Chapter 21

How Can Cognitive Neuroscience
Contribute to Mathematics Education?
Bridging the Two Research Areas

Roza Leikin

Abstract This paper, which describes neurocognitive studies that focus on math-
ematical processing, demonstrates the value that both mathematics education
research and neuroscience research can derive from the integration of these two
areas of research. It includes a brief overview of neuroimaging research related to
mathematical processing. I base my claim that cognitive neuroscience and mathe-
matics education are still two tangent areas of research on a brief comparison of
these two fields, with a particular spotlight on research goals, conceptions, and
tools. Through a close look at several studies, I outline possible directions in which
mathematics education and educational neuroscience can capitalize on each other.
Mathematics education can contribute to the stages of research design, while
neuroscience can validate theories in mathematics education and advance the
interpretation of the research results. To make such an integration successful,
collaboration between mathematics educators and neuroscientists is crucial.

Keywords Mathematics education research - Cognitive neuroscience
Educational neuroscience « Mathematical processing

21.1 Introduction

In this paper, I analyze the potential contribution of neurocognitive research to the
theory of mathematics education and exemplify some of its implications. This
analysis is motivated by the following three observations:

First, there is no consensus among researchers that neuroscience has relevance
for education. Educational neuroscience is seen as an emerging discipline with its
roots in cognitive neuroscience and its focus on applying the findings of neuro-
science to education and posing educational questions to be pursued in neurosci-
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entific investigation (Geake 2009). In 1998, Byrnes and Fox suggested that brain
research findings might have useful applications in education. Since then many
researchers have supported this view with several theoretical hypotheses and have
attempted to link neurocognitive empirical findings with the development of edu-
cational theory and practice. However, Bowers (2016) argued that there are still no
examples of neuroscience motivating new and effective teaching methods, and
further asserted that neuroscience is unlikely to improve teaching in the future.

Second, whereas some researchers (e.g., De Smedt et al. 2010), underscored the
importance of “balanced dialogue” between neuroscience and education, Turner
(2011) argued that this relationship is imbalanced, with a clear dominance of
neuroscience (Clement and Lovat 2012). Furthermore, while De Smedt et al. (2010)
maintained that neuroscience does not replace the need for behavioral studies,
because behavioral studies may be needed to test conclusions drawn from neuro-
scientific observations, even in this argument behavioral studies and neuroscientific
studies are not presented symmetrically. On the contrary, I argue that studies in the
field of neuroscience can and should help in testing conclusions drawn from
behavioral research in mathematics education. Consequently, research goals and
research questions in neurocognitive research can be determined by the results of
behavioral research, while behavioral studies can inform neuroscientific research
vis-a-vis task design and research interpretations.

Third, mathematics education and cognitive neuroscience are two tangent areas
of research. Even though a relatively large number of neurocognitive studies have
been performed in the field of numerical cognition, these studies are rooted in
cognitive psychology and are not connected to the findings of mathematics edu-
cation research. Consequently, they use somewhat different terminology and have
little impact on the processes of learning primary mathematics in school.
Furthermore, only a small number of studies in cognitive neuroscience are currently
exploring brain processing associated with (relatively) advanced mathematical
concepts while these are rarely connected to theories in mathematics education.

Three notes:

(1) This paper does not provide a broad and detailed meta-analysis of research in
the field or detailed descriptions of the studies observed, and it intentionally
omits technical details related to the data collection and data analysis proce-
dures of the reviewed research. Instead, it attempts to simplify complex
information, present examples to illustrate the main ideas, and propose some
directions through which research in cognitive neuroscience can contribute to
the development of mathematics education as a scientific field.

(2) This paper does not address eye-tracking, a promising and interesting neuro-
scientific area of research. Implementation of eye tracking in mathematics
education—e.g., in analysis proof reading (e.g., Andra et al. 2015), exploration
of problem-solving strategies (e.g., Obersteiner et al. 2014), and even exami-
nation of creative problem solving (e.g., Muldner and Burleston 2015)—has
been developing exponentially. For example, the PME-40 conference included
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a relatively large number of presentations that applied eye tracking to the
examination of mathematical processing at different levels (Csikos et al. 2016).

(3) A glossary of technical terms in cognitive neuroscience can be found in the
“Cognitive neuroscience and Mathematics Learning” special issue of ZDM-
Mathematics Education 42(6) (Grabner et al. 2010a, b).

21.2 Mathematics Education and Educational
Neuroscience are Two Tangent Areas

Even though neuroscientific research in the field of mathematical processing is
making progress, some limitations to this research are still evident. De Smedt and
Grabner pointed out that neuroscientific research is mostly performed with adult
participants and requires better ecological validity. That is, many studies are per-
formed in laboratory settings which are not similar to classroom settings in which
students cope with tasks at different levels of mathematical challenge. In this section I
argue that mathematics education and educational neuroscience are two tangent areas
and illustrate this argument with the results of a brief search performed in several
research outlets in the fields of cognitive neuroscience and mathematics education.

