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Abstract. The advancement in brain-computer interface systems
(BCIs) gives a new hope to people with special needs in restoring their
independence. Since, BCIs using motor imagery (MI) rhythms provides
high degree of freedom, it is been used for many real-time applications,
especially for locked-in people. The available BCIs using MI-based EEG
signals usually makes use of spatial filtering and powerful classification
methods to attain better accuracy and performance. Inter-subject vari-
ability and speed of the classifier is still a issue in MI-based BCIs. To
address the aforementioned issues, in this work, we propose a new classi-
fication method, spatial filtering based sparsity (SFS) approach for MI-
based BCIs. The proposed method makes use of common spatial pattern
(CSP) to spatially filter the MI signals. Then frequency bandpower and
wavelet features from the spatially filtered signals are used to bulid two
different over-complete dictionary matrix. This dictionary matrix helps
to overcome the issue of inter-subject variability. Later, sparse repre-
sentation based classification is carried out to classify the two-class MI
signals. We analysed the performance of the proposed approach using
publicly available MI dataset IVa from BCI competition III. The pro-
posed SFS method provides better classification accuracy and runtime
than the well-known support vector machine (SVM) and logistic regres-
sion (LR) classification methods. This SFS method can be further used
to develop a real-time application for people with special needs.
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Brain computer interface (BCI) + Motor imagery (MI)
Sparisty based classification - BCI for motor impaired users

1 Introduction

Brain-Computer Interface systems (BCIs) provides a direct connection between
the human brain and a computer [20]. BCIs capture neural activities associated
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with an external stimuli or mental tasks, without any involvement of nerves and
muscles and provides an alternative non-muscular communication [21]. The inter-
preted brain activities are directly translated into sequence of commands to carry
out specific tasks such as controlling wheel chairs, home appliances, robotic arms,
speech synthesizer, computers and gaming applications. Although, brain activi-
ties can be measured through non-invasive devices such as functional magnetic
response imaging (fMRI) or magnetoencephalogram (MEG), most common BCI
are based on Electroencephalogram (EEG). EEG-based BCIs facilitates many
real-time applications due to its affordable cost and ease of use [18].

EEG-based BCI systems are mostly build using visually evoked potentials
(VEPs), event-related potentials (ERPs), slow cortical potentials (SCPs) and
sensorimotor rhythms (SMR). Out of these potentials SMR based BCI pro-
vides high degrees of freedom in association with real and imaginary move-
ments of hands, arms, feet and tongue [10]. The neural activities associated
with SMR based motor imagery (MI) BCI are the so-called mu (7-13 Hz) and
beta (13-30 Hz) rhythms [16]. These rhythms are readily measurable in both
healthy and disabled people with neuromuscular injuries. Upon executing real
or imaginary motor movements, it causes amplitude supression or enhancement
of mu rhythm and these phenomena are called event-related desynchronization
(ERD) and event-related synchronization (ERS), respectively [16].

The available MI-based BCI systems makes use of spatial filtering and a
powerful classification methods such as support vector machine (SVM) [17,18],
logistic regression (LR) [13], linear discriminant analysis (LDA) [3] to attain
good accuracy. These classifiers are computationally expensive and makes the
BCI system delay. For real-time BCI applications, the ongoing MI events have
to be detected and classified continuously into control commands as accurately
and quickly. Otherwise, the BCI user especially motor impaired people may
get irritated and bored. Moreover, for the same user, the observed MI patterns
differ from one day to another, or from session to session [15]. This inter-personal
variability of EEG signals also results in degraded performance of the classifier.
The above issues motivates us to design a MI-based BCI system with enhanced
accuracy, speed and no inter-subject variations for people with special needs.

With this purpose in hand, we propose a new spatial filtering based spar-
sity (SFS) approach in this paper to classify MI-based EEG signals for BCIs. In
recent years, sparsity based classification has received a great deal of attention
in image recognition [22] and speech recognition [9] field. In compressive sens-
ing (CS), this sparsity idea was used and according to CS theory, any natural
signal can be epitomized sparsely on definite constraints [5,8]. If the signal and
an over-complete dictionary matrix is given, then the objective of the sparse
representation is to compute the sparse coefficients, so that the signal can be
represented as a sparse linear combination of atoms (columns) in dictionary [14].
If the dictionary matrix is designed from the best extracted feature of MI signal,
it helps to overcome the issue of inter-personal and intra-personal variability,
also enhances the processing speed and accuracy of the classifier.
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Fig. 1. Framework of the proposed SFS system.

