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Abstract. The increasing popularity of unmanned aerial vehicles
(UAVs) in critical applications makes supervisory systems based on the
presence of human in the control loop of crucial importance. In UAV-
traffic monitoring scenarios, where human operators are responsible for
managing drones, systems flexibly supporting different levels of auton-
omy are needed to assist them when critical conditions occur. The assess-
ment of UAV controllers’ performance thus their mental workload may
be used to discriminate the level and type of automation required. The
aim of this paper is to build a mental-workload prediction model based on
UAV operators’ cognitive demand to support the design of an adjustable
autonomy supervisory system. A classification and validation procedure
was performed to both categorize the cognitive workload measured by
ElectroEncephaloGram signals and evaluate the obtained patterns from
the point of view of accuracy. Then, a user study was carried out to iden-
tify critical workload conditions by evaluating operators’ performance in
accomplishing the assigned tasks. Results obtained in this study provided
precious indications for guiding next developments in the field.
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1 Introduction

In recent years, the unmanned aerial vehicle (UAV) applications domain has
seen a rapid growing interest in the development of systems able to assist human
beings in critical operations [1–3]. Examples of such applications include security
and surveillance, monitoring, search and rescue, disaster management, etc. [4].

Systems able to flexibly support different levels of autonomy (LOAs) accord-
ing to both humans’ cognitive resources and their performance in accomplishing
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critical tasks, may be exploited to determine situations in which system inter-
vention may be required [5–7]. The human’s cognitive resources and the ability
of the system to dynamically change the LOA according to the considered con-
text are generally termed as “cognitive or mental workload” [8] and “adjustable
or sliding autonomy” [9], respectively.

In literature, several criteria have been investigated to evaluate human’s
cognitive load. The main measurement techniques have been historically classi-
fied into three categories: physiological, subjective, and performance-based [10].
Physiological measurements are cognitive load assessment techniques based on
the physical response of the body. Subjective measurements are used to eval-
uate humans’ perceived mental workload by exploiting rankings or scales. Per-
formance or objective measurements are used to evaluate humans’ ability to
perform a given task.

By moving from the above considerations, the aim of this paper is to build a
classification and prediction model of UAV operators’ mental workload to sup-
port the design of an adaptive autonomy system able to adjust its level of auton-
omy accordingly. An ElectroEncephaloGram (EEG) signals was used as physio-
logical technique for assessing operators’ mental workload and a Support Vector
Machine (SVM) was leveraged as learning and classification model [11–13].

A 3D simulation framework was exploited in this work to both experiment
different flying scenarios of a swarm of autonomous drones flying in an urban
environment and test the operator’s performance in UAV-traffic management.
A user interface was also used to show the 2D visualization of experimented
environment and allow human operators to interact with UAVs by issuing flight
commands.

A user study was carried out with several volunteers to both evaluate oper-
ators’ performance in accomplishing supervision tasks of a growing number of
drones and gather different workload measurements under critical conditions.

The rest of the paper is organized as follows. In Sect. 2, relevant works con-
cerning workload measurements are reviewed. In Sect. 3, the device exploited
in the study is described. Sections 4 and 5 provide an overview of the overall
simulation framework and report details of the user interface considered in this
work, respectively. Sections 6 and 7 introduce the methodology that has been
adopted to perform the experimental tests and discuss data analysis and the
classification procedure. Lastly, Sect. 8 discusses obtained results and concludes
the paper by providing possible directions for future research activities in this
field.

2 Related Work

Many studies have investigated the relationship between tasks performed by an
individual and its cognitive load. In literature, different techniques have been
proposed for mental workload assessment [10].

For instance, concerning subjective measurements techniques, [14,15] have
exploited the NASA-TLX questionnaire to evaluate users’ perceived workload in
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gaze-writing and robotic manipulation tasks, respectively. Similarly, Squire et al.
[16] have investigated the impact of self-assessed mental workload in simulated
game activities.

Despite, these measurements have been proved to be a reliable way to assess
humans’ mental workload [17], they often require annoying or repetitive inter-
actions to the users by asking them to fill different rankings or scales.