21.2.1 Publications on Mathematical Processing
in Cognitive Neuroscience Journals

De Smedt and Grabner (2015) stress that “in the past decade, there has been a
tremendous increase in neuroscience research on mathematics learning” (p. 2),
while “the field of mathematics learning has been proposed as an ideal workspace
for making applications of neuroscience to education” (p. 3).

I present herein a brief summary of publications in three journals in the field of
cognitive neuroscience. I have chosen these particular journals according to their
goals and scopes, which all include educational publications: Frontiers in Human
Neuroscience, Neuropsychologia: An International Journal in Behavioral and
Cognitive Neuroscience, and Trends in Neuroscience and Education. An analysis
of a number of publications related to mathematical processing (at different levels
of mathematics) during 2012-2016 demonstrated that despite researchers’ growing
interest in this area (reflected in Trends in Neuroscience and Education), the
number of neuroscientific studies related to mathematical processing is very small.
The search was made using the following key words: mathematics, arithmetic,
numerical cognition, numerical operations, dyscalculia, algebra, calculus, and
geometry. After this search, the papers were downloaded and compared in order to
count only once those papers that came up repeatedly in the searches using different
key words. The percentage of papers published in these journals varies
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significantly. During this period, in contrast to Frontiers in Human Neuroscience,
where less than 1% of papers (19 of 2417) presented original research dealing with
mathematical processing, 33% (12 of 36) of original research papers in Trends in
Neuroscience and Education included reports associated with research in mathe-
matical processing. Overall, across the three journals, about 2.4% of all publications
(including original research papers, review papers, and commentaries) were focused
on various aspects of mathematical processing. No less interestingly, among the
105 articles (of 4375) in the same three journals, 92 papers (87%) addressed
numerical processing (including 18 articles on dyscalculia). Only a handful of
studies explored brain activity related to mathematics studies in school.

21.2.2 Neurocognitive Studies Published in Journals
in Mathematics Education

For analysis of publications in mathematics education journals, also during 2012—
2016, I chose Educational Studies in Mathematics (ESM), Journal for Research in
Mathematics Education (JRME), Mathematical Thinking and Learning (MTL), and
Journal of Mathematical Behavior (JMB). The search, with a focus on original
research papers, was conducted using the following key words pertaining to neu-
roscientific methodologies: EEG, ERP, fMRI, fNIRS, and eye tracking. I found
only one publication, by Inglis and Alcock (2012), in JRME. This paper presented
an investigation comparing expert and novice approaches to reading mathematical
proofs using eye tracking methodology.

There are several possible explanations for the results of this search. First, I may
have overlooked some publications (my apology if this is the case) and if so I would
be glad to receive information from authors and readers who are familiar with such
publications. Second, of the mathematics education researchers who consider these
journals to be venues for publication of their findings, only a small number employ
neuroscientific methodology in their studies. Third, those who do such research
usually collaborate with neuroscientists, who prefer publishing their manuscripts in
neuroscientific journals.

Fourth, there is another side of this coin. In my experience, reviews from neu-
roscientists and mathematics educators in response to the same publication had
different foci of attention, and the requirements for revisions were contradictory to
some extent. One of the central issues here is that, as I mentioned in the intro-
duction, the implications of neuroscientific research for mathematics education are
not straightforward, and it is difficult to explain the connections in a convincing
way. The other central issue, which I describe in Sect. 21.4.1 of the paper, is the
difference in theoretical frameworks and, correspondingly, in terminology and
interpretation of findings, in the two fields. These issues are illustrated by the
response that my colleagues and I received from the editor of one of the leading
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mathematics education journals (which I will call X) justifying why the paper was
rejected without sending it to reviewers:

Articles published in X journal pertain to the teaching or learning of mathematics and
advance research in this area.... Although I read your paper with great interest, its findings
do not move the field of research in mathematics education forward in clearly identifiable
ways. (Editor)

The positions of the researchers in mathematics education and educational
neuroscience are not contradictory but complementary, and thus bridges built
between mathematics education and educational neuroscience can contribute
meaningfully to the development of both fields. I argue that making connections
between the two fields is a challenging task, and reviewers in both fields have to
take greater care in presenting arguments that are compelling for researchers from a
different discipline. In what follows, I demonstrate that research methods and tools
are one of the reasons for tangency of the research in the two fields.

21.2.3 Special Issues in Mathematics Education

Fortunately, three special issues devoted to neuroscientific research related to
mathematics education were published in two mathematics education journals. Two
special issues were published in ZDM—Mathematics Education: one was
“Cognitive Neuroscience and Mathematics Learning,” edited by Grabner, Ansari,
Schneider, De Smedt, Hannula, and Stern in 2010, and another was “Cognitive
Neuroscience and Mathematics Learning: Revisited After Five Years,” edited by
Grabner and De Smedt in 2016. Another special issue edited by Anderson, Love,
and Tsai, “Neuroscience Perspectives for Science and Mathematics Learning in
Technology: Enhanced Learning Environments,” was published in 2014 in the
International Journal of Science and Mathematics Education (iJSME).

