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Abstract. We consider the following problem — a group of mobile agents
perform some task on a terrain modeled as a graph. In a given moment
of time an adversary gets access to the graph and agents’ positions.
Shortly before adversary’s observation the devices have a chance to relo-
cate themselves in order to hide their initial configuration, as the ini-
tial configuration may possibly reveal to the adversary some information
about the task they performed. Clearly agents have to change their loca-
tions in possibly short time using minimal energy. In our paper we intro-
duce a definition of a well hiding algorithm in which the starting and
final configurations of the agents have small mutual information. Then
we discuss the influence of various features of the model on running time
of the optimal well hiding algorithm. We show that if the topology of
the graph is known to the agents, then the number of steps proportional
to the diameter of the graph is sufficient and necessary. In the unknown
topology scenario we only consider a single agent case. We first show
that the task is impossible in the deterministic case if the agent has no
memory. Then we present a polynomial randomized algorithm. Finally in
the model with memory we show that the number of steps proportional
to the number of edges of the graph is sufficient and necessary. In some
sense we investigate how complex is the problem of “losing” information
about location (both physical and logical) for different settings.
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1 Introduction

In the present paper we investigate how to hide our location quickly with minimal
effort. As our primary motivation we focus on networks consisting of mobile
objects, but we believe that our results can also be applied for efficient “losing”
information about current state in various systems, even non-physical.

Let us consider a group of mobile devices or sensors called agents performing
a task on a given area. The task could be for example collecting/detecting some
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valuable resource, mounting detectors or installing mines. In all aforementioned
examples the system’s owner may want to hide the location of the agents against
an adversary observing the terrain from the satellite or a drone. That is, location
of the devices may leak sensitive information to the adversary. If we assume that
the adversary’s surveillance of the terrain is permanent and precise then clearly
no information can be concealed. Hence in our scenario there are periods of time
when the adversary cannot observe the system during which the actual tasks are
performed. Upon the approaching adversary, the devices launch an algorithm to
hide their location, i.e. change their positions to mislead the observer. Clearly
in many real life scenarios the additional movement dedicated for hiding their
previous position should be possibly short for the sake of saving energy and time.
It is also clear that the devices may want to return to their original positions in
order to resume their activities when the adversary stops surveillance. On the
other hand it is intuitively clear that a very short move may be not sufficient for
“losing” the information about the starting positions.

The outlined description is an intuitive motivation for the research presented
in our paper. Exactly the same problem can be however considered in many
other settings when we demand “quick” reconfiguration of a system such that the
observed configuration should say possibly small about the initial state. For that
reason we decided to use quite general mathematical model, where the agents are
placed in vertices of a graph and can move only through the edges (single edge
in a single round). Our aim is to design an algorithm that governs the agents’
movement to change their initial locations in such a way that the adversary given
the final assignment of agents cannot learn their initial positions.

At hand one can point the following strategy — every agent chooses inde-
pendently at random some vertex on the graph and moves to this location.
Clearly (but informally) the new location does not reveal any information about
the initial one and the initial locations of agents are perfectly hidden from the
adversary. The same effect can also be obtained if all agents go to a single, fixed
in advance vertex. In this case again the final and initial configurations are sto-
chastically independent. These strategies require however that agents know the
topology of the graph. Intuitively, similar effect can be achieved if each agent
starts a random walk and stops in a vertex after some number of steps. In this
approach, the knowledge of the graph is not necessary, however one can see that
the state after any number of steps reveals some knowledge about the initial posi-
tions (at least in some graphs). Moreover this strategy requires randomization.
To summarize, there are many different methods for hiding the initial locations.
It turns out that possible solutions and their efficiency depend greatly on the
assumed model — if the graph is known to the agents, what memory is available,
if the agents can communicate and if they have access to a source of random bits.
Our paper formalizes this problem and discusses its variants in chosen settings.

Organization of the Paper. In Sect. 2 we describe the problem and the formal
model. Section 3 summarizes the obtained results. The most important related
work is mentioned in Sect. 4. In Sect.5 we present results for the model wherein
stations know the topology of the graph representing the terrain. We show both
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optimal algorithms as well as respective lower bounds. The case with unknown
topology is discussed in Sect.6. We conclude in Sect.7. Some basic facts and
definitions from Information Theory and theory of Markov chains are recalled
in Appendix 1 and Appendix 2, respectively.

2 Model

The Agents in the Network. We model the network as a simple, undirected,
connected graph with n vertices, m edges and diameter D. The nodes of the
graph are uniquely labeled with numbers {1,2,...,n}. We have also k& > 1
agents representing mobile devices. Time is divided into synchronous rounds. At
the beginning of each round each agent is located in a single vertex. In each round
the agent can change its position to any of neighboring vertices. We allow many
agents to be in a single vertex in the same round. The agents need to locally
distinguish the edges in order to navigate in the graph hence we assume that the
edges outgoing from a node with degree d are uniquely labeled with numbers
{1,2,...,d}. We assume no correlation between the labels on two endpoints of
any node. A graph with such a labeling is sometimes called port-labeled.

