextual problems in a limited time), compulsory
and optional exercises and challenges as homework (Cohorts A, B, C and E).
Process assessment was also done by observing their acting and behaviour and
recording their production during individual and group work sessions and lectures
(all cohorts).

34.4 Illustrative Examples of Enactive Metaphorising

We report and discuss below two types of examples of enactive metaphorising in
challenging mathematical situations that we experimented with in the above
cohorts.
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34.4.1 The Sum of the Exterior Angles of a Polygon
and the Inner Acute Angles of a Star
(Cohorts D and E)

34.4.1.1 Problem: Everybody Knows About the Inner Angles
of a Triangle and Their Sum. But What About the Exterior
Angles? And Their Sum? Also What About the Same
for a General Polygon?

As suggested by our enactivist perspective, we prompt the learners to notice and to
voice their reactions, cognitive and affective, to this 45-min challenge. We intend in
this way to facilitate a circular interaction between the problem and the learners that
could trigger a reshaping of the challenge. Most of them, however, have trouble in
acknowledging a negative reaction. After renewed prompting some dare to ask:
Why should we be interested in the exterior angles of a polygon and their sum? A
few (in-service and prospective teachers alike) complain about the prescriptive way
this sort of geometry is usually taught. After a while, most of them agree that one
needs to re-signify exterior angles: What are they good for?

After some polling, we found that a majority of learners (students as well as
teachers) prefer inner angles to exterior angles and wonder about the meaning,
usefulness or relevance of exterior angles.

We observed that to tackle this problem almost every in-service and prospective
secondary mathematics school teacher in our country calculates first the sum of the
inner angles (usually by triangulating), finding that it depends on the number n of
sides of the polygon, as (n — 2) times 180°. Then, replacing each interior angle by
180° minus the corresponding exterior angle and calculating, they wind up dis-
covering that the sum of all exterior angles of a (convex) polygon is 360°, inde-
pendently of its number of sides! This is surprising for most of them! At this point
some students (more often girls than boys, in our courses) ask: Isn’t there a simpler
way to get this? Others feel frustrated because they have ‘calculated blindly’ and
without insight.

This is the usual way in which teachers and students ‘get into’ the proposed task
(Proulx 2013). Unfortunately, this is the only approach found in almost every
textbook, where the mathematical content ‘exterior angles of a polygon’ is then
checked as having been covered.

Our metaphoric approach suggests, however, prompting the students to
metaphorise a polygon first (not just recite its definition) to help them to get into the
problem in more transparent ways. Their metaphorising will depend, of course, on
their previous history and experiences. We observed the rather slow emergence of
two main competing metaphors:

— A polygon is an enclosure between crossing sticks (most popular among
in-service primary teachers).
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— A polygon is a closed path made out of straight segments. Interestingly, some
learners say that a polygon is a closed plane figure, while drawing a circuit in
the air with their index!

Notice that the first metaphor carries the viewpoint of the eagle (who sees from
above) and the second one, the viewpoint of the ant (who crawls down to earth).
A high-speed version of the second one is quite familiar to children nowadays in
video games.

Among primary school teachers (Cohorts D and E), enacting the first metaphor
triggers the idea of manipulating the sticks, translating them in convenient ways, so
as to make clearly visible the exterior angles first, and then shifting them parallel to
themselves to shrink the polygon to a minimum, preserving its shape. So in fact
they zoom out the polygon! In this way they see that the sum of all exterior angles is
clearly 360° instead of getting this value by blind calculation.

Enacting the second metaphor also allows the learners to see that the sum of
exterior angles is a whole turn, when ‘laying down a polygonal path in walking’.

Indeed, we observed that the in-service primary teachers in Cohort E, working in
groups, had one of them (who had trouble seeing in this way that the sum of
exterior angles was a whole turn) ‘lay down a polygon in walking’, following the
instructions of his peers: Walk 5 steps, stop, turn 45° to your left, walk 7 steps, and
so on. In this way they realized that exterior angles rather than inner angles were the
necessary and convenient data to inflect or bend the path of the walker as desired.
Addition of all exterior angles occurred when the walker made a complete circuit
and came back to his starting point with his nose pointing in the same initial
direction. Learners also noticed that this metaphor suggests a natural generalisation,
involving a signed sum, for the case of a non-convex polygon!

Recently a third metaphor was suggested by one of our former mathematics
students:

— A polygon is a wheel of the Flintstones’ car.