The framework of the proposed system is shown in Fig. 1. In our proposed
method, from 10-20 international system of EEG electrode placement, we con-
sidered only few channels located over motor areas for further processing. Later,
the selected channels of EEG data are passed through a band-pass filter between
7-13 Hz and 13-30 Hz, as it is known from literature that most of MI signals
lie within that frequency range. Then CSP is applied to spatially filter the sig-
nals and the features obtained from the filtered signals are used to build the
columns (atoms) of dictionary matrix. This is an important phase in the pro-
posed approach which is responsible for removing inter-personal variability and
enhancement of classification accuracy. Later, sparsity based classification is car-
ried out to discriminate the patterns of two-class MI signals. Furthermore, SFS
method provides better accuracy and speed than the conventional support vector
machine (SVM) and logistic regression (LR) classifier models.

Our paper is organised as follows. In Sect.2, we present description of the
data and the proposed technique in details. In Sect. 3, the experimental results
and performance evaluation are presented. Finally, conclusions and future work
are outlined in Sect. 4.

2 Data and Method

This section will describe the MI data used in this research and then the pipeline
followed in the proposed method, that is, channel selection, pre-processing and
spatial filtering based sparsity (SFS) classification of EEG-based MI data is
discussed in detail.

2.1 Dataset Description

We used the publicly available dataset IVa from BCI competition IIT' to validate
the proposed approach. The dataset consists of EEG recorded data from five
healthy subjects (aa, al, av, aw, ay) who performed right-hand and right-foot MI
tasks during each trial. According to the international 10-20 system, MI signals
were recorded from 118 channels. For each subject, there were 140 trials for each

! http://www.bbci.de/competition /iii.
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task, and therefore 280 trials totally. The measured EEG signal was filtered using
a bandpass filter between 0.05-200 Hz. Then the signal was digitized at 1000 Hz
with 16 bit accuracy and it is downsampled to 100 Hz for further processing.

2.2 Channel Selection and Preprocessing

The dataset consists of EEG recordings from 118 channels which is very large
to process. As we are using the EEG signal of two class MI tasks (right-hand
and right-foot), we extract the needed information from premotor cortex, sup-
plementary motor cortex and primary motor cortex [11]. Therefore, from the
118 channels of EEG recording, 30 channels present over the motor cortex are
considered for further processing. Moreover, removal of irrelevant channels helps
to increase the robustness of classification system [19]. The selected channels are
FC2, FC4, FC6, CFC2, CFC4, CFC6, C2, C4, C6, CCP2, CCP4, CCP6, CP2,
CP4, CP6, FC5, FC3, FC1, CFC5, CFC3, CFC1, C5, C3, C1, CCP5, CCP3,
CCP1, CP5, CP3 and CP1. The motor cortex and the areas of motor functions,
the standard 10 + 20 system of electrode placement of 128 channel EEG system
and the electrodes selected for processing is shown in Fig. 2. The green and red
circle indicates the selected channels and the red circle indicates the C3 and C4
channels on the left and right side of the scalp respectively.

Primary motor
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Fig. 2. (a) Motor cortex of the brain (b) Standard 104 20 system of electrode place-
ment for 128 channel EEG system. The electrodes in green and red colour are selected
for processing (c¢) The anterior view of the scalp and the selected channels. (Color figure
online)

From domain knowledge we know that, most brain activities related to motor
imagery are within the frequency band of 7-30 Hz [16]. Bandpass filter can be
used to extract the particular frequency band and also helps to filter out most
of the high frequency noise. The bandpass filter can have as many sub-bands
as one needed [12]. We have experimented with two sub-bands of 7-13 Hz and
13-30 Hz in the two-class MI signal classification problem. The choice of two
sub-bands is due to the fact that mu (u), beta (8) rhythms reside within those
frequency bands. Then data segmentation is done where we used two second
samples after the display of cue of each trial. Each segmentation is called as an
epoch.
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2.3 Proposed Spatial Filtering Based Sparsity Approach

The proposed spatial filtering based sparsity (SFS) approach follows three steps
such as CSP filtering, design of dictionary matrix and sparsity based classifica-
tion. A detailed explanation of each of these steps are given below.