When an agent is located in a vertex we assume that it has access to the
degree of the node and possibly the value or the estimate of n and to some
internal memory sufficient for local computations it performs. In our paper we
consider various models of mobile agents depending on the resources at their
disposal. This will involve settings where the devices have or have not an access
to a source of random bits and they are given a priori the topology of the network
or they have no such knowledge. In the latter case we will consider two different
scenarios depending on whether the agent has an access to operational memory
that remains intact when it traverses an edge or its memory is very limited and
does not allow to store any information about the network gathered while it
moves from one vertex to another.

Our primary motivation is the problem of physical hiding of mobile devices
performing tasks in some terrain. Nevertheless, our work aims for formalizing the
problem of losing information on agents’ initial placement in a given network.
Thus, we focus on proposing a theoretical model related to the logical topology.

Model of the Adversary. From the adversary’s point of view, the agents
are indistinguishable and the nodes of the underlying graph are labeled. The
assumption on indistinguishability is adequate for systems with very similar
devices. Thus the state of the system in a given round ¢ can be seen as a graph
G and a function n:(v) denoting the number of agents located at node v. Let X,
t € {0,1,...}, represents the state of the network at the beginning of ¢** round.

We assume that in round 0 the agents complete (or interrupt due to approach-
ing adversary) their actual tasks and run hiding algorithm A that takes T rounds.
Just after the round T the adversary is given the final state Xp and, roughly
speaking, its aim is to learn as much as possible about the initial state X,. That
is, the adversary gets an access to a single configuration (representing a single



On Location Hiding in Distributed Systems 177

view of the system). Note that the adversary may have some a priori knowledge
that is modeled as a distribution of Xy. In randomized settings the adversary
has no information about agents’ local random number generators. On the other
hand, the aim of agents is to make learning the adversary Xo from X impos-
sible for any initial state (or distributions of states).! Moreover the number of
rounds T should be as small as possible (we need to hide the location quickly).
We also consider energy complexity understood as the maximal number of moves
(i.e. moving to a neighboring vertex) over all agents in the execution of A. Such
definition follows from the fact that we need to have all agents working and
consequently we need to protect the most loaded agent against running out of
batteries. As we shall see, in all cases considered in this paper the energy com-
plexity is very closely related to the time of getting to the “safe” configuration
by all devices, namely it is asymptotically equal T'.

Security Measures. Let X be a random variable representing the knowledge
of the adversary about the initial state and let X7 denotes the final configura-
tion of the devices after executing algorithm A. We aim to define a measure of
efficiency of algorithm A in terms of location hiding. In case of problems based
on “losing” knowledge, there is no single, commonly accepted definition. This
is reflected in dozens of papers including [6] and [18]. Nevertheless the good
security measure needs to estimate “how much information” about Xj is in X7.

Let X ~ L be a random variable with probability distribution £. We denote
by E [X] the expected value of X. By Unif(A) we denote the uniform distribution
over the set A and by Geo(p) the geometric distribution with parameter p.
An event E occurs with high probability (w.h.p.) if for an arbitrary constant
a > 0 we have Pr[E] > 1 — O(n~%). Let H (X) denotes the entropy of the
random variable X, H (X|Y) denotes conditional entropy and I (X,Y’) mutual
information. All that notations and definitions are recalled in Appendix 1.

Our definition is based on the following notion of normalized mutual infor-
mation, also known as uncertainity coefficient (see e.g. [20], Chap. 14.7.4)

1(X,Y)
X|Y)=———.
From the definition of mutual information it follows that U (X|Y) =1 — HP(I)(()‘:)/)

and 0 < U (X]Y) < 1. The uncertainity coefficient U (X|Y") takes the value 0
if there is no association between X and Y and the value 1 if Y contains all
information about X. Intuitively, it tells us what portion of information about
X is revealed by the knowledge of Y. H (X) = 0 implies H (X|Y) = 0 and we
may use the convention that U (X|Y) = 0 in that case. Indeed, in such case we
have stochastic independence between X and Y and the interpretation in terms
of information hiding can be based on the simple observation that H (X) = 0
means that there is nothing to reveal about X (as we have full knowledge of X)
and Y does not give any extra information.

! That is, we consider the worst case scenario implying strongest security guarantees.
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Definition 1. The algorithm A is e-hiding if for any distribution of the initial
configuration Xo with non-zero entropy (i.e. H (Xo) > 0) and for any graph G
representing the underlying network

I (XOa XT)

U (Xo|Xr) = W g, (1)

where X1 is the state just after the execution of the algorithm A.
Definition 2. We say that the algorithm A is

— well hiding if it is e-hiding for some e(n) =€ € o(1);
— perfectly hiding if it is 0-hiding.