Most of the original papers in the iJSME special issue edited by Anderson et al.
(2014) used eye-tracking techniques in research on processing related to mathe-
matical and scientific concepts and processes. A paper by Norton and
Deater-Deckard (2014) is one of two papers related to studies that investigated brain
functioning associated with mathematical problem solving. The researchers take a
neo-Piagetian approach to mathematical learning of fractions with computer games
in order to frame two studies involving the use of EEG and FMRI techniques.
Based on the neuroimaging data, the authors arrive at conclusions about the
memory and attention mechanisms involved at different task levels.

The two ZDM special issues revealed a significant increase in the variety of
topics under investigation. The 2016 ZDM special issue contains articles on an
impressive diversity of topics—including fraction comparison, geometry, arith-
metic, and artificial symbol learning, to name just a few. In comparison to the state
of the art in 2010, a more diverse set of questions pertaining to mathematics
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education is being investigated from a cognitive neuroscience perspective. This
represents significant and exciting progress (Ansari and Lyonsi 2016, p. 380).

There was also an obvious shift in the methodology used—from fMRI inves-
tigations only to studies that employed a variety of neuro-cognitive techniques:
fMRI, EEG (ERD), and ERP. In 2010, the ZDM special issue included eight
original research papers, three overview manuscripts, and a glossary of terms. In
2016, the special issue included nine papers presenting original research and three
commentary papers. As a critique, Ansari and Lyonsi (2016) pointed out that most
of the studies published in both special issues presented experiments that had adults
as the research participants and included “well-controlled psychological experi-
ments, but their connections to the educational context and the mathematics
classroom are unclear” (p. 380). This argument supports my observation that these
two research areas are still tangent. However, I am certain that mathematics edu-
cators can find a wealth of exciting and useful information in these studies that can
help in understanding the underlying processes of mathematical cognition, problem
solving under different stress conditions, and neuroimaging aspects related to
intuitive rules (see Sect. 21.4 in this paper).

21.3 Neuroimaging Research Associated
with Mathematical Processing: A Brief Overview
of Issues Mathematics Education Research Does
not Address

Neuroimaging research focuses on the underlying brain structures (the magnitude of
brain activation as well as brain topographies) associated with different types of
mental activities in different population groups. A variety of neuroimaging tech-
niques (for definitions, see Grabner et al. 2010a, b) allow researchers to obtain
high-quality information on both temporal and spatial brain activity associated with
different kinds of information-processing, including mathematical processing at
different levels in individuals with varying levels of abilities. For example, the
event-related brain potentials (ERP) technique offers high temporal resolution over
the course of problem solving due to a precise reflection of perceptive and cognitive
mechanisms. ERPs are electrophysiological measures that reflect changes in the
electrical activity of the brain in relation to external stimuli and/or cognitive pro-
cesses. These measures provide information about the process in real time, before
the appearance of any external response (Neville et al. 1993). Another major
technique is functional magnetic resonance imaging (fMRI), which offers high
spatial resolution and enables the detection of differences in processing that are not
evident from behavioral and ERP measures alone, thereby potentially leading to a
more comprehensive understanding of the underlying processes and brain structures
involved.
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21.3.1 Localization of Brain Activation Associated
with Mathematical Processing

As mentioned, neuroimaging research focuses on localization of brain activation
associated with mathematical processing and its relationship to general cognitive
abilities (e.g., memory and attention). One example can be seen in the triple code
theory of numerical knowledge, which emphasizes the role of the parietal cortex in
number processing and arithmetic calculations (Dehaene et al. 2003) and identifies
three regions of the parietal cortex that have been linked to the different functions
connected to number processing. The horizontal intraparietal sulcus (HIPS) has
been found to be involved in calculations; the posterior superior parietal lobule
(PSPL) has been linked to the visuospatial and attention aspects of number pro-
cessing (Dehaene et al. 2003); the angular gyrus (AG) has been found to be
involved in the verbal processing of numbers and in fact retrieval (Grabner et al.
2009). Additionally, the parietal cortex has been found to be associated with
word-problem solving (Newman et al. 2011), algebraic equations (Sohn et al.
2004), and geometry proof generation (e.g., Anderson et al. 2011).

Another example can be found in studies that show that the posterior superior
parietal cortex is involved in visuospatial processing, including the mental repre-
sentations of objects and mental rotations (Zacks 2008), while the frontal cortex has
been linked to attention-control processes (Badre 2008) and working memory
(Gruber and Von Cramon 2003). Solving of (relatively) advanced mathematical
problems, such as calculus integrals, was found to activate a left-lateralized cortical
network (Krueger et al. 2008).