CSP Filtering: Generally, for binary classification problems, CSP has been
applied widely as it increases the variance of one class while it reduces the
variance for the other class [1]. In this paper, how CSP filtering is applied for
the given two-class MI-based EEG dataset is explained briefly. Let X; and X,
be the two epochs of a multivariate signal related to right-hand and right-foot
MI classes, respectively. They are both of size (¢ x n) where ¢ is the number of
channels (30) and n is the number of samples (100 x 2). We denote the CSP
filter by

X¢5P = wTX; (1)

where i is the number of MI classes, X% is the spatially filtered signal, W is
the spatial filter matrix and X; € R°*" is the input signal to the spatial filter.
The objective of the CSP algorithm is to estimate the filter matrix W. This can
be achieved by finding the vector w, the component of the spatial filter W, by
satisfying the following optimization problem:

maz (WTCW) 2)

w A\ wlCyw

where C; = X;XT and Cy = X2XT. In order to make the computation easier
to find w, we computed X; and Xs by taking the average of all epochs of each
class. Solving the above equation using Lagrangian method, we finally have the
resulting equation as:

Ciw = ACow (3)

Thus Eq. (2) becomes eigenvalue decomposition problem, where \ is the
eigenvalue corresponds to the eigenvector w. Here, w maximizes the variance
of right-hand class, while minimizing the variance of right-foot class. The eigen-
vectors with the largest eigenvalues for C; have the smallest eigenvalues for Cs.
Since we used 30 EEG channels, we will have 30 eigenvalues and eigenvectors.
Therefore, CSP spatial filter W will have 30 column vectors. From that, we
select the first m and last m columns to use it as 2m CSP filter of Wggp.

Wesp = [W1, Wa, .o, Wi, Weom1, ...y We| € RZTXC ()

Therefore, for the given two-class epochs of MI data, the CSP filtered signals

are defined as follows:
X{F e RP™ " = WigpXy
ch'SP c RQmX?L .= WgSPXQ

(5)

The above CSP filtering is simultaneously done for the filtered signals under the
sub-bands of 7-13 Hz and 13-30 Hz.
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Designing a Dictionary Matrix: The spatially filtered signals X{*¥ and
X§SP are obtained for each epoch and for each sub-band. These spatially fil-
tered signals are considered as the training signals in our experiment. Let the
number of total training signals be IV, considering each MI class i and each sub-
band. Here, ¢ = 1 for right-hand and i = 2 for right-foot class. The dictionary
matrix can be designed with one type of feature or a combination of different
features. In this work, we designed two types of dictionary matrix, one using
frequency bandpower as feature and the other using wavelet transform energy
as feature for each training signal. Initially, we experimented with many features
like statistical, frequency-domain, wavelet-domain, entropy, auto-regressive coef-
ficients, etc. But we found that bandpower and wavelet energy produces good
differentiable between the two classes when it is plotted over the scalp. Figure 3
shows the spatial representation of bandpower and wavelet energy for two dif-
ferent MI classes. The Fig.3(a) depicts that the bandpower of right-hand is
scattered throughout the scalp while for right-foot the bandpower is high in the
frontal region. In the same way, in Fig.3(b) the wavelet energy is distributed
all over the scalp for right-hand and only on a particular region for right-foot.
Hence, these features are sufficiently good enough to discriminate the two MI
classes.

(b) T

Fig. 3. Scalp plot of (a) bandpower of right-hand and right-foot MI respectively and
(b) wavelet energy for right-hand and right-foot MI respectively.

From each row of the training signal, the second moment or the frequency
bandpower and the wavelet energy using ‘coifl’ wavelet is calculated. This feature
vector of each training signal forms the dictionary matrix. Concatenating the
dictionary matrix of two-classes forms an over-complete dictionary. Since this
dictionary matrix includes all the possible characteristics of the MI signals of
the subjects, the inter-subject variability can be avoided. Figure4 shows the
dictionary constructed for the proposed approach. Thus, the dictionary matrix
is defined as D := [Dy; D3], where D; = [d; 1,d;2,di3,...,d; n]. Each atom or
column of the dictionary matrix is defined as d; ; € R?™*1, j = 1,2, ..., N, having
2m features. So, the dimension of the dictionary matrix D using bandpower as
feature will be 2m x 4N and it is denoted as Dgp and the same dimension
remains on using wavelet energy as feature and it is denoted as Dwg-
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Fig. 4. Two-class dictionary designed for our proposed SFS approach. Each atom in
the dictionary is obtained from the training signal of each class and each sub-band.