Intuitively, this definition says that the algorithm works well if the knowledge
of the final state reveals only a very small fraction of the total information about
the initial configuration regardless of the distribution of initial placement of
devices. Let us mention that these definitions state that any hiding algorithm
should work well regardless of the network topology. If an algorithm A is e-hiding,
then for any simple connected graph G and for any probability distribution of
agents’ initial positions Xy with non-zero entropy the final configuration X

Fig. 1. Positions of k = 4 agents (represented by black dots) in consecutive steps of
sample execution of location hiding algorithm in a network with n = 8 nodes.
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after A terminates should fulfill (1). Notice also that there are some cases when
it is not feasible to hide the initial location in a given graph. Assuming the
adversary knows the agents’ initial distribution Xy, H (X() = 0 means that the
agents with probability 1 are initially placed in some fixed locations which are
known to the adversary. In particular, this is the case when the graph has only
one vertex (it can be a model of system with exactly one state). All devices must
be then located in that vertex and no hiding algorithm exists for this setting.

The main idea of location hiding algorithms is depicted in Fig. 1. The agents
are initially placed in vertices of a graph G (Fig. la) according to some known
distribution of initial state Xg. In each step every agent located in some vertex v;
can move along an edge incident to v; or stay in v;. After T steps the algorithm
terminates resulting in a final configuration X (Fig. 1d). Our goal is to ensure
that any adversary observing the positions Xp of devices after execution of an
location hiding algorithm can infer as small information as possible about their
actual initial placement Xy, regardless of G and the distribution of Xj.

3 Our Results

Most of our results apply to the single-agent case. We first show that if the
topology is known then any well-hiding algorithm in a graph with n nodes, m
edges and diameter D requires {2(D) steps and there exists a perfectly hiding
algorithm that needs O(D) steps. Then we generalize this result to multi-agent
scenario. Secondly we consider the case with unknown network topology. We
show that in the model with no memory there exists no deterministic well hiding
algorithm and for the randomized setting we present a well-hiding algorithm
whose expected running time is O(n?) w.h.p. Finally if the agents have unlimited
memory then @(m) steps is sufficient and necessary for well-hiding algorithms.
Table 1 summarizes our results.

Table 1. Overview of our results

Deterministic Randomized
Known topology ©(D) (Theorem 1) ©(D) (Theorem 1)
Unknown topology | No memory impossible (Theorem 3) 5(n3) w.h.p. (Theorem 2)
Unlimited memory | ©(m) (Theorems4 and 5) @(m) (Theorems4 and 5)

Let us mention that in the considered models it is feasible to “lose” infor-
mation about the initial state not only in a randomized manner, but also fully
deterministically. As we shall show, the algorithms are completely different. We
find this property somehow surprising. Moreover, let us note that possible rate
of losing information as well as the adequate algorithms strongly depend on the
assumed model and agents’ capabilities (knowledge of the topology, memory).
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4 Previous and Related Work

The problems of security and privacy protection in distributed systems have
received a lot of attention. Various security aspects of such systems have been
extensively discussed and a lot of novel solutions for some practical settings have
been proposed over the last years. One of the major examples is the problem
of designing routing protocols for wireless ad hoc networks which can hide the
network topology from potential external and internal adversaries (see e.g. [16,
24]). The goal of such protocols is to find reliable routes between the source
and destination nodes in the network which are as short as possible, reducing
exposure of the network topology to malicious nodes by data transmitted in the
packets. This will prevent adversaries (at least to some extent) for launching
some kinds of attacks requiring the knowledge of the network topology which
may be particularly harmful for the whole network and the tasks performed.

Another important line of research is assuring privacy of the users of mobile
applications relying on location-based services and hence gathering information
of their location. The examples are applications providing various information
related to the user’s current location (e.g. real-time traffic information, places to
visit) or activity-based social networks where users share the information about
location-based activities they perform (cf. [19]). Various protocols for protect-
ing location data together with some formal models and privacy metrics were
proposed (see e.g. [12,14]). However, in some cases the performance of designed
protocols is evaluated only experimentally and the discussion of their security
properties is informal, without referring to any theoretical model (cf. [16,19]).

To the best of our knowledge, there is no rigid and formal analysis on the
problem of location hiding in graphs and it has never been studied before in the
context considered in this paper. The problems of ensuring security and privacy
in distributed systems mentioned above are similar to our only to a certain
extent. The aim of our approach is to propose a general formal model of hiding
the positions of a set of mobile agents from an external observer and consider
its basic properties and limitations. However, the problem considered by us is
closely related to some of the most fundamental agent-based graph problems.

First of all observe the relation to the exploration that comes from the global
nature of our problem. Clearly if the agent has at least logarithmic memory then
we can use algorithms for graph exploration. Indeed, since the graph is labeled,
it is sufficient to explore the graph and move to a vertex with minimum ID.
Hence the vast body of literature about exploration in various models applies
to our problem. In particular there exist polynomial deterministic algorithms
(using Universal Sequences) that need only logarithmic memory [1,21].

In the randomized setting, location hiding becomes related to the problem of
reaching the stationary distribution by a Markov Chain (Mixing Time) as well
as visiting all the states (Cover Time), i.e. the expected number of steps that are
needed by a random walk to visit all the vertices. It is known that for a (unbi-
ased) random walk, the cover time is between 2(nlogn) [10] and O(n?) [11],
depending on the underlying graph structure. There exist biased random walks
that achieve worst-case cover time of O(n?) [17], however in order to implement
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them the agent requires an access to some memory to acquire information neces-
sary to compute the transition probabilities. It has been recently shown that in
some graphs multiple random walks are faster than a single one [2,8,9]. Another
interesting line of work is deriving biased random walks [3,23].