Learners realised quickly that when the Flintstones’ car runs, its wheels turn, and
when they complete a whole turn, their exterior angles (arising as the successive
angles between the wheel’s sides and the ground) add up to a whole turn!

We see in this example that metaphorising and enacting can make a dramatic
difference in understanding that is within the reach of ‘everybody’, as opposed to
the ‘blind’ unappealing calculation found everywhere. Our appraisal of inner and
exterior angles also changes: Exterior angles appear now to be more natural and
friendlier than inner angles: a dissident view indeed! In particular, learners realised
that it is smarter to figure out first the sum of all exterior angles of the polygon and
then deduce the value of the sum of the inner angles, which is contrary to the usual
procedure and a valuable idea for the next challenge.
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34.4.1.2 The Five-Pointed Japanese Star Problem, The Enactive Way

A typical challenge in Hosomizu’s little red book (Hosomizu 2008) is to calculate
the sum of the inner acute angles of a five-pointed star (eventually non-regular).
Several clever approaches are discussed there, although none of them are enactive
or metaphoric. We posed this problem to Cohorts D and E. When posed from
scratch, before Problem 34.4.1.1, everybody tackled it in a geometric-algebraic
way: Some learners in Cohort D even wrote down a whole system of equations,
taking advantage of the inscribed pentagon in the star. Most took the star to be
regular and computed dutifully the value of each inner acute angle. Then they
conjectured that the total sum would remain constant if the star were deformed. So
they more or less converged to the approaches illustrated in Hosomizu (2008),
although less clever on the average. Nobody thought of ‘laying down a star in
walking’ (following the circuit usually used to draw the star) to instantly see that
the sum of all exterior angles at the points of the star equals 2 whole turns and from
there get the sum of all inner acute angles (as 5 half turns minus 4 half turns = 1
half turn). Several in-service secondary teachers avowed nevertheless that they
preferred the algebraic approach that they felt more at home with.

Learners in Cohort E, who worked on this problem after having worked out
Problem 34.4.1.1, wondered for a while which closed path to walk to lay down the
star before settling for the one they use to draw the star. After learners in Cohort D
solved this problem using ‘angular yoga’, as in Hosomizu (2008), we proposed to
them Problem 34.4.1.1, which they discussed and finally solved metaphorically and
enactively. They went then back to the five-pointed star to find a friendly circuit to
walk and solve the problem. Learners in Cohorts D and E noticed that this enactive
metaphoric approach worked equally well for irregularly drawn seven-pointed stars
and more generally for stars with an odd number of points.

34.4.2 Probabilistic Enacting

34.4.2.1 Falk’s Urn and Fischbein’s Test

The following challenging question (Falk and Konold 1992; Fischbein and
Schnarch 1997) was proposed to learners in Cohorts A, B and C.

John and Mary each receive a box containing 2 black marbles and 2 white marbles.

John extracts a marble from his box and finds out that it is white. Without replacing this
marble, he extracts a second marble. Is the likelihood that this second marble is also white
smaller than, equal to or greater than the likelihood that it is black?

Mary extracts a marble from her box that she puts in her pocket without looking at it. Now
she extracts a second marble that turns out to be white. Is the likelihood that the marble in
her pocket is white smaller than, equal to or greater than the likelihood that it is black?
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Learners had no trouble with John’s drawings, but roughly 60% of learners in
Cohort A and 40% of learners in Cohorts B and C thought that the fact that Mary’s
second marble be white had no effect whatsoever on the likelihood of the first one
being black. The remaining learners thought intuitively that since the second one
was white it was more likely that it was drawn from a box with more white than
black marbles, so it was more likely that the first marble was black. Just a few
learners in Cohorts A and B had the idea of simulating many times to figure out
what would be more likely. Others (learners in Cohort C included) metaphorised
the whole process as a two-step random walk on a binary tree, or better on a grid,
and computed diligently the non-required probabilities (the question was qualitative
and couched in everyday language, not in probabilistic language). They found
correctly that the probability of the marble being black in both cases is 2/3. They
realised, however, that they did not really see why probabilities were the same and
why ‘there was no time arrow’.

Following our enactivist perspective, we prompted the students to enact (act out)
the experiment. Extracting the marbles, they ended up with two marbles by the box,
in the first case the first one being white and the second one being hidden under a
cap, in the second case, the first one being hidden and the second one being white.
They realised then that they had just extracted two marbles from the box and hidden
one of them, the other one being white!