Sparse Representation: After the construction of dictionary matrix, we have
our linear system of equations to get the sparse representation for the input
test signal. The test signal is first converted into a feature vector y € R™*!,
using the same way as the columns in dictionary D is generated. So the input
vector can be represented as a linear combination of few columns of D and it is
represented as:

y= Z 83,1ds1 + 852di 2 + ..o+ 85 vy N (6)

K2

where s; ; € R,j = 1,2,...,N are the sparse coefficients and i = (1,2) for the
two-class MI signals. In matrix form it can be represented as:

y =Ds (7)

where s = [s;1,8i2... si,N]T. The objective of the sparse representation is to
estimate the scalar coefficients, so that we can sparsely represent the test signal as
a linear combination of few atoms of dictionary D [14]. The sparse representation
of an input signal y can be obtained by performing /[y norm minimization as
follows:

msin Islly subject to y =Ds (8)

lp norm optimization gives us the sparse representation but it is an NP-hard
problem [2]. Therefore, a good alternative is the {; norm which can also be used
to obtain sparsity. Recent development tells us that the representation obtained
by l; norm optimization problem achieves the condition of sparsity and it can
be solved in polynomial time [6,7]. Thus the optimization problem in Eq. (8)

becomes:
msin lsll; subject to y = Ds (9)

The orthogonal matching pursuit (OMP) is a greedy algorithm used to obtain
sparse representation and is one of the oldest greedy algorithms [4]. It employs
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the concept of orthogonalization to get orthogonal projections at each iteration
and is known to converge in few iterations. For OMP to work in the desired
way, all the feature vectors in dictionary D should be normalized such that
IID;(4)|| = 1, where i = (1,2) are the classes and j = 1,2,..., N. Using OMP we
obtained the sparse representation s, for the feature vector y, which will be used
further for classifying MI signals.

Sparsity Based Classification: After a successful minimization of sparse rep-
resentation, the input vector y will be approximated as a sparse vector which
has the same size as the number of atoms in the dictionary D. Each value of
the sparse vector corresponds to the weight given to the corresponding atom of
the dictionary. The dictionary is made of equal number of atoms for each class.
If for example, there are 1400 atoms in the dictionary for a two-class MI, the
first 700 values of the sparse signal tells us the linear relationship between the
input vector and the first class i.e. right-hand MI class and so on. Hence, the
results of the sparse representation can be used for classification by implying
some simple classification rules in the sparse vector s. In this work, we make
use of two classification rules and it is termed as classifier; and classifiers.
Mathematically, it is defined as follows:

Classifieri(y) = argmax max (Var (s;)) (10)
i=1,2
Classifiers(y) = argmax max (nonzero (s;)) (11)
i=1,2

where maz() is a function that returns the maximum value of a vector, the
function Var() is used to find the variance of data and nonzero() is used to find
the number of sparse (non-zero) elements in a vector. The class ¢ is determined,
if it has maximum variance or maximum number of non-zero elements.

3 Experimental Results

The performance of the model in our experiment depends on the prediction
performance of the classifier. A k-fold cross validation was performed on the
dataset to split the entire data into k folds, from which k& — 1 folds were used to
build the dictionary and one fold for testing the model. Each fold was used for
testing iteratively and the accuracies were calculated. Two different dictionaries
were built: one with bandpower features Dgp and the other with energies of
a wavelet transform Dwg. Accuracy of a model based on training and testing
test, is a good metric by itself to calculate the performance of the classifier.

3.1 Results of Sparsity Based Classification

We had right-hand and right-foot MI signals that needed to be classified. To
illustrate how sparsity plays an important role in our classification, Fig. 5 shows
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Fig.5. Sparse representation s obtained for the two sample test signals. Here, the
left figure represents the sparse signal of right-hand class and the right figure for the
right-foot class.

the sparse representation of two sample test signals belonging to two different
classes using Dgp as dictionary matrix. Here there are around 1400 atoms in
the dictionary and so the first 700 elements corresponds to the first class and
the rest for the second class. We can clearly see that the sparse representation
is classifying the input signal with high accuracies. Table 1 shows the accuracies
of each of the two classifiers in k-fold cross validation using the dictionaries
Dgp and Dwg, respectively. The result shows that classifier; performs better
than classifiers. It also shows us that the sparsity based classification using the
dictionary Dwg outperforms the band-power dictionary Dgp. The normalized
and non-normalized confusion matrices of each of the classifiers using dictionary
Dwg is given in the Fig. 6.