5 Location Hiding for Known Topology

Let us first focus on the setting where the topology of the underlying network is
known to the agents and consider one of the simplest possible protocols, namely
every mobile agent goes from its initial positions to some fixed vertex v* € V
(this is possible, because in the considered scenario the vertices in the graph
have unique labels known to all the agents). One can easily see that this simple
protocol is perfectly hiding. Indeed, regardless of the distribution of the agents’
initial placement, after executing the protocol all devices are always located in
the same vertex known in advance. Hence, X1 and Xy are independent and
I (Xo,Xr) = 0 (and therefore U (Xo|X1) = 0, as required). But this approach
leads to the worst case time and energy complexity for a single device of order
O(D), where D is the graph diameter. Appropriate selection of the vertex v* as
an element of the graph center can reduce the worst case complexity only by a
constant, but it does not change its order. The natural question that arises in this
context is whether there exist a perfectly hiding (or at least well hiding) protocol
that requires asymptotically smaller number of rounds for ensuring privacy than
the simple deterministic protocol discussed above. In general, we are interested
in determining the minimal number of steps required by any location hiding
protocol in considered scenarios for ensuring a given level of security (in terms
of the amount of information being revealed) for arbitrary distribution of initial
configuration of the agents and for arbitrary underlying network.

5.1 Single Agent Scenario

Let us consider the simple scenario where there is only one mobile device in
the network located in some vertex v € V' according to some known probability
distribution £ over the set of vertices. Assume that the network topology is
known to the agent. Our goal is to find the lower bound on the number of steps
that each well hiding protocol requires to hide the original location of the device
in this scenario for arbitrary graph G and initial distribution L.

We will start with a general lemma showing that if within ¢ steps the sets of
vertices visited by the algorithm starting from two different vertices are disjoint
with significant probability, then the algorithm is not well hiding within time ¢.

Lemma 1. Let A be any hiding algorithm and G = (V, E) be an arbitrary graph.
Suppose that for some t > 0 and some positive constant y there exist two distinct
vertices u,v € V' s.t. with probability at least 1/2+ the following property holds:
sets Vi and Va of vertices reachable after execution of t steps of A when starting
from u and v, respectively, are disjoint. Then A is not well hiding in time t.
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Proof. Fix an arbitrary graph G = (V, E) with |V| = n and hiding algorithm .A.
Let u,v € V' be two vertices such that the sets Vi and V5 of possible location of
the agent after performing ¢ steps of A when starting in u and v, respectively, are
disjoint with probability at least 1/2+-y for some constant v > 0 regardless of the
starting point, i.e. Pr[¢y = 1] > 1/24+y, where &y is an indicator random variable
of the event V; N V5 = ). Consider the following two-point distribution £ of the
agents’ initial location Xo: Pr[Xy = u] = Pr[Xo = v] = 1/2, Pr[Xo = w] = 0
for w € V' \ {u,v}. We will prove that such .4 does not ensure that the initial
position X of the device is well hidden at time ¢ when Xg ~ L.

Because H (Xo) = 1, U (Xo|X:) = I (Xo,X:) and it suffices to show that
the mutual information I (Xo, X¢) > n > 0 for some positive constant 7. This is
equivalent to H (Xo|X:) < 1 —m, as follows from Fact 4. Clearly, for y € V

PriXo=u|lX;=y] >Pr[Xo=u,&y =1|X; =y] >1/2+ 7~ (2)

and the same holds after replacing « with v. Moreover Pr[Xy, = v|X; = y| =
1 — Pr[Xy = u|X; = y]. Denoting Pr[Xo = u|X; = y] by p,, we have

H (Xo|X;) = =) Pr[X, =y] Y _ Pr[Xo = z|X; = y]log(Pr[X, = z|X; = y])
yev zeV
(3)

= - Z Pr[Xt = y] (pu|y IOg(puly) =+ (1 - pu\y) IOg(l - pu|y)) .
yev

Let us consider the function f(p) = —(plog(p) + (1 —p)log(1—p)) for p € (0, 1).
Clearly, lim,,_,¢ f(p) = lim,_.1 f(p) = 0 and f(p) has its unique maximum on the
interval (0,1) equal to 1 at p = 1/2. From (2) we have (Vy € V1)(pyy > 1/247)
and (Vy € V2)(pujy < 1/2 — 7). Therefore, there exists some positive constant 7
such that f(py,) < 1—n. From the definition of the sets V; and V3 we also have
Pr[X; =y ¢ V3 UV3] = 0. Using these facts, (3) can be rewritten as

H (Xo|X:) = Y Pr(Xy =yl f(pupy) + D, PrXs = ylf (puyy)
yeVL yeV2

<A1-n)PrX;eViuWp]l=1-—19
for some constant n > 0, as required. Hence, the lemma is proved. O

From the Lemma 1 we get the lower bound of £2(D) on the expected number
of steps needed by any well hiding algorithm in the model with known topology.
Note that the lower bound matches the simple O(D) upper bound.