In parallel to these studies, other works have evaluated physiological mea-
surements as mental workload assessment techniques. As a matter of example,
Wilson et al. [18] exploited EEG channels, electrocardiographic (ECG), elec-
trooculographic (EOG), and respiration inputs as cognitive workload evaluation
in air traffic control tasks. Functional Near-Infrared Spectroscopy (fNIRS) and
Heart Rate Variability (HRV) techniques were exploited in [19] and [20] to assess
the human’s mental workload in n-back working memory tasks and ship simula-
tors, respectively. Besserve et al. [21] studied the relation between EEG data and
reaction time (RT) to characterize the level of performance during a cognitive
task, in order to anticipate human mistakes.

Although these studies have provided evidences to improve accuracy in work-
load measurements, they traditionally exploit bulky and expensive equipment
virtually uncomfortable to use in real application scenarios [22]. Data about suit-
ability of alternative devices in physiological measurements are actually required
in order to properly support next advancements in the field. Some activities in
this direction have been already carried out. For instance, Wang et al. [12] have
proved that a small device, as a 14-channel EMOTIV R©Headset, can be suc-
cessful used to characterize the mental workload in a simple memory n-back
task.

The goal of the present paper is to study on results reported in [12] a different
application scenario exploiting EEG signals to build a UAV operators’ mental
workload prediction model in drones monitoring tasks.

3 Emotiv Epoc Headset

This section briefly describes the brain wearables devise EMOTIV Epoc+ R©1

considered in this study by illustrating its hardware and software features. More
specifically, the EMOTIV Epoc+ (Fig. 1a) is a wireless Brain Computer Inter-
face (BCI) device manufactured by Emotiv. The headset consists of 14 wireless
EEG signal acquisition channels at 128 samples/s (Fig. 1b). The recorded EEG
signal is transmitted to an USB dongle for delivering the collected information
to the host workstation. A subscription software, named Pure·EEG is provided
by Emotiv to gather both the raw EEG data and the dense spatial resolution
array containing data at each sampling interval.

4 Simulation Framework

The basic idea inspiring the design of the present framework is to test differ-
ent UAV flying scenarios in an urban environment. Such scenarios simulate
1 https://www.emotiv.com/epoc/.

https://www.emotiv.com/epoc/
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Fig. 1. Emotiv EPOC headset (a) and its 14 recorder positions (b).

potentially critical situations in which drones could be involved in. The logi-
cal components that were assembled to implement the proposed framework are
illustrated in Fig. 2. By digging more in details, the UAVs Simulator is the mod-
ule responsible for simulating swarm of autonomous drones flying in the 3D
virtual environment. It consists of three different modules, namely: Autopilot,
Physics Simulation and Ground Control Station (GCS).

Fig. 2. Logical components of the simulation framework.

The Autopilot module is responsible for running drones flight stability soft-
ware without any specific hardware. More specifically, it exploits the Software-
In-The-Loop (SITL)2 simulator to run the PX4 Autopilot Flightcode3 - an open
source UAV firmware of a wide range of vehicle types. The Physics Simulation
module is the block devoted to load the 3D urban environment and execute the
drone flight simulation in it. Gazebo4 physics engine was exploited in this block

2 http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html.
3 https://px4.io.
4 https://gazebosim.org.

http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://px4.io
https://gazebosim.org
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for modeling and rendering the 3D models of drones with their physic prop-
erties, constraints and sensors (e.g. laser, camera). In particular, Gazebo runs
on Robot Operating System (ROS)5, which is a software framework developed
for performing robotics tasks. Then, the Ground Control Station (GCS) module
contains the software used for setting drones’ starting locations, planning mis-
sions and getting real-time flight information. The communication between the
Autopilot Flightcode and the GCS module is provided by the Micro Air Vehicle
ROS (MAVROS) node with the MAVLink communication protocol (Fig. 2).

Since drones communicate or transmit information through the network, low
bandwidth coverage areas could lead to loss of communication and thus to poten-
tially critical conditions. Hence, a Bandwidth Simulator is developed to estimate,
in the experimented city, the maximum amount of data the network can trans-
mit in the unit of time. The network transmission rate is assumed to depend
on population density of the city sites (parks, stadiums, schools, etc.) and the
network coverage.