Research on mathematical problem solving associated with different represen-
tations of mathematical objects is also a focus of neuroscientists. For example,
different brain areas are known to be involved in recalling different representations
of the functions (verbal vs. equation representations) and are thus connected to
different cognitive processes involved in the corresponding mathematical process-
ing (Sohn et al. 2004). Lee et al. (2007) compared brain activation in diagrammatic
and equation representations for mathematical word problems and found that both
modes of representation were associated with activation of areas linked to working
memory and quantitative processing (the left frontal gyri and bilateral activation of
HIPS). However, the symbolic representation activated the posterior superior
parietal lobules (PSPL) and the precuneus. These findings suggest that the two
representation modes impose different attention demands (symbolic representation
being more demanding).
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21.3.2 Individual Differences Reflected in Structural
and Functional Characteristics of Brain Activation

Neurocognitive research also focuses on individual differences. Neuroimaging
studies demonstrate the neural correlates of mathematical difficulties and disabilities
(e.g., developmental dyscalculia; Butterworth et al. 2011). At the other end of the
continuum, research has also demonstrated connections between intelligence and
brain activity related to different cognitive tasks. Neuroimaging research shows that
intelligence is associated with the reciprocity of several brain regions within a
widespread brain network (Colom et al. 2010; Desco et al. 2011). Another branch
of neurocognitive research focuses on the relationship between intelligence and the
extent of induced brain activity during cognitive task performance (Jausovec and
Jausovec 2000). These studies have led to the formulation of the neural efficiency
hypothesis of intelligence, which states that “brighter individuals display lower
(more efficient) brain activation while performing cognitive tasks” (Neubauer and
Fink 2009, p. 1004). The neural efficiency phenomenon has also been shown to be
related to individuals’ expertise in a given field (in our case, excellence in math-
ematics) (e.g., Grabner et al. 2006). At the same time, task difficulty has an effect:
The neural efficiency phenomenon is revealed in easy to moderately difficult tasks,
whereas when it comes to performing difficult and challenging tasks, more intel-
ligent individuals exhibit higher brain activity (e.g., Neubauer and Fink 2009).

21.4 Mathematics Education and Educational
Neuroscience Can Capitalize on Each Other

21.4.1 Goals, Terms, and Tools in the Two Fields
of Research

In the last decade, several publications have been devoted to the various theories in
mathematics education (e.g., a volume edited by Sriraman and English 2007). Some
debate on the existence and essence of the theories in the field is to be expected.
Silver and Herbst (2007) argued that “the development of the grand theory of
mathematics education is not simply attainable but desirable for organizing the
field” (p. 4), whereas Sriraman and English (2007) questioned the feasibility of
creating such a grand theory due to the mathematical, social, and cultural contex-
tualization of mathematics teaching and learning. In our review of the volume
(Leikin and Zazkis 2012) we suggested that research in mathematics education is
integrated in general education research in two ways. On the one hand, mathematics
education is informed by more general theories such as, for example, cognitive
sciences, sociology, and anthropology. On the other hand, the recent mathematics
education research findings can inform and extend general educational theories. In
this paper, I argue that while (in the meantime) mathematics education is not well
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informed by neuroscience research, and findings of mathematics education research
are rarely used in neuroscience research, the integration of the two research areas
can empower each of them.

Cognitive research in mathematics education has a variety of foci of attention
and research methods. These studies include, but are not limited to, learning and
understanding of mathematics as related to problem solving, proofs, proving and
argumentation, and defining and exemplification. Special attention is given to
investigation and modeling activities, while substantial attention is devoted to
difficulties and misconceptions, as well as to expertise, creativity, and giftedness.
The Handbook of Research Design in Mathematics and Science Education (Kelley
and Lesh 2000) emphasizes research designs that are intended to radically increase
the relevance of research to actual practice. Examples of such research designs
include: teaching experiments, clinical interviews, analyses of videotapes, action
research studies, ethnographic observations, software development studies, and
computer modeling studies (Kelley and Lesh 2000, p. 18). Schoenfeld (2000)
highlighted two main purposes of research in mathematics education. One is a
theoretical objective directed at better understanding the nature of mathematical
processing as it pertains to thinking, teaching, and learning. The second is an
applied objective; that is, to use such understanding to improve mathematics
instruction, which ultimately helps realize mathematical giftedness and encourages
mathematical creativity. Schoenfeld (2000) stressed that models and theories in
mathematics education must have explanatory and predictive power, possess a
broad scope, and allow replicability.

As noted in Sect. 21.3 of this paper, neuroimaging research focuses on the
underlying brain structures (magnitude of brain activation as well as brain
topographies) associated with different types of mental activities in varying popu-
lation groups. Interestingly, De Smedt and Grabner (2015) identified three types of
applications of neuroscience to education: neuro-understanding, neuro-prediction,
and neuro-intervention. Neuro-understanding is based on the capacity of neuro-
scientific research to deepen understanding of mathematical processing at the
biological level and thus to inform mathematics education theories regarding typical
and atypical development of mathematical competencies. Neuro-prediction opens
opportunities to use neuroimaging results to predict learning trajectories.
Neuro-intervention includes both (1) the use of brain imaging data to analyze the
impact of education on the neural circuitry underlying development of mathemat-
ical knowledge and (2) the effect of neurophysiological interventions on mathe-
matical performance or learning. An analysis of exemplary studies of each type can
be seen in De Smedt and Grabner (2015).