Theorem 1. For a single agent and known network topology and for an arbi-
trary graph G there exists a distribution L of agent’s initial position such that any
well hiding algorithm A needs to perform at least |D/2] steps with probability
¢>1/2—o0(1), where D is the diameter of G.
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Proof. We will show that for each graph G there exist a distribution of the initial
state of the mobile agent such that each well hiding algorithm A needs at least
| D/2] rounds with some probability ¢ > 1/2 — o (1).

Fix an arbitrary graph G = (V, E) with |V| = n. Let u,v € V be two vertices
such that d(u,v) = D. Denote by 6 = | D/2] and consider the following two-point
distribution £ of the agents’ initial location X¢: Pr[Xy = u] = Pr[X, = v] = 1/2,
Pr[Xo = w] = 0 for w € V' \ {u,v}. Suppose that some hiding algorithm A
terminates with probability at least 1/2 +~ for some constant v > 0 after T' < ¢
steps regardless of the starting point, i.e. Pr[T < §] > 1/2 + 7.

Obviously there is no z € V such that d(u,z) < ¢ and d(v,z) < ¢ (if so,
D = d(u,v) < 2[D/2] < D and we will get a contradiction). Let us define
B(u,6) ={y € V:d(u,y) < 6} and B(v,d8) = {y € V: d(v,y) < §}. It is clear
that B(u,d) N B(v,d) = 0. From the assumptions on the running time of A with
probability at least 1/2 + « the sets V; and V5 of vertices reachable from u and
v, respectively, fulfills V; C B(u,d) and Vo C B(v, J), therefore they are disjoint.
Hence it suffices to apply the results from Lemma 1 to complete the proof. O

5.2 Location Hiding for k Agents and Known Network Topology

Let us recall that the energy complexity of an algorithm A in the multi-agent
setting is defined as the maximal distance covered (i.e. number of moves) in
the execution of A over all agents. This allows us for direct translation of results
from single-device setting, as presented below.

In the general scenario considered in this section a similar result holds as
for the single-agent case. Namely, each algorithm which ensures the well hiding
property regardless of the distribution of agents’ initial placement requires in
the worst case {2(D) rounds.

Lemma 2. For known network topology and k > 1 indistinguishable agents ini-
tially placed according to some arbitrary distribution L, any well hiding algorithm
for an arbitrary underlying graph G has energy complexity at least | D/2]| with
probability ¢ > 1/2 — o (1), where D is the diameter of G.

The proof of the Lemma2 proceeds in the same vein as in Theorem 1. We
choose two vertices u, v in distance D and put all agents with probability 1/2 in
any of these vertices. Denoting by T;, 1 < ¢ < k, the number of steps performed
by the agent ¢ and by T' = maxi<;<j T; the energy complexity of the algorithm
we consider a hiding algorithm A such that Pr[T" < 6] > 1/2 + v for ¢ = | D/2]
and some positive constant v > 0. The only difference is that instead of the sets
B(u,0) = {y € V:d(u,y) < 6} and B(v,d) = {y € V:d(v,y) < §} itself we
consider the subsets S; and Sy of the state space consisting of such states that
all of the agents are located only in the vertices from the set B(u,d) or B(v, ),
respectively. Similar calculations as previously led to the conclusion that any
such algorithm cannot ensure the well hiding property.
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6 Location Hiding for Unknown Topology

6.1 No Memory

If no memory and no information about the topology is available, but the agent
is given access to a source of randomness, it can perform a random walk in order
to conceal the information about its starting position. However, the agent would
not know when to stop the walk. If in each step it would choose to terminate
with probability depending on the degree of the current node, one could easily
construct an example in which the agent would not move far from its original
position (with respect to the network size). Hence in this section we assume that
the size of the network is known. Then the problem becomes feasible. Consider
the following Algorithm 1: in each step we terminate with probability ¢ (roughly
n~?) and with probability 1 — ¢ we make one step of a lazy random walk. We
will choose ¢ later. Let us note that letting the walk to stay in current vertex
with some fixed constant probability is important for ensuring aperiodicity of
the Markov chain (see e.g. [13,15]). Otherwise we can easily provide an exam-
ple where such algorithm does not guarantee the initial position to be hidden.
Namely, consider any bipartite graph and any initial distribution s.t. the agent
starts with some constant probability either in a fixed black or white vertex. If the
adversary is aware only of the running time (i.e. the number of steps the agent
performed), when observing the network after T' steps it can with probability
1 identify agent’s initial position depending on T is even or odd. Nevertheless,
the probability of remaining in a given vertex can be set to arbitrary constant
0 < ¢ < 1. For the purposes of analysis we let ¢ = 1/2 which leads to the classical
definition of lazy random walk (see Definition 10 and Fact 8 in Appendix 2).

Algorithm 1. A(q) [randomization, no memory, no topology, knowledge of n|

In each round:
1: With probability ¢: terminate the algorithm.
2: With probability 5: remain in the current vertex until the next round.
3: With probability 5 — ¢: move to a neighbor chosen uniformly at random.

