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Abstract. This paper summarizes an invited talk given at the 9th
International Conference on Intelligent Human Computer Interaction
(December 2017, Paris). Algorithms have revolutionized almost every
field of manufacturing and engineering. Is the design of user interfaces
the next? This talk will give an overview of what future holds for algo-
rithmic methods in this space. I introduce the idea of using predictive
models and simulations of end-user behavior in combinatorial optimiza-
tion of user interfaces, as well as the contributions that inverse modeling
and interactive design tools make. Several research results are presented
from gesture design to keyboards and web pages. Going beyond combina-
torial optimization, I discuss self-optimizing or “autonomous” UI design
agents.

Talk Summary

The possibility of mathematical or algorithmic design of artefacts for human
use has been a topic of interest for at least a century. Present-day user-centered
design is largely driven by human creativity, sensemaking, empathy, and creation
of meaning. The goal of computational methods is to produce a full user inter-
face (e.g., keyboard, menu, web page, gestural input method etc.) that is good
or even “best” for human use with some justifiable criteria. Design goals can
include increases in speed, accuracy, or reduction in errors or ergonomics issues.
Computational methods could speed up the design cycle and improve quality.
Unlike any other design method, some computational methods offer a greater-
than-zero chance of finding an optimal design. Computational design offers not
only better designs, but a new, rigorous understanding of interface design. Algo-
rithms have revolutionized almost every field of manufacturing and engineering.
But why has user interface design remained isolated?

The objective of this talk is to outline core technical problems and solu-
tion principles in computational Ul design, with a particular focus on artefacts
designed for human performance. I first outline main approaches to algorithmic
user interface (UI) generation. Some main approaches include: (1) use of psycho-
logical knowledge to derive or optimize designs [1-3], (2) breakdown of complex
design problems to constituent decisions [4], (3) formulation of design problems
as optimization problems [5], (4) use of design heuristics in objective functions
[6], (5) use of psychological models in objective functions [7,8], (6) data-driven
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methods to generate designs probabilistically, (7) formulation of logical models
of devices and tasks to drive the transfer and refinement of designs [9], and (8)
learning of user preferences via interactive black-box machine learning methods
[10]. T ask: Why is there no universal approach yet, given the tremendous success
of algorithmic methods across engineering sciences, and what would a universal
approach entail? I argue that successful approaches require solving several hard,
interlinked problems in optimization, machine learning, cognitive and behavioral
sciences, and design research.

I start with an observation of a shared principle across the seemingly different
approaches: The shared algorithmic basis is search: “To optimize” is the act
and process of obtaining the best solution under given circumstances. Design
is about the identification of optimal conditions for human abilities. To design
an interactive system by optimization, a number of decisions is made such that
they constitute as good whole as possible. What differentiates these approaches
is what the design task is, how it is obtained, and how it is solved. Four hard
problems open up.

The first problem is the definition of design problems: algorithmic represen-
tation of the atomic decisions that constitute the design problem. This requires
not only abstraction and mathematical decomposition, but understanding of the
designer’s subjective and practical problem. I show several definitions for com-
mon problems in Ul design and discuss their complexity classes. It turns out
that many problems in Ul design are exceedingly large, too large for trial-and-
error approaches. To design an interactive layout (e.g., menu), one must fix the
types, colors, sizes, and positions of elements, as well as higher-level properties,
such as which functionality to include. The number of combinations of such
choices easily gets very large. Consider the problem of choosing functionality for
a design: If for n functions there are 2 — 1 candidate designs, we already have
1,125,899,906,842,623 candidates with only 50 functions, and this is not even a
large application.

The second problem is the definition of meaningful objective functions. The
objective function is a function that assigns an objective score to a design can-
didate. It formalizes what is assumed to be ‘good’ or ‘desirable’ — or, inversely,
undesirable when the task is to minimize. In applications in Ul design, a key
challenge is to formulate objective functions that encapsulate goodness in both
designer’s and end-users’ terms. In essence, defining the objective function
“equips” the search algorithm with design knowledge that tells what the designer
wants and predicts how users interact and experience. This can be surface fea-
tures of the interface (e.g., visual balance) or expected performance of users
(e.g., ‘task A should be completed as quickly as possible’), users’ subjective
preferences, and so on. However, it is tempting but naive to construct objec-
tive function based on heuristics. Those might be easy to express and compute,
but they might have little value in producing good designs. It must be kept in
mind that the quality of a interface is determined not by the designer, nor some
quality of the interface, but by end-users, in their performance and experiences.
I argue that an objective function should be essentially viewed as a predictor:
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a predictor of quality for end users. It must capture some essential tendencies in
the biological, psychological, behavioral, and social aspects of human conduct.
This fact drives a departure from traditional application areas of operations
research and optimization, where objective functions have been based on natural
sciences and economics. I discuss the construction of objective function based on
theories and models from cognitive sciences, motor control, and biomechanics.