An interesting connection between the two fields of research can be seen in the
parallel between Schoenfeld’s (2000) call for the explanatory and predictive powers
of the theories in mathematics education and the neuro-understanding and
neuro-prediction types of applications of neuroscience to education. In turn, neu-
roscience has a strong potential for increasing the explanatory and predictive
powers of mathematics education theories as well as examining the power of dif-
ferent educational interventions using neuro-intervention Type 1 mentioned above.
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I also would like to suggest the verification power of neuroscience studies, and later
in this paper I will illustrate an example of a study (Anderson et al. 2014) that can
be categorized as being of a neuro-verification type, even though the authors did not
connect their results with mathematics education theories.

Table 21.1 outlines a comparison between the research goals and methodologies
in the two fields. I do not include references in the table since each row could
include at least a dozen references in each column.

Obviously, neuroscience research on mathematical processing and cognitive
research in mathematics education are complementary. They have many features in
common, and each field can provide information that cannot be attained by research
methodologies in other fields. Clearly, mathematics education research does not
address biological data of the kind that is provided by neuroscience. However,
behavioral data, collected over long periods of time—related to analysis of pro-
cesses of mathematical creation (Hadamard 1945), solving mathematical problems
of varying complexity and classroom communication and classroom discourse—
still are not a part of neuroscience research (excluding eye tracking methodology,
which seems to come close to the field of mathematics education research, as
mentioned in Note 2 in the Introduction section).

In what follows, I analyze examples of several neurocognitive studies on rela-
tively advanced mathematical processing that suggest interesting and rather clear
connections between mathematics education research and neurocognitive research,
and I go on to explain these connections. I also provide two examples from a
large-scale research project entitled “Multidimensional Investigation of
Mathematical Giftedness” performed by the research group of Haifa University’s
Research and Advancement of Giftedness and Excellence Center (RANGE; Leikin
et al. 2013).

Note that I do not provide examples of studies in the fields of number sense and
arithmetic. One of the latest comprehensive reviews of neurocognitive studies in this
field can be seen in Kaufman et al. (2015). Additionally, de Freitas and Sinclair (2015)
provided a critical review of neurocognitive studies on number sense with special
attention devoted to studies of dyscalculia. They argued that neurocognitive research,
in contrast to mathematics education research, deployed images of numbers with an
emphasis on cardinality rather than ordinality and concluded that there is a need for
new kinds of neurocognitive research. I take a less critical view, suggesting that
integration of the two fields can enable both to benefit from each other.

21.4.2 Between Polya and Neuroscience: Discovering
the Structure of Mathematical Problem Solving

Polya’s works (1945/1973) in mathematics education are among the most
influential ones in the field of problem solving. His four-step approach to heuris-
tically solving problems included understanding the problem, devising a plan,
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Table 21.1 Brief comparison of cognitive studies in mathematics education and studies in
cognitive neuroscience associated with mathematical processing

Cognitive studies in mathematics
education

Studies in cognitive neuroscience
associated with mathematical
processing

Goals: better

« Skills, expertise, difficulties in

« Brain activation associated with

understanding — Numerical operations — Mainly numerical processing
of — Problem solving processes, (Subsidizing, enumeration,
proving, defining, approximation, comparison,
exemplifying, investigating arithmetic operations)
— Logical, critical, creative — Problem solving (mainly in
thinking arithmetic)
— Conceptual understanding — Training
— Teaching, learning, — Neuro-stimulation
communication « Individual differences
— Teacher knowledge and skills * Domain-general cognitive
« Individual differences abilities involved in mathematical
processing
Mathematical Broad range of topics, concepts, and | Number sense and arithmetic
topics properties from elementary to (mainly)
university mathematics Relatively advanced mathematics
(a small number of studies)
Different « Numerical, graphical, algebraic, * Numerical magnitude
representations pictorial, verbal representation (mainly)
* Translations between different — Concrete quality, verbal,
representations number line
» Symbolic versus pictorial (few)
Research * K-12 * Adults (mostly university
participants « University students students)
« Research mathematicians ¢ Children (a small number of
studies)
* Research mathematicians (few
studies)
Research « Laboratory/clinics * Laboratory
conditions « Field experiments, —e.g.: MRI (fMRI), EEG (ERP,
— Design experiment ERD), fNIRs,
— Teaching experiment - GSR
« Ethnographical research — Eye tracking
Research tools « Tests « Tests

— Written, oral, computerized
« Interviews
— Individual, collective
« Observations
« Written questionnaires
« Self-reports

— Computerized (e.g., E-Prime)
* Self-reports

Tasks

* Open/closed

« Multiple solutions

* Multiple choice

« Differ in conceptual density

* Very short
* Multiple choice
* Yes/no

(continued)
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Table 21.1 (continued)

Cognitive studies in mathematics Studies in cognitive neuroscience
education associated with mathematical
processing
Measures « Behavioral * Behavioral
— Correctness — Correctness (%)
— P-S/proving strategies — Reaction time
— Critical reasoning, creative * Neurocognitive
thinking — Magnitude of the brain
— Communicative collaborative activation
and processes — Brain topographies
— Teachers’ knowledge and * Cognitive
competences — Connections between
mathematical processing of
different types and basic
cognitive functions associated
with these

carrying out the plan, and looking back. Schoenfeld (1992) suggested somewhat
more detailed stages of problem solving that included reading, analyzing, explor-
ing, planning, implementing, and verifying. Pélya and Schoenfeld demonstrated
that a close look into these stages can distinguish experts from non-experts in
problem solving when the participants are required to cope with a non-standard
problem—one for which they do not have a ready-to-use procedure.