NI

Theorem 2. The algorithm A(q) based on random walk with termination prob-

ability ¢ = % for any fized f(n) =o0(1) and h(n) = w (max{nQ, m})
s well hiding for any graph G and any distribution of agent’s initial location X.

Proof. Fix € > 0. Let tyix (¢) denote the mixing time and 7 the stationary
distribution of the random walk performed by the algorithm according to Defi-
nition 9. We will choose the exact value for ¢ later. Let Xy and X be the initial
and final configuration, respectively. To prove the lemma it suffices to show that
% =1-0(1), what is equivalent to lim,, % = 1. This implies

that U (Xo|X7) = 0(1) as required by Definition 2. Let & = 1[T > tpix (¢)] be
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the indicator random variable taking value 1 if T' > tnix (€) and 0 otherwise. We
need to ensure that the algorithm A will stop with probability at least 1 —o (1)
after tmix (€) steps. The time T when A terminates follows Geo(q) distribution,
hence Pr[¢. = 1] = (1 —q)'=(). Letting ¢ = f(n)/tmix (¢) for some f(n) = o(1)
implies Pr[¢. = 1] =1 — o (1), as required.

Let us consider H (Xo|Xr). By Fact 1 (see Appendix 1) we have

H (Xo|X7) 2 H (Xo|Xr,&) > H (Xo| X7, & = 1) Prlé. = 1]
=(1-o0(1)) H(Xo|Xr,& =1) > (1 —0(1) H (X0l X)) »
where the last inequality follows directly from Fact 9 in Appendix 1.

Let po(x) = Pr[Xo = ], pt(y) = Pr[X, (o) = vl, po(z|y) = Pr[X, =

X (o) = y] and py(y|z) = Pr[Xo,,,. () = y|Xo = 2]. As po(ly) = 28D py(2),

(Xo\Xtm,x (e) Zpt ZPO(MZ/) log po(z[y)

yeV zeV
==Y piylr)po() log po() (4)
yeV zeV
3 o () Jog P
%x;m(y\ Jpo()log = 7.

The properties of mixing time imply that there exist {6?(41) tyev and {53(;2)}er
such that >° ay) < 2¢ for i € {1,2} and 7(y) — 51(,1) < pt(y|x) < m(y) + (1)

and 7(y )—ag(, ) < pi(y) < 7(y )+5( ) Let €y = max{ey ,ey } Asforanyy € V
7(y) > 1/n?, letting € being arbitrary e(n ) = o (min{%, H (Xo)}) we get

m(y) + €y
m(y) — ey

pe(ylz)
pe(y)

< =1+ o(min{1, H (Xo)}).

Thus, the above relations allow us to find the lower bound on the conditional
entropy H (X0|Xtmix(a))- The first sum in (4) gives us

= pilyle)po(x) log po(x) > Y (w(y) — &) H (Xo) > H (Xo) (1 — 4e)
yeV xeV yeVv
= H (Xo) (1 —o(1)), (5)

whereas the second sum can be expressed as

=22 X mlylelpo(a) g B ¢ W = pol@) Y pelylo) 1ogpt(:(y@|/))

yeV xzeV zeV yeVv
== Z po(z)D (pe(ylz)l|pe(v)) ,
zeV

where D (+||-) is relative entropy recalled in Definition 5 in Appendix 1.
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Applying the upper bound on the relative entropy from Fact 3 we get

S po(@)D (pe(yla)lpe(w)) < 3 po(e) ZM—

eV eV yeVv pt(y)
1 (m(y) +ey)°
< 2 g;/po(fc)y%‘; <7r(y)—5y - W(y)) (6)
=0 (H (Xo)).

Combining the estimations (5) and (6) we obtain H (Xo| Xy, (o)) = H (Xo) (1—
0(1)) —o(H (Xp)), what results in
H (Xo|Xr) _ H(Xo)(1—0(1)) —o(H (Xo))
H(Xo) = H (Xo)

:1_0(1)5

as required.
In the above we have set ¢ = f(n)/tmix (€) for arbitrary fixed f(n) = o(1)
and ¢ = o (min{n~2 H (Xo)}). From Fact 7 and Fact 8 we have tpix (¢) <

n®loge~!. Hence, there exists some g(n) = w (max{nQ,H (Xo)fl}) dependent

on € such that tnix (¢) < n®log g(n) and ¢ = (h(n) - n3log g(n))fl, where h(n) =
1/f(n) =w(1). O

As previously mentioned, the running time T' of the considered hiding algo-
rithm follows geometric distribution with parameter ¢, hence the expected run-
ning time is E[T] = 1/q = h(n) - n®log g(n), where h(n) and g(n) are as in
the proof of Theorem 2. If H(X) = (-5, as in the case of most distribution
considered in practice, we can simply select f(n) to be some function decreasing
to 0 arbitrary slowly and e such that g(n) = cn®logn for some constant ¢ > 0.
In such cases the entropy of the distribution of agent’s initial position has no
impact on the upper bound on the algorithm’s running time.