Lastly, the Alert Module is the block devoted to determine the level of risk
(later referred to as “Alert”) of each drone by gathering data from both UAVs
and Bandwidth Simulators. Specifically, as in [23,24], the UAVs Simulator pro-
vides drone information regarding both their battery level and their distance
from obstacles (e.g. buildings). The Bandwidth Simulator sends the estimated
network transmission rate in the areas around drones’ positions. The mapping
between these parameters and each drone’s “Alert” is performed through a func-
tion defined as follows: y = (b − 1)−1 ∗ (o − 1)−1 ∗ (n − 1)−1, where b represents
the drone’s battery level, o is its distance from obstacles, n is the estimated
bandwidth coverage around its position and y is its level of risk. Three differ-
ent “Alert” levels are proposed in this work, namely: “Safe”, “Warning” and
“Danger”.

5 User Interface

In this section, the user interface devised for showing the 2D visualization of
experimented environment and useful information allowing human operators to
interact with UAVs is presented.

As illustrated in Fig. 3a, a wide region of the operator’s display is covered
with the 2D map of the city in which the real-time drones’ locations are shown. A
colored marker is used to depict the drone’s GPS position as well as its current
status. Three different colors are used to illustrate the drone’s level of risk:
green (“Safe”), yellow (“Warning”) and red (“Danger”). On the right side of
the interface an extensive visual summary for each drone regarding its unique
name, its battery level, the bandwidth coverage of the area around its location
and its flying altitude, is shown (Fig. 3b). Right below the map five buttons
allowing operators to issue flight commands or show general information about
the map or drones are placed (Fig. 3c). More specifically, the “Start” button
is used to run the 3D simulation, whereas the “Options” button to show or
5 https://www.ros.org.

https://www.ros.org
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Fig. 3. Monitoring interface (a), UAVs summary (b) and control buttons (c).
(Color figure online)

hide the bandwidth coverage of the city and the drones’ paths. The other three
buttons are used by the human operator to land, hover or change the drone’s
path, respectively. In this scenario, it is worth observing that EEG signals could
be affected by the movement of human operators for pressing the above buttons.
Thus, an artifact removal stage is needed in order to remove all undesired signals
as detailed in Sect. 7.1.

6 User Tasks

The goal of this paper is to exploit EEG signals to build a prediction model of the
UAV operators’ mental workload in order to train a system able to autonomously
predict operators’ performance in UAVs monitoring operations. To this aim, an
SVM classification algorithm was exploited to learn the ability of operators to
carry out assigned drone-traffic-control tasks in different flying scenarios. Four
monitoring tasks were experimented in this work, namely: M1, M2, M3 and M4.
In particular, M1 consisted of a single flying drone whose path was designed for
avoiding obstacles on its route. No operator’s action was necessary to successfully
complete the mission. M2 was meant to evaluate the operator’s performance in
monitoring two drones at risk of colliding. Collisions were specifically designed
distant over time in order to allow the operator to be virtually able to deal with
them by keeping the effort to complete the mission relatively low. Mission M3
consisted of five drones, three of which at high risk of colliding. This mission was
intentionally created to be very difficult to complete even though theoretically
still manageable. Lastly, M4 consisted of six drones, each of which required
operator’s interventions to successfully complete the mission. It was devised to
be hardly to complete.
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Furthermore, a mission is considered “successfully completed” when all drones
landed in the intended positions or “failed” when at least one drone crashed.
The number of drones in each mission was also defined relying on a preliminary
experiment which proved no significance difference in operators’ mental workload
in monitoring three or four UAV. Data collected during mission M1 were used
as a mental workload baseline whereas those recorded in M4 as high mental
workload reference.

7 Data Analysis and Classification

This section details the data analysis and classification procedure performed in
this work. It entails the following steps: data pre-processing, feature extraction
and classification.

7.1 Pre-processing

The EEG consists of recording electric signals produced by the activation of
thousands of neurons in the brain. These signals are gathered by electrodes
located over the scalp of a person. However, some spurious signals may affect
the EEG data due the presence of noise or artifacts. In particular, the artifacts
which are signals with no cerebral origin can be divided in two groups. The first
group is related to physiological sources such as eye blinking, ocular movement
and heart beating. The second group consists of mechanical artifacts, such as
the movement of electrodes or cables during data collection [25]. Thus, a pre-
processing stage is needed to remove all undesired signals and noise. It consists
of three different phases, namely: filtering, offset removal and artifact removal.
The EEGlab toolbox under the Matlab environment [26] was exploited in this
phase.