Without any connection to Pélya (1945/1973) and Schoenfeld (1992), Anderson
et al. (2014) conducted neuroimaging (fMRI) research that was aimed at discovering
the stages of mathematical problem solving, the factors that influence the duration of
these stages, and how these stages are related to the learning of a new mathematical
competence. This study demonstrated that participants went through five major
phases when solving a class of problems: (1) Define Phase, where they identified the
problem to be solved, characterized by activity in visual attention and default network
regions; (2) Encode Phase, where they encoded the needed information, characterized
by activity in visual regions; (3) Compute Phase, where they performed the necessary
arithmetic calculations, associated with activity in regions active in mathematical
tasks; (4) Transform Phase, at which they performed any mathematical transforma-
tions, characterized by activation of mathematical and response regions; and
(5) Respond Phase, at which they entered an answer, associated with activation in
motor regions. Two features distinguished the mastery trials during which partici-
pants came to grasp a new problem type. First, the duration of late phases of the
solution process increased. Second, there was increased activation in the rostro-lateral
prefrontal cortex (RLPFC) and angular gyrus (AG) regions associated with
metacognition. This indicates the important contribution of reflection to successful
learning.

Obviously, the stages identified by Anderson et al. (2014), which go beyond the
task design, are in harmony with the stages devised insightfully by Pdélya and
Schoenfeld in their works: the define and encode phases correspond to the reading
and analyzing stages in Schoenfeld’s terms, or to understanding the problem in
Polya’s terms. The compute and transform phases correspond to carrying out the
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plan (Polya). The respond phase corresponds to the looking back or verifying stages
(of Pélya and Schoenfeld, respectively). Anderson and colleagues provided bio-
logical validation for the big ideas of mathematics education researchers and, in this
sense, theirs can be considered a neuro-validation study. At the same time, it
provides us with further information about the basic cognitive abilities (visual
attention, visual encoding, and motor skills), which are very often overlooked in
mathematics education literature. This connection to cognitive processes can be
helpful in gaining a better understanding of the effectiveness of educational prac-
tices as they are connected to specific cognitive traits. Thus, this study is also of a
neuro-understanding type. Moreover, from the point of view of a mathematics
educator, connecting the work of Anderson et al. to other works of mathematics
educators related to learning and teaching equations can have an added value for the
interpretation of the behavioral research results achieved through individual or
collective interviews and relevance to the educational practices.

21.4.3 Mathematical Expertise: Connections Between
Advanced Mathematical Processing with Language
and Number Sense

Experts are usually characterized by consistently superior performance on a specified
set of representative tasks (Ericson 1996), while expertise reflects a varying balance
between deliberate practice and innate differences in capacities and talents. Experts
usually have more robust mental imagery, more numerous images, and the ability to
make flexible use of different images and focus their attention on appropriate features
of problems (Carlson and Bloom 2005). Experts differ from novices in the
problem-solving strategies they employ (Schoenfeld 1992). There is consensus that
professional mathematicians are experts in mathematics. Poincare (1908) linked the
activity of a mathematician to mathematical creation that requires a feeling of
mathematical order and mathematical intuition, which, in his opinion, cannot be
possessed by everyone. Still, research on mathematical expertise in school students is
rare. To the best of my knowledge, the connections between expertise at earlier ages
and expertise in research mathematicians remain unexplored.

Neurocognitive research by Amalric and Dehaene (2016) demonstrated con-
nections between numerical processing and relatively advanced mathematical
thinking. The researchers performed an investigation into the neuronal origins and
consequences of mathematical expertise. They employed fMRI with 15 expert
mathematicians and 15 non-mathematicians who had comparable educational
backgrounds. The participants were asked to evaluate the correctness of mathe-
matical and non-mathematical statements. The non-mathematical statements refer-
red to general knowledge and could be meaningful or meaningless, while the
mathematical statements referred to domains of higher level mathematics: geome-
try, analysis, algebra, and topology. No differences were found in the cortical
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network activated (a) for all four domains of mathematics examined and (b) in the
expert mathematicians when reacting to meaningful vs. meaningless mathematical
statements. At the same time, the study revealed a contrast of brain activation
measured during the reflection on mathematical statements versus activation
associated with reflecting on non-mathematical statements. A direct comparison of
the groups revealed that parietal and frontal activation during reflection on math-
ematical statements was only present in the group of expert mathematicians. The
experiment demonstrated that the brain regions employed by expert mathematicians
during their reflection on mathematical statements are located outside areas typi-
cally associated with language. The findings contradicted previous findings of
studies on numerical cognition, which had demonstrated connections between
activation evoked by numerical processing and by language. The research by
Amalric and Dehaene (2016) shows that language may play a role in the initial
acquisition of mathematical competencies and that brain activation during ele-
mentary numerical processing and higher level mathematics are connected; they
thus demonstrated that advanced mathematical processing is connected to symbolic
number processing.