Algorithm 1 works also for the scenario with many agents (each agent can
run independent walk). The interesting question is whether it is possible to hide
the initial state in multi-agent case faster by taking advantage of performing
simultaneously many random walks. As the speedup of multiple random walks
in any graph remains a conjecture [2], we leave this as an open question.

We conclude this section with a simple observation that the agent must have
access to either memory, source of randomness or the topology of the network
in order to hide.

Theorem 3. In the model with unknown topology and with no memory there
exists no well-hiding deterministic algorithm.

Proof. Take any hiding algorithm. If this algorithm never makes any move it
obviously is not well-hiding. Otherwise observe that in the model without mem-
ory the move is decided only based on local observations (degree of the node)
and some global information (value of n), hence every time the agent visits a
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node it will make the same decision. Assume that the agent decides to move
from a node of degree d via port p. We construct a graph from two stars with
degree d joined by an edge e with port p on both endpoints. Since the agent
has no memory and no randomness it will end up in an infinite loop traversing
edge e. Hence this algorithm cannot be regarded as well-hiding since it never
terminates. a

6.2 Unlimited Memory

In this section we assume that the agent is endowed with unlimited memory
that remains intact when the agent traverses an edge. We first observe that a
standard search algorithm (e.g. DFS) can be carried out in such a model.

Theorem 4. There exists a perfectly hiding algorithm in the model with unlim-
ited memory that needs O(m) steps in any graph.

Proof. The algorithm works as follows: it runs a DFS search of the graph (it is
possible if the agent has memory) and moves to the node with minimum ID. O

Now we would like to show that £2(m) steps are necessary for any well-hiding
algorithm in this model. We will construct a family of graphs such that for any
well-hiding algorithm and any n and m we can find a graph with n nodes and m
edges in this family such that this algorithm will need on average {2(m) steps.

Theorem 5. For a single agent and unknown network topology, for any n and
m and any well hiding algorithm A there exists a port labeled graph G with n
vertices and m edges representing the network and a distribution L of agent’s
initial position on which the agent needs to perform £2(m) steps in expectation.

Proof. If m = O(n) we can construct a graph in which D = 2(m) and use
Theorem 1. Now assume that m = w(n) and consider a graph constructed by
connecting a chain of y cliques of size . If m = w(n) we can find such z,y that
x = O(m/n) and y = O(n?/m). The adjacent cliques are connected by adding
an vertex on two edges (one from each clique) and connecting these new vertices
by an additional edge. We call this edge by bridge and the vertices adjacent to
a bridge by bridgeheads. Let G, ,, be the family of all such chains of cliques on n
nodes and m edges (note that we take only such chains in which an edge has at
most one bridgehead). We want to calculate the expected time that A needs to
reach the middle of the chain (if y is even then it is the middle bridge, otherwise
it is the middle clique) on a graph chosen uniformly at random from G, ,,.
When the agent is traversing edges of the clique, each edge contain a bridge-
head with probability ((5) — 1))71, hence with probability at least % the agent
needs to traverse ((’23) — 1) /2 different edges. As in each clique bridgeheads are
chosen independently, we can choose the constants so that by the Chernoff Bound
the time to reach the middle of the chain is (y . xz) = Q (m) with probability
at least % if G is chosen uniformly at random from G, ,. By symmetry, this holds
for both endpoints (reaching middle from the first or the y-th clique). Hence,
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there exists G* € G, , such that with probability at least % the time of A to
reach the middle from both endpoints is at least ¢ - m for some constant ¢ > 0.
By Lemma 1, A is not well-hiding on G* if the number of steps is at most ¢-m. O

7 Conclusions and Further Research

We introduced the problem of location hiding, discussed efficient algorithms and
lower bounds for some settings. Nevertheless, some questions are left unanswered.
The model considered by us encompasses wide range of scenarios with large
variety of possible agents arrangements. Moreover, some natural classes of graphs
may provide reasonable approximation in the cases where terrain should be
modeled as a connected region on a plane. Some examples of such graphs are
those from families of grid-like graphs. They contain edges joining only those
pairs of vertices which are close to each other (in the sense that they have small
euclidean distance after embedding the graph on a plane). Increasing the number
of vertices leads then to more close resemblance to connected continuous regions.
It would be, however, an interesting line of research to fully extend our approach
to continuous connected terrains and derive analogous results for that model.

Another line of research is the model with dynamic topology that may change
during the execution of the protocol. Similarly, we believe that it would be
interesting to investigate the model with the weaker adversary that is given only
partial knowledge of the graph topology and the actual assignment of agents. On
the other hand, one may study more powerful adversaries being able to observe
some chosen part of the network for a given period of time. It would be also
worth considering how high level of security can be achieved if each agent is able
to perform only O (1) steps. Motivated by the fact that the mobile devices are in
fact similar objects, we considered the setting where they are indistinguishable.
It would be useful to study the case when the adversary can distinguish between
different agents. We also plan to deeper understand the relation of location hiding
problem with classic, fundamental problems like rendez-vous or patrolling.

