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Abstract. In this work, we propose a non-local L0 gradient minimiza-
tion filter. The nonlocal idea is to restore an unknown pixel using other
similar pixels, and the nonlocal gradient model has been verified for fea-
ture and structure-preserving. We introduce the nonlocal idea into a L0

gradient minimization approach, which is effective for preserving major
edges while eliminating the low-amplitude structures. An optimization
framework is designed for achieving this effort. Many optimized based
filters do not have the property of joint filtering, so they can not be used
in many problems, such as joint denoising, joint upsampling, while the
proposed filter not only inherits the advantages of the L0 gradient min-
imization filter, but also has the property of the joint filtering. So our
filter can be applied to joint super resolution. With the guidance of the
high-resolution image, we propose upsampling the low-resolution depth
image with the proposed filter. Experimental results demonstrate the
effectiveness of our method both qualitatively and quantitatively com-
pared with the state-of-the-art methods.
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1 Introduction

Edge-aware image processing technique is broadly studied for smoothing images
without destroying different levels of structures. It is wildly applied for computer
graphics community. Edge-preserving filters can be broadly divided into two
broad categories: average based approaches and optimization based approaches.

The methods of first class smooth images by taking a weighted average of
nearby pixels, where the weights depend on the intensity/color difference. Aver-
age based filters include bilateral filter [17], nonlocal means filter [1], guided
image filter [8] and rolling guidance filter [23]. They often use guidance image to
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define the similarity between pixels. The main drawback of these filters is that
they will produce the halo effect near the edge.

The total variation (TV) model [15], L0 gradient minimization filter (L0

filter) [20], weighted least squares (WLS) [3] and curvature filter [7] belong to
the optimization based methods. These approaches smooth images by optimizing
objective functions containing terms defined in Lp norm (p = 0, 1, 2). Although
the optimization based methods can avoid the halo effect along salient edges
and often generate high quality results, it does not have the property of joint
filtering with reference image, and this shortcoming limits their applications.

Recently, the nonlocal framework has been extensively studied by many schol-
ars as a regularization term to overcome the staircase effect and obtain better
performance. Gilboa and Osher defined a variational functional based nonlocal
TV operators [6]. Zhang et al. [24] proposed a fast split Bregman iteration for this
nonlocal TV minimization. Lately, the nonlocal regularizations are extended to
process more general inverse problems in [12]. However, they penalize large non-
local gradient magnitudes, and it possibly influence contrast during smoothing.

In summary, most image smooth models aim to preserve edges from noise
and textures, and each of them has its limitations. In this work, we present a
new edge-preserving filter based on an optimization framework, which incorpo-
rates the nonlocal strategy into the L0 gradient minimization model and takes
advantage of both variational models and spatial filters. This notion leads to
an unconventional global optimization process involving discrete metrics, whose
solution is able to manipulate the edges in a variety of ways depending on the
saliency.

The proposed framework is general and can be used for several applications.
Different from other optimization based methods, the proposed algorithm can
use the reference image for joint filtering.

The depth images captured by 3D scanning devices such as ToF camera or
Kinect camera may be highly degraded, which have limited resolution and low
quality. As a result, it’s hard to recover high quality depth maps from single
depth image. Fortunately, the depth map is often coupled by high resolution
(HR) color image which shows the same scene and they have strong structural
similarities [4,19,22]. In recently, deep learn based depth upsampling methods
[5,9,11,16] achieve well results. These methods produce the end-to-end upsam-
pling networks, which learn high-resolution features in the intensity image and
supplement the low-resolution depth structures in the depth map.

So this paper applies the proposed filter for depth image super resolution
and treats the natural image as the reference image. With the guidance of the
high-resolution RGB image, the proposed algorithm is well suited for upsam-
pling the low-resolution depth image and it can not only reduce noises, but also
preserve the sharp edges during super resolution. With simulations, the exper-
imental results demonstrate that the proposed approach is promising, and it
does significantly improve the visual quality of the low-resolution depth image
compared with the existing upsampling methods.



Non-local L0 Gradient Minimization and Depth Image Upsampling 87

2 Non-local L0 Gradient Minimization

Different from the definition of gradient, the nonlocal gradient ∇ωSp of each
pixel p on the image S is defined as follows:

∇ωSp = {Sp(q),∀q ∈ Ωp} (1)

where
Sp(q) = (Sq − Sp)

√
ω(p, q) (2)

and Sp(q) is the vector element corresponding to q, ω(p, q) is the weight function,
which is assumed to be nonnegative and symmetric, it measures the similarity
features between two patches (the size is m × m) centered at the pixels p and
q,Ωp is a search window centered at the pixel p (the size of Ωp is n × n) [12,24].