The connection between advanced mathematical processing and number sense
can develop awareness of the importance of nurturing mathematical minds from
early stages of development. Additionally, these findings can lead to a hypothesis
stating that early competencies associated with number processing and numerical
operations can constitute predictors of later mathematical expertise and, probably,
of mathematical talent. This hypothesis, supported by some self-reports by math-
ematicians (e.g., Tao 1992) about their first steps of success in mathematics,
requires a longitudinal systematic investigation.

21.4.4 Starting from Theories in Mathematics Education
to Enrich Them

Only a small number of neuroimaging experiments are rooted in theories of science
and mathematics education. For example, Babai et al. (2016) explored the effect of
mode (discrete/countable vs. continuous perimeters) and the order of presentation
on elementary schoolchildren’s performance on the “comparison of perimeters”
task. They found that providing students with the opportunity to overcome diffi-
culties by altering the mode or order of presentation may lead to improved student
performance on the tasks. Their fMRI brain-imaging findings point to two factors
that are involved in solving the task correctly: inhibitory control mechanisms and
salience. The authors claim that the fMRI brain-imaging results corroborate, vali-
date, and support behavioral findings and, as such, they contribute theoretically and
practically to the understanding of reasoning processes and to improved teaching.

Another interesting research study was performed by Tzur and Depue (2014),
who examined how task design, rooted in a constructivist theory of learning and
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thinking, may impact adults’ brain processing of numerical comparisons. They
examined four independent variables: number comparison—whole numbers or unit
fractions (1/n), task sequencing—cueing first by a number or by an operation;
distance between the two compared numbers—Ilarge (1 > 8?) or small (7 > 57?), and
testing occasion—pre/post a purely conceptual teaching intervention. The study
showed that each independent variable had a significant impact on reaction time,
whereas the error rate remained invariant. The authors suggest implications for
mathematics education and cognitive-neuroscience with rethinking distance effect
and the need to amend the limiting notion of fractions as equal-parts-of-whole. Tzur
(2015) took it one step further by illustrating differentiated circuitry for comparing
whole numbers and unit fractions in support of the hypothesis that a fraction is not
merely a simple extension of a whole number.

21.4.5 Mathematical Giftedness: Designing
a Neurocognitive Study Based on Mathematics
Education Theories

Our research group in the RANGE Center at the University of Haifa conducted a
study aimed at gaining a better understanding of mathematical giftedness (Leikin
et al. 2013). It was motivated by the observation that the evaluation of individuals
presented as over-performers or who excel in the field of mathematics is not an easy
matter due to the lack of strong definitions of the phenomenon of mathematical
giftedness. We also argued that the development of tools for evaluation of indi-
vidual abilities (especially high abilities) in the field of mathematics is insufficient
and that applying brain research to the study of mathematical giftedness seems to be
of importance to the attainment of an operative definition of mathematical gifted-
ness and, consequently, to the development of tools that enable researchers to
identify mathematical giftedness.

Several distinctions were introduced in the study: First, based on theories of
gifted education (e.g., Milgram and Hong 2009), a distinction was made between
levels of intelligence (“general giftedness,” G, determined by IQ scores higher than
130) and levels of expertise (“excellence in mathematics,” EM, determined by high
scores in secondary school mathematics). This was applied in the sampling pro-
cedure, whereby four research groups were designed by a varying combination of
EM and G characteristics. Second, based on the theories of mathematics education,
a distinction was made between the translations of different representations of
mathematical objects required by the task (Kaput 1998) and different areas of
mathematics (i.e., algebra and geometry), together with a third distinction between
learning-based and insight-based tasks; these distinctions were implemented in the
design of the research tools. The task design was determined by Pdlya’s (1973)
theory of problem-solving strategies. Three strategies—understanding the task
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conditions, understanding the question, and verifying the results—constituted the
stages of the task design and the corresponding cognitive processes.

The study design led to some exciting discoveries: The distinction between
general giftedness and expertise in mathematics proved to be powerful in under-
standing that these two characteristics, even though interrelated, are different in
nature. It was also obvious that using behavioral measures only is insufficient and
sometimes misleading.

For example, coping with a function-related task that required translation
between graphical and algebraic representations of the functions (Waisman et al.
2014) both at the behavioral (accuracy and reaction time for correct responses) and
electrophysiological levels (amplitudes, latencies, and scalp topographies of brain
activity identified using the ERP procedure) was affected by students’ level of
mathematical expertise, with significantly higher accuracy of responses and sig-
nificantly shorter reaction times among non-gifted students only. Interestingly,
students who excelled in school mathematics but were not identified as being
generally gifted exhibited the highest electrical brain activity as compared to all the
other groups of students. That is, for (relatively) simple learning-based mathe-
matical problems, mathematical expertise appeared to be the main factor that
influenced problem-solving performance.