Since the EEG signals frequencies are within 0.5 and 45 Hz, the filtering
phase implements a Finite Impulse Response (FIR) passband filter to remove
signals with high frequencies and increase signal to noise ratio. The offset removal
phase eliminates potential offset residues after the filtering phase. The last
stage exploits the Artifact Subspace Reconstruction (ASR) algorithm for artifact
removal [27].

7.2 Feature Extraction

Given the preprocessed data, relevant features have to be extracted to train the
classification model. For this purpose, temporal ranges of the signals containing
relevant events to be analyzed are defined. In this work, the signal was split
in different time windows as follows: 15 s after the start of the EEG recording
and 15 s before the first failure, divided in 5 s windows. Data recorded during
the idle drone’s takeoff phase was ignored to avoid exploiting related mental
workload measurements as baseline reference in the UAV monitoring experiment.
Data in the range just before and after the first failure were not recorded since
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they may be affected of biases due to the operator’s frustration for failing the
assigned task. For each window the following features were calculated channel
by channel: Power Spectral Density, Mean, Variance, Skewness, Kurtosis, Curve
length, Average non-linear energy and Number of peaks [12]. These features were
then concatenated in order to make each window corresponds to a row of features
appearing in order of channel. Each row was then assigned to a label that states
whether the operator failed or not the task for that particular mission.

7.3 Classification

The aim of this step is to train the classification system considered in this study
with the operators’ mental workload for predicting their performance in UAVs
monitoring operations. Three different models were exploited in this work: two
classifiers for predicting the outcome of each mission for each single subject; in
the third one, overall data gathered from all operators were used, in order to
understand whether a generalized model may be also employed.

A procedure dealing with feature scaling, hyperparameter optimization,
results validation and learning model design, was proposed in order to judge
the model considered from the point of view of accuracy.

Feature Scaling. An important issue in signal processing field, and in particu-
lar with the EEG data is the high variability of the features extracted from each
subject thus their different ranges. An appropriate scaling method is needed in
order to normalize all data into the same range. A z-score scaler was used as
normalization method for subtracting mean values from all measured signals and
then dividing the difference by the population standard deviation [28].

Hyperparameter Optimization and Validation Methodology. Since the
aim of the classification methodology is to have a good accuracy on unseen data,
an appropriate validation method becomes necessary in order to measure the
generalization error of the implemented model. For this purpose, a k-fold cross
validation technique was used to both find the best model with the optimal
parameters and test its performance on new unseen data. It consists of samples
subdivision in k folds, where k− 1 are used in each iteration to train the model,
and the remaining one is used to evaluate the results.

According to this validation methodology, data were divided into three dif-
ferent groups, namely training set, validation set, and test set as follows: 20% as
test set, and the other 80% as training and validation sets. A ten-fold cross vali-
dation is then performed on training and validation sets as follows: samples are
divided in ten folds, nine of which are used in each iteration to train the model,
and the other one is used to evaluate the results. This procedure is then iterated
until all folds are used one time as validation set. The training accuracy is then
evaluated as the mean of all the obtained results in the different iterations. The
parameters leading to the best model performance called “Hyperparameters” are
then selected [29]. Lastly, the model is evaluated using the test set.
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Learning Model. A Support Vector Machine (SVM), which is a learning model
able to infer a function from labeled training data, is exploited in this phase to
deduce from the operator’s EEG workload his ability to succeed or not a mission.
It is implemented with two different kernels: linear and Radial Basis Function
(RBF). The former is used to find the best hyperplane separation in binary
classification problems by tuning the regularization parameter C. The latter is
generally used in problems that are not linearly separable and require to find
also the best value of the γ parameter [13].

The C parameter is used to regularize and control the bias variance trade-
off. The γ parameter is used to define the variance of the Radial Basis Function
(RBF). A grid search using powers of ten from 10−2 to 102 was used to tune the
C parameter through the cross-validation phase. For the γ parameter, powers of
ten from 10−4 to 10 were used by considering that bigger values lead to adjust
better the model to the training set but bring possible problems of variance or
over-fitting. Smaller values may bring bias or under-fitting problems.