A variant of this enactment that we suggested to the students, inspired from a
remark by M. Borovcnik (personal communication at ICME 13, July 27, 2016),
starts by grabbing a marble from the box with one hand and then another one with
the other hand, keeping both fists closed. They realise then by themselves that it is
just a matter of opening first one fist or the other and that they could have also
grabbed the two marbles simultaneously.

34.4.2.2 Drawing Balls from an Urn Without Replacement:
Metaphorising as a Random Walk and Enacting (Proposed
to Learners in Cohorts B and C)

Problem: From an urn containing 3 red balls and 5 blue balls, 5 balls are drawn
one after another at random without replacement. How likely is that the 5th ball
drawn is red?

We have discussed this problem, proposed to learners in Cohort C, in detail
elsewhere (Soto-Andrade et al. 2016) in the simpler case of the 3rd ball drawn from
a (2, 3) urn instead of a (3, 5) urn. We comment here on further experimentation
with learners in Cohort B in 2016 and new ways of enacting it (acting it out).

We observed that most students in Cohort B, when exposed to the problem in a
test, dutifully calculated the requested probability with the help of a lush possibility
tree with probabilities assigned stepwise using a hydraulic metaphor (that sees
probabilities as portions of one litre of water that drained downwards from the
‘root’ of the tree). Nevertheless most of them did not realise that the probability of a



632 J. Soto-Andrade

red ball at any drawing was always 3/8, because they did not even notice that for the
second drawing it was 21/56 = 3/8! One or two intuited that order did not matter,
but most of them were quite surprised in a subsequent stage, when working in
groups in the classroom they finally found that the probability of the nth ball drawn
being red was the same for all #n up to 8. We then prompted them to enact the
process by actually drawing marbles from a (3, 5) bag. Some were a bit reluctant to
do so. A good performing student said bluntly:

I do not see how enacting can help me to solve the problem. What else do I get from
enacting that I do not get from thinking? I just need to think about it!

Nevertheless, afterwards he gave the following intuitive argument to see that all
probabilities were the same. Keeping the first 4 drawn marbles in his closed left
hand, he said:

Now I have to choose a 5th one from the 4 marbles remaining in the bag. But it is clear that
this is equivalent to choosing one of the hidden 4 marbles in my left hand! So it amounts to
choosing 1 marble from the whole bunch of 8 marbles!

All other students put the drawn balls carefully in a line, one by one (they did not
throw them away!). This helped several of them to see the invariance of the
probability of drawing a red marble. No one put them insightfully in a circle, as an
undergraduate female student” in Cohort C did for the (2, 3) bag in 2015, but they
really appreciated the idea when told.

Now, a new enaction, suggested by M. Borovcnik (personal communication at
ICMEL13, July 27, 2016) is to grab sequentially first, five marbles from the bag, with
five hands (of three students) keeping the five fists closed, and subsequently
opening them in the same sequence, or in another one, e.g. the fifth fist first.
Eventually the grabbing could be also simultaneous! Enacting in this way all stu-
dents saw the invariance of the probability of ‘red’, not just a few clever eidetic
students.

To get a better grasp of the drawing process, learners also metaphorised it as a
2D random walk—from the source (3, 5) to the sink (0, 0) or from the source (8, 3)
to the sink (0,0)—that in turn they metaphorised as a splitting process, whose
transition probabilities they calculated with the help on a hydraulic metaphor. They
realized then that the associated (deterministic) ‘barycentric walk’ provides a
friendly metaphor for the ‘expected walk’ of the walker. They intuitively guessed
that the barycentric walk should proceed geodesically along a line whose slope
corresponds exactly to the probability of red at any drawing in the case where they
represent the initial state of the urn by (8, 3).

2Notwithstanding that Chile’s boys-girls PISA math performance gap is extreme among OECD
countries (OECD 2016, p. 198).
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34.5 Discussion and Conclusions

Motivated by an enactivist perspective, we have shown by way of illustrative
examples how metaphorising and enacting (acting out) mathematical objects,
processes and situations can make a significant difference in the ideas and insights
that may emerge from learners tackling a mathematical challenge. In the cases
considered (34.4.1 and 34.4.2) concerning geometry and probability, we observed
notably that there was a dramatic contrast between blind calculation before
metaphorising and sudden insight when metaphorising or enacting. We also saw
how different insights were triggered by different metaphors or enactings. In
Problem 34.4.1.1, for instance, we collected in all one blind calculation and three
different insights leading to the answer triggered by three different metaphors for a
polygon with different levels of enactivity (bodily engagement), the foremost one
being ‘laying down a polygon in walking’.