Table 1. k-fold cross validation accuracies for the classifiers using Dgp and Dwg
dictionary.

k-folds k=1k=2k=3|k=4k=5|k=6|k=7|k=8 k=9 k=10 Average
Classifier; |Dpp [94.64/94.64196.42|90.47|94.6491.66|92.85|92.85|93.45|92.26 |93.38
Dwe |98.80/97.02/98.2194.04 |98.80|94.64 | 94.64|96.4298.21 |95.23 |96.60
Classifiers | Dpp |94.64/95.83/92.26/91.07|93.45|89.88/93.45/91.07|95.64|89.28 |92.65
Dwe |98.21/97.02|96.4294.04 |98.62|93.20 | 94.64 |97.82|97.21 |96.20 |96.33

3.2 Comparison with SVM and LR

To evaluate the proposed SFS method, we compared our method using Dwg
as dictionary with the conventional SVM [17,18] and LR [13] methods. As
classifier, gives better accuracy than classi fiers, it is used for comparison with
the conventional methods. For real-time BCI applications, speed of the classi-
fier is an important issue. Hence, CPU execution time is estimated for all the
methods. All the classifier algorithms were performed using the same computer



56 S. R. Sreeja et al.

Confusion matrix, without normalization Normalized confusion matrix

Right Hand 0.9630 0.03690

Foot

Right Hand

True Label
True Label

>
s
&
Pl <&
$
&

Predicted Label Predicted Label
Confusion matrix, without normalization Normalized confusion matrix

Right Hand

True Label
True Label

Foot

7

s
&

k-
$
&
sl
&

Predicted Label Predicted Label

Fig. 6. Confusion matrix of classifier; and classifiers using the dictionary Dwe.

and same software Python 2.7, making use of Scikit Learn? machine learning
package. The accuracies and the CPU execution time obtained for different folds
for the proposed SFS method using classifier; and Dwg as dictionary, and the

Table 2. Comparison of k-fold cross-validation accuracy and CPU execution time
of various folds for the proposed SFS approach, and the conventional SVM and LR
classifier methods.

folds k-fold cross-validation Accuracy (%) | CPU execution time (Seconds)
Proposed SFS | SVM | LR Proposed SFS | SVM | LR

k=1 98.80 94.22 193.74 24.02 30.62 | 31.00
k=2 97.02 93.10 |92.88 25.42 29.99 |29.34
k=3 98.21 93.46 |91.79 23.00 28.23 129.21
k=4 94.04 92.78 |91.86 24.50 29.29 130.19
k=5 98.80 94.60 |94.44 24.32 30.83 |28.00
k=6 94.64 91.78 |91.32 23.36 29.00 |29.75
k=17 94.64 91.90 |91.46 24.17 29.35 |28.86
k=8 96.42 92.45 |91.98 24.56 29.43 129.94
k=9 98.21 93.62 |92.85 23.32 29.29 |30.32
k=10 95.23 92.88 |92.52 23.96 28.00 |29.76
Average | 96.60 93.08 | 92.48 24.06 29.40 | 29.64

2 http://scikit-learn.org.
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conventional SVM and LR are listed in Table 2. The average values obtained indi-
cates that the proposed SF'S method delivers high average classification accuracy
and lesser execution time than the SVM and LR methods. Since the proposed
method executes in lesser time with higher accuracy, it can be further used to
build real-time MI-based BCI applications for motor disabled people.

4 Conclusion

In this work, we used a new spatial filtering based sparsity (SFS) approach to
classify two-class MI-based EEG signals for BCI applications. Firstly, the EEG
signal with 118 channels are of high-dimension. To reduce the computational
complexity, constraints are applied on selecting channels. Secondly, to better
discriminate the MI classes, two sub-bands of band-pass filter between 7-13 Hz
and 13-30 Hz are applied to the selected number of channels followed by CSP
filtering. Thirdly, it is important to note that EEG signals produce variations
among users at different sessions. As SFS method requires a dictionary matrix, it
is designed using the bandpower and wavelet features obtained from the spatially
filtered signals. This dictionary matrix helps us to overcome the inter-subject
variability problem. This method also reduces the computational complexity
significantly and increases the speed and accuracy of the BCI system. Hence,
the proposed SFS approach can be served to design a more robust and reliable
MI-based real-time BCI applications like text-entry system, gaming, wheel-chair
control, etc., for motor impaired people. Future work will focus on extending the
sparsity approach for classifying multi-class MI tasks which can be further used
for communication purpose.
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