8 Results and Discussion

As anticipated, the goal of this paper is to build a UAV operators’ mental work-
load prediction model in order to train a system able to autonomously predict
operators’ performance in UAVs monitoring operations. To this aim, mental
workload data have been collected through a user study.

The study involved 10 participants (8 males and 2 females, aged between
19 to 24), selected from the students of Politecnico di Torino. After a brief
training, participants were invited to perform the four tasks M1, M2, M3 and
M4 in sequence through the user interface. Such tasks have been specifically
designed to test operators’ performance in UAVs monitoring operations with an
increasing drones’ level of risk. Each task, whose length was strictly depending
on the operator’s piloting choices, took from 2 to 7 min. During each experiment
(i.e., all tasks performed), physiological measurements gathered by the EEG
signal through the EMOTIV Epoc+ R©Headset were recorded. The EEG signal
was split in different time windows as detailed in Sect. 7.2. For each window,
the following features were calculated: Power Spectral Density, Mean, Variance,
Skewness, Kurtosis, Curve length, Average non-linear energy and Number of
peaks. These features were then concatenated in order to make each window
correspond to a row of features appearing in order of channel. Each row was then
assigned to a label that states whether the operator failed or not the task for that
particular mission. This procedure was performed to generate an heterogeneous
population in order to build a classifier able to autonomously predict the label
from operators’ mental workload measured by EEG signals.

Results obtained in terms of classification algorithm accuracy are reported
in Table 1 specifying the hyperparameters used to train each single model. The
first ten rows of the table represent the obtained results in the individual model
trained using single subject data. The last row shows the overall results using all
the collected data. By digging more in details, as shown in Table 1, the fifth and
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Table 1. Results concerning the accuracy of the classification algorithm for the
individual and overall models.

Participant ID Model

SVM - linear kernel SVM - RBF kernel

C Accuracy Accuracy C γ Accuracy Accuracy

(validation set) (test set) (validation set) (test set)

1 0.01 0.949 0.933 100 0.0001 0.949 0.933

2 100 0.923 0.973 100 0.0001 0.934 0.973

3 0.01 0.965 1 100 0.0001 0.965 1

4 0.01 0.851 0.965 10 0.0001 0.851 0.93

5 * * * * * * *

6 0.1 0.885 0.895 10 0.001 0.899 0.864

7 * * * * * * *

8 0.01 0.944 0.969 100 0.0001 0.936 0.969

9 0.01 0.986 0.927 10 0.001 0.897 0.864

10 0.01 0.995 1 10 0.001 0.995 1

Overall 0.1 0.852 0.839 10 0.001 0.872 0.856

seventh rows present corrupted data that have been discarded for the validation
purpose. In those cases, participants only completed one mission successfully,
making it very difficult to train the model due to class skewness. As a result, no
individual model was trained using those data. However, they were used in the
overall model.

The accuracy scores obtained with the ten-fold cross-validation phase
(Sect. 7.3) are reported in Table 1 as “Accuracy (Validation set)”. The obtained
accuracy with new unseen data is reported as “Accuracy (Test set)”. It is worth
observing that the accuracy scores in these two columns for the same row are not
largely different. This observation allows to conclude, that the proposed model
is not affected by problems of variance thus performs well if tested with other
participants under the same conditions.

Results regarding the accuracy of the test sets show that the linear kernel
always perform better or equal than the RBF kernel for individual models. On
the contrary, the RBF kernel performs better than linear kernel for the overall
model. Specifically, the SVM with the linear kernel is able to predict the oper-
ator’s performance outcomes thus the level of his/her mental workload with an
average accuracy equal to 95.8% and 83.9% when the model is trained on a single
user and on all collected data, respectively. Whereas, an accuracy equal to 94.1%
and 85.6% is reached with the SVM - RBF kernel when the model is trained
using the single user and overall data, respectively. This may be reasonably due
to the fact that individual models trained using single subject data are simpler
classification problems than those with all collected data.
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In this work, the data analysis and classification procedure was performed
offline on the data collected through the user study. Future works will be aimed
to address alternative procedures in order to allow online evaluation of the data.
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