Very concretely, we observed that when they enact, learners have to make up
their minds: What do I do with the balls I draw from the urn? Throw them away?
Keep them in my hand or in my closed fists? Put them carefully in a row or a circle
on the table? Each way of enacting—determined primarily by the solvers’ structures
and histories—suggests various different ideas and insights that do not emerge so
easily when they just think about a problem. Our learners working on the challenges
in Cases 34.4.1 and 34.4.2 indeed discovered unforeseen mathematical relations or
facts in their bodily actions (see Abrahamson and Trninic 2015).

We nevertheless found that, surprisingly, metaphorising and enacting were quite
difficult for most of the observed learners. Persistent prompting and plenty of time
was often needed to elicit both among them. Notice that learners in Cohort A, for
instance, came straight from secondary school (where cognitive bullying prevails).
Even so, students in Cohort A and in-service primary school teachers were more
prone to metaphorise than prospective or in-service secondary school math
teachers.

Particularly, we noticed that metaphorising a polygon, for instance, was a very
unusual challenge for students, prospective and in-service teachers alike: a violation
of the prevailing didactical contract. But once they felt they were allowed to, even
prompted to, metaphors began to arise among them, shyly and slowly at first. They
came later to gradually appreciate the operational virtues of metaphorising.

In fact, we observed chains of metaphors emerging that completely transformed
a given problem (e.g., Sects. 34.4.1.1 and 34.4.2.2) and allowed learners to better
fathom what was going on. From an enactivist perspective, they were not just
reacting to a problem out there or looking for a solving strategy that had been
stocked beforehand in their personal toolkit but rather shaping and transforming the
problem, eventually because they did not like it (see Proulx 2013). Moreover,
metaphorising a mathematical object, such as a polygon, may show them the way to
guess and discover meaningful or significant properties amidst the huge set of
properties entailed by its formal definition.
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Interestingly, no more than one student out of 20 on the average tried sponta-
neously to enact (act out) an opaque problematic situation. Some prospective
teachers even voiced their disbelief regarding the usefulness of enacting, because
math problems are just a matter of thought!

Recalling the well-documented strong negative feelings of school children
towards mathematical content taught the traditional way, it seemed to us a bit
paradoxical to observe widespread ‘emotional anaesthesia’ in most of our learners,
who had trouble in acknowledging and expressing their emotional reactions,
especially negative ones, towards mathematical content. Only primary school
teachers and students in Cohort A escaped this condition to some extent. We
interpret this syndrome as a consequence of the didactic contract (Brousseau et al.
2014) associated to the prevailing cognitive abuse in our culture, where students are
expected to understand a mathematical content or not, but not to like or dislike it.
Expression of affect is then ignored and repressed.

This phenomenon seemed important to us because we observed that metapho-
risation, for instance, may be often triggered by disliking of a proposed problem:
The learner tries to metaphorise it in order to see it otherwise, wearing friendlier
attire. So in fact negative emotions may foster creativity!

We noticed a remarkable convergence of our claims and experimental findings
regarding the positive incidence of enacting in the arising of new insights in
problem-solving situations with very recent research in cognitive science (e.g.,
Glenberg 2015; Vallée-Tourangeau et al. 2016; Abrahamson and Trninic 2015).

We may conclude that metaphorising and enacting (in the sense of bodily acting
out) play indeed a key role in the learning of mathematics, especially for
non-mathematically inclined learners who have been cognitively abused by tradi-
tional learning. Since cognitive bullying is to a great extent institutionalised by the
prevailing unspoken didactic contract that is functional in thwarting metaphorising,
enacting and affect in teaching and learning contexts, it seems urgent to reshape this
contract to allow for and foster these processes. This endeavour deserves further
research, taking into account the relevance of collaborative group work and
learners’ horizontal interaction and participation.

As an open end, we would like to extend longitudinally our study to involve the
pupils of in-service and pre-service teachers we have worked with, to further
investigate the incidence of metaphorising and enacting in their learning and their
role as an antidote to cognitive bullying.
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