The weight function ω(p, q) in Ωp has the form:

ω(p, q) =
1

Cp
exp(− (Ga∗ | J(p + ·) − J(q + ·) |2)(0)

h2
) (3)

and the normalizing factor Cp is

Cp =
∑

q∈Ωp

exp(− (Ga∗ | J(p + ·) − J(q + ·) |2)(0)
h2

) (4)

where Ga is the Gaussian kernel with standard deviation a, h is a smoothing
parameter, and J is a reference image which can be chosen according to different
applications.

In this work, we denote the input image and filtered image as I and S,
respectively. Our nonlocal gradient measure is written as

C(S) = �{p |‖ ∇ωSp ‖1 �= 0} (5)

It counts p whose magnitude
∑

q∈Ωp

| (Sq − Sp)
√

ω(p, q) |

is not zero. Based on this definition, we can estimate S by solving:

min
S

{‖ S − I ‖22 +λC(S)} (6)

The first term constrains image structure similarity.
It is a discrete counting metric involved in Eq. (6). These two terms describe

the pixel-wise difference and global discontinuity respectively, it is commonly
regarded as computationally intractable. In this work, we introduce an auxiliary
variable based on the half-quadratic splitting method, which can expand the
original terms and update them iteratively. This approach leads to an alternating
optimization strategy.
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Due to the discrete nature, our method contains new subproblems, and it is
different from other L0-norm regularized optimization problems. Although the
proposed method can only approximate the solution of Eq. (6), but it can make
the original problem easier to handle and inherit the property to maintain salient
structures [20].

The auxiliary variables dp are introduced, and they are corresponding to
∇ωSp. We can rewrite the cost function as

min
S,d

{
∑

p

(Sp − Ip)2 + λC(dp) + β ‖ dp − ∇ωSp ‖22} (7)

where C(d) = �{p |‖ dp ‖1 �= 0}, and β is a an automatically adapting controlling
parameter.

Our split variables approaches motivate us to propose this iterative method.
In practice, a good result can be obtained by solving the following two subprob-
lems iteratively.

Subproblem 1: computing S

S = arg min
S

{
∑

p

(Sp − Ip)2 + β ‖ dp − ∇ωSp ‖22} (8)

Now, the subproblem for S consists in solving the linear equations

(S − I) − βdivω(∇ωS − d) = 0 (9)

which provides
S = (1 − βΔω)−1(I − βdivωd) (10)

Here, divωd is defined as the divergence of d, and its discretization at p can
be written as

divωdp =
∑

q∈Ωp

(dp(q) − dq(p))
√

ω(p, q) (11)

The non-local Laplacian Δω is defined as

ΔωS = divω∇ωS =
∑

q∈Ωp

(Sq − Sp)ω(p, q) (12)

Since the non-local Laplacian is negative semi definite, the operator 1 − Δω is
diagonally dominant. Therefore we can solve S by a Gauss-Seidel algorithm.

Subproblem 2: computing d

d = arg min
d

{
∑

p

‖ dp − ∇ωSp ‖22 +
λ

β
C(dp)} (13)

This subproblem can be solved efficiently because the Eq. (13) can be spa-
tially decomposed where dp are estimated individually. It is the main benefit
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of the proposed scheme, which makes the altered problem empirically solvable.
Equation (13) is accordingly decomposed to:

Ep =‖ dp − ∇ωSp ‖22 +
λ

β
H(dp) (14)

where H(dp) is a binary function returning 1 if ‖ dp ‖1 �= 0 and 0 otherwise.
Equation (14) reaches its minimum E∗

p under the condition

dp =
{
0, ‖ ∇ωSp ‖22≤ λ/β
∇ωSp, otherwise

(15)

Proof: (1) When λ/β ≥‖ ∇ωSp ‖22, non-zero dp yields

E(p) = ‖ dp − ∇ωSp ‖22 +λ/β (16)
≥ λ/β (17)
≥ ‖ ∇ωSp ‖22 (18)

Note that dp = 0 leads to
Ep =‖ ∇ωSp ‖22 (19)

Comparing Eq. (16), the minimum energy Ep =‖ ∇ωSp ‖22 is produced when
dp = 0.
(2) When λ/β <‖ ∇ωSp ‖22, Eq. (19) still holds. But when dp = ∇ωSp, Ep has
its minimum value λ/β. Comparing these two values, the minimum energy Ep

is produced when dp = ∇ωSp.
Parameter β is automatically adapted in iterations starting from a small

value, it is multiplied by 2 each time. This scheme is effective to speed up con-
vergence [20].

Continuous nonlocal gradient L1 norm was enforced in nonlocal total varia-
tion (NLTV) [24] smoothing to suppress noise. In our method, strong smoothing
inevitably curtails originally salient edges to penalize their magnitudes. In this
framework, large nonlocal gradient magnitudes are allowed by nature with our
discrete counting measure.