A key issue we face in defining objective functions for interface design is the
emergent nature of interaction: the way the properties of the design and the
user affect outcomes in interaction unfolds dynamically over a period of time in
the actions and reactions of the user. A key issue is people’s ability to adapt
and strategically change. The way they deploy their capacities in interaction
complicates algorithmic design, because every design candidate generated by
an optimizer must be evaluated against how users may adapt to it. I discuss
approaches from bounded agents and computational rationality toward this end.
Computational rationality (CR) [11] assumes an ideal agent performing under
the constraints posed by the environment. This assumption yields good estimates
in performance-oriented activities, but complicates computation remarkably.

The third problem is posed by algorithmic methods. I discuss trade-offs
among modern method, which can be divided into two main classes: (i) heuristics
such as genetic algorithms and (ii) exact methods such as integer programming.
Exact methods offer mathematical guarantees for solutions. However, they insist
on rigorous mathematical analysis and simplification of the objective function,
which has been successful in only few instances in HCI this far. Black-box meth-
ods, in contrast, can attack any design problem but typically demand empirical
tuning of the parameters and offer only approximate optimality. Here the design
of the objective function and design task come to fore. The choice of model-
ing formalism is central, as it determines how design knowledge is encoded and
executed, and how interaction is represented.

Fourth is the definition of task instances. In optimization parlance, task
instance is the task- and designer-specific parametrization of the design task:
“What constitutes a good design in this particular case?” There are two main
sources of information when determining a task instance. To capture a designer’s
intention, interactive optimization can be used. Characteristic of interaction
design is that the objectives can be under-determined and choices subjective
and tacit [12]. The known approaches in design tools can be divided according
to four dimensions: (1) interaction techniques and data-driven approaches for
specification of a design task for an optimizer, (2) control techniques offered for
steering the search process, (3) techniques for selection, exploration and refine-
ment of outputs (designs), (4) level of proactivity taken by the tool, for example
in guiding the designer toward good designs (as determined by an objective func-
tion). Principled approaches like robust optimization or Bayesian analysis can
be used. I discuss lessons learned in this area.

However, the designer may not always be able to report all design-relevant
objectives. For a full specification of a design task, one may need to algorith-
mically elicit what users “want” or “can” from digitally monitorable traces.
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This is known as the inverse modeling problem [13]. I discuss probabilistic meth-
ods for cognitive models. These may disentangle among beliefs, needs, capabili-
ties, and cognitive states of users as causes of their observations. Alternatively,
black box models can be used. The benefit of white-box models, however, is
that they allow the algorithm in some cases to predict the consequences (costs,
benefits) of changing a design on user.

To conclude, perhaps the most daring proposition made here is that essential
aspects of design, which has been considered a nuanced, tacit, and dynamic
activity, can be abstracted, decomposed, and algorithmically solved, moreover
in a way that is acceptable to designers. I review empirical evidence comparing
computationally to manually designed Uls. However, much work remains to be
done to identify scalable and transferable solution principles.

Even more critical is the discussion of what “design” is. Interaction design
is characterized as “the process that is arranged within existing resource con-
straints to create, shape, and decide all use-oriented qualities (structural, func-
tional, ethical, and aesthetic) of a digital artefact for one or many clients” [14].
Some scholars go as far as claiming that interaction design is through-and-
through subjective and experiential [15]. It is about conceptualizing product
ideas and designing their behavior from a user’s perspective. In this regard, com-
putational methods still cover a limited aspect of design. Transcending beyond
optimization, I end with a discussion of what artificially intelligent Ul design
might mean. I claim that “Al for Design” must meet at least five defining char-
acteristics of design thinking: (1) agency, (2) problem-solving, (3) sense-making,
(4) speculation, and (5) reflection. So far, no approach exists that — in a unified
fashion and with good results — achieves this.
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