We defined the energy complexity as maximal energetic expenditure over
all agents. In some cases, however, it would be more adequate to consider total
energy used by all stations. Finally, it would also be interesting to construct more
efficient protocols for given classes of graphs with some common characteristic
(e.g., lines, trees) and algorithms desired for restricted distributions of Xj.

Acknowledgments. The authors of this paper would like to thank to anonymous
reviewers for their valuable comments, suggestions and remarks.

Appendix 1: Information Theory

We recall some basic definitions and facts from Information Theory that can be
found e.g. in [5]. In all cases below log will denote the base-2 logarithm.

Definition 3 (Entropy). For a discrete random wvariable X: X — R the
entropy of X is defined as H (X) = =3, Pr[X = z]log Pr[X = x].
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Definition 4 (Conditional entropy). If X: X - R and Y: Y — R are two
discrete random variables, we define the conditional entropy as

H(X[Y)==> Pr[Y =y > Pr[X =2V = y]logPr[X = 2|V =y].
yey reEX

Fact 1. For any random variables X andY H (X|Y) < H (X) and the equality
holds if and only if X and Y are independent.

Definition 5 (Relative entropy). Let X andY be two discrete random vari-
ables defined on the common space X with pmf p(x) and q(x), respectively. The
relative entropy (Kullback-Leibler distance) between p(x) and q(x) is

D(pllg) = ) p(x)log plz)

reX q(:z:)

Fact 2 (Information inequality). Let p(z) and q(x) be probability mass func-
tions of two discrete random variables X, Y : X — R. Then D (p||q) > 0 with
equality if and only if Vo € X p(x) = q(x).

Fact 3 (Theorem 1 in [7]). Let p(z), q(x) > 0 be probability mass functions
of two discrete random variables X and Y, respectively, defined on the space X .

Then
D (pllg) < é (Z I;((;)) - 1) .
rzeX

Definition 6 (Mutual information). If X and Y are two discrete random
variables defined on the spaces X and Y, respectively, then the mutual informa-
tion of X andY is defined as

PriX =zY =
— Z Z Pr[X =,V = y]log (Pr[)[( =z Pr[Y —y]y]> -0

zeEX yey

Fact 4. For any discrete random variables X,Y

- 0<I(X,Y)<min{H (X),H (Y)} and the first equality holds if and only if
random variables X and Y are independent,

CI(X,Y)=I1(Y,X)=H(X) - H(X|Y)=H(Y) - H(Y|X).

- I(X,Y) =D (p(z,y)|lp(z)p(y)) where p(x,y) denotes the joint distribution,
and p(x)p(y) the product distribution of X and Y.

Appendix 2: Markov Chains

We recall some definitions and facts from the theory of Markov chains. They can
be found e.g. in [5,13,15]. Unless otherwise stated, we will consider only time-
homogeneous chains, where transition probabilities do not change with time.
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Definition 7 (Total variation distance). For probability distributions p and
v on the space X we define the total variation distance between p and v as

drv (1, v) = maxacy |[(A) — v(A4)].

Fact 5. Let p and v be two probability distributions on common space X. Then
we have dyy () = 1 5, e Iu() — v(2).

Definition 8. Let P!(xg,-) denote the distribution of an ergodic Markov chain
on finite space X in step t when starting in the state xg. Let m be the sta-
tionary distribution of M. We define d(t) = maxzex dry (P'(z,-),7) and
d(t) = max, yex drv (P'(z,-), P'(y,-)).

Fact 6. Let P be the family of all probability distributions on X. Then

- () < d(e) < 2d(1),
n d(t) = Supue’P dTV (/’LPt7 7T) = Supp,uep dTV (/’LPt7 VPt)'

Definition 9 (Mixing time). For an ergodic Markov chain M on finite space
X we define the mizing time as tmix (€) = min{¢: d(t) < e} and tmix = tmix (1/4).

Fact 7. For any e > 0, tmix () < Llog 5_1J timix -

Definition 10 (Random walk). The random walk on a graph G = (V, E)
with n nodes and m edges is a Markov chain on V with transition probabilities

1/deg (v; if {v;,v;} € E,
pij = Pr[Xpp1 = vj| X = vi] = fdeg vi), if {vi ]}

0, otherwise.
The lazy random walk is the random walk which, in every time t, with probability
1/2 remains in current vertex or performs one step of a simple random walk.

The following Fact 8 gives an upper bound on the mixing time for random
walks. It follows e.g. from Theorem 10.14 in [13] and the properties of cover time
and its relation to mixing time (see [11]).

Fact 8. For a lazy random walk on an arbitrary connected graph G with n ver-
tices tmix = O (nd) .

Fact 9 (cf. [4,5,22]). Let M = (Xo,X1,...) be an ergodic Markov chain on
finite space X with transition matriz P and stationary distribution .

— For any two probability distributions p and v on space X the relative entropy
D (uP||vP?) decreases with t, i.e. D (uP*||[vP') > D (uP™!|[vPt1).

— For any initial distribution p the relative entropy D (uPt||7) decreases with
t. Furthermore, lim;_,o, D (uP?||) = 0.

— The conditional entropy H (Xo|X}) is increasing in t.
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