When comparing ERP measures associated with performance of function-based
tasks and tasks that involved geometrical inferences (Leikin et al. 2014), we found
differences both in the magnitudes and topographies of brain activation at the stage
of answer verification (Fig. 21.1). Based on these results, we argue that problem
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Fig. 21.1 a ERP topographies in the three time frames at the answer verification stage.
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solving in algebra and geometry, even when requiring a similar translation between
visual to symbolic representation, is associated with variant patterns of brain
activity as related to different underlying cognitive processes.

The distinction between learning-based and insight-based problems led to
additional surprising results (Leikin et al. 2016): behavioral and neurocognitive
measures led to somewhat contradictory findings, and thus neurocognitive char-
acteristics provided essential information that was hidden in the behavioral analysis.
We found that, contrary to our research hypothesis, expertise in school mathematics
affected behavioral measures associated with the insight-based test only, while
general giftedness affected accuracy of the responses on both tests. At the same
time, as hypothesized, expertise in mathematics and its interaction with general
giftedness affected ERP measures associated with solving learning-based problems
only, while ERP measures associated with solving insight-based problems appeared
to be affected mainly by the G factor.

Our findings of stronger activation of the PO4—POS8 electrode site (Fig. 21.2)
matched findings of Jung-Beeman et al. (2004), who demonstrated the increased
activation of the POS electrode being associated with the “Aha!” moment. Thus, in
Leikin et al. (2016) we raised a hypothesis that our findings on increased activation
at the PO4-PO8 electrode site associated with solving insight-based problems
indicate that mathematical insight is a specific characteristic unique to generally
gifted students. Moreover, our findings expanded upon the previous findings by
Jung-Beeman et al. (2004) by showing that students who excel in school mathe-
matics exhibit increased activation of the PO4-POS electrode site when they are
presented with learning-based mathematical tasks. This finding led to the hypoth-
esis (that opens a window for future studies) that this increase in the absolute ERP
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Fig. 21.2 ERP topographies and amplitudes at the stage of answer verification
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amplitudes at the PO4-POS electrodes is linked to the ability of experts to predict
the problem question based on the problem givens (Schoenfeld 1992). This pre-
diction can also be considered an insight-based process related to learning-based
tasks reflected in our findings and, thus, can be considered to be evidence of the
insight-related component of problem solving by experts at the stage of under-
standing the problem.

We connected our findings regarding the strength of electrical potentials evoked
in different groups of participants when solving learning-based tasks to the neural
efficiency effect (see Sect. 21.3 in this paper and critique by Ansari 2016). We
suggest that our findings showed no neuro-efficiency associated with solving
insight-based tasks for either G or EM, due to the high difficulty of the task.
Furthermore, the effects of the G characteristic on the cortical topographies asso-
ciated with solving insight-based problems were explained by the presumably
different problem-solving strategies applied by students with different levels of
intelligence.

Clearly, our neurocognitive experiment not only validated our initial hypotheses,
which were not always supported by behavioral data, but also led to new insights
and new hypotheses. First, mathematical expertise and general giftedness are not
equivalent constructs. We hypothesized that both of these characteristics are nec-
essary conditions for mathematical giftedness. Second, we realized that externally
similar algebra and geometry problems are based on different underlying cognitive
processes, as reflected in different brain activation when solving the problems.
Third, only ERP data allowed us to develop an understanding that success in
solving insight-based problems is a function of general intelligence and is not
attained by school mathematical expertise. We believe that further behavioral
research is needed to ascertain to what extent classroom culture determines these
findings or whether mathematical insight is an innate characteristic of the gifted.
Finally, only a neurocognitive experiment enabled us to discover the insight-based
component in experts and the problem-solving process inherent in learning-based
tasks. This component appears at the stage of understanding the problem, which
appears to be insightful for the experts. All these findings were made possible
thanks to the careful research design, which was rooted in mathematics education
theories and theories of expertise and giftedness. The integration of educational
theories in the neurocognitive study allowed us to enhance our knowledge through
neuro-discovery and neuro-explanation. At the same time, educational theories
allowed for richer interpretation of the research findings.

21.5 Concluding Comments

I hope that the analysis performed in this paper demonstrates that mathematics
education and cognitive neuroscience can capitalize on each other by increasing
validity of findings and mutually providing more substantiated interpretations of
findings. Mathematics education can clearly contribute to research design, and
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neuroscience can validate (or perhaps refute) theories in mathematics education
and, later, advance the interpretation of research results. Mathematics education
initially developed as a branch of cognitive psychology; neurocognitive investi-
gation can enrich mathematics education by contributing to our understanding of
the underlying cognitive processes involved in different types of mathematical
performance and by explaining the roots of success and difficulties in mathematics
learning, proving, problem solving and creative, intuitive, and critical reasoning. To
successfully integrate the fields, collaboration between mathematics educators and
neuroscientists is crucial. This collaboration should be symmetrical to allow
reciprocal enhancement and further development of these two fields of research
and, eventually, to allow implementation of the resulting findings in educational
practice.
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