In Fig. 1, we show a natural image smoothing example compared with other
competitive algorithms. One can see that L0 filter [20] (λ = 0.035) generates
a sharp but not completely smooth image which is shown in Fig. 1(b). Many
details are still retained after filtering, such as flower diameter and butterfly, it
is not good enough for applications. The result obtained by NLTV [24] (λ =
0.05) is shown in Fig. 1(c), in the case of overall non-local gradients with small
energies, the edges are not sharp, which makes them difficult to distinguish low
contrast details around. In Fig. 1(d), our result (λ = 0.05) contains the most
significant structures, which are slightly sharper as the nonlocal gradient energy
increases.
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(a) (b)

(c) (d)

Fig. 1. Visual quality comparison of image smoothing. (a) original image, (b) the result
of L0 filter, (c) the result of NLTV, (d) the result of our method.

Our alternating minimization method is described in Algorithm 1.
———————————————————
Algorithm 1. Non-local L0 Gradient Minimization
———————————————————
1. Input: image I, reference image J , smoothing weight λ , parameters β
2. Initialization: S0 = I, compute ω(·, ·) using Eqs. (3)–(4).
3. for i = 0 : MaxIters

With Si, solve for di in Eq. (15);
With di, solver for Si+1 with Eq. (12).

end
4. Output: result image SMaxIters.
———————————————————
In [14], Petschnigg et al. proposed to denoise a no-flash image with its flash

version as the reference image. In Fig. 2, we show a comparison of using the joint
bilateral filter (JBF) [14], NLTV [24] and our method. Although JBF works
well, from the Fig. 2(b), one can find that the gradient inversion artifacts are
significant near some edges. And NLTV does not obtain a satisfactory result.
Our result is sharper and contains few noise, which is shown in Fig. 2(d).
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(a)

(c) (d)

(b)

Fig. 2. Visual quality comparison of flash/no flash denoising. (a) original flash/no flash
image pair, (b) the result of JBF, (c) the result of NLTV, (d) the result of our method.

3 Depth Image Upsampling

In this application, we upscale a single depth image d (size of m × n) which
is guided by a high-resolution natural image T (size of M × N). One can see
that depth images are textureless compared with natural images and have quite
sparse gradients. However, according to the statistics of depth image gradient
[21], the sparse gradient assumption is not accurate enough. That is to say, most
gradient values of depth image are not always 0 but rather very small.

The proposed nonlocal L0 gradient regularization can reduce the penalty
for small elements, because we deal with the nonlocal gradient of the image
as a whole, take into account the energy sum of the multi-directional weighted
gradients, and avoid to obtain an overly smooth result.

In the first step, we upsample the depth image d to the size of M × N with
nearest neighbor interpolation, and obtain an initial image D. In the second
step, we compute the weights ω(p, q) with the high-resolution natural image T
in Eqs. (3) and (4), that is to say, T is used as the reference image. In the last
step, we use D as the input image and solve the minimization problem Eq. (7).
The result of Eq. (7) is the final joint upsampling image.
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Table 1. PSNR (in dB) comparison on middlebury 2007 datasets with added noise for
magnification factors (×4,×8).

Art Books Moebius

×4 ×8 ×4 ×8 ×4 ×8

He et al. [8] 29.98 27.72 33.94 31.99 32.23 30.22

Park et al. [13] 29.69 27.42 34.36 32.28 33.28 31.12

Chan et al. [2] 29.88 27.15 33.82 31.12 32.46 29.51

SRF [10] 29.79 26.94 33.13 31.92 31.43 29.86

Ours 30.46 27.53 35.98 33.20 34.41 31.32

Table 2. SSIM comparison on middlebury 2007 datasets with added noise for magni-
fication factors (×4,×8).

Art Books Moebius

×4 ×8 ×4 ×8 ×4 ×8

He et al. [8] 0.84 0.78 0.80 0.74 0.78 0.71

Park et al. [13] 0.92 0.88 0.89 0.84 0.90 0.83

Chan et al. [2] 0.80 0.71 0.91 0.89 0.91 0.87

SRF [10] 0.82 0.72 0.74 0.64 0.73 0.62

Ours 0.97 0.94 0.96 0.93 0.97 0.94

We show some experimental evaluations of our algorithm compared with
the competitive methods for depth image upsampling. We work on 3 depth
images from Middlebury 2007 datasets [4] with the scaling factors of 4 and 8,
respectively. To simulate the acquisition process, these depth images are added
Gaussian noise [13].

The numerical results for this experiment in terms of the PSNR are shown
in Table 1. In our experiments, our method clearly outperforms the other four
methods in the most cases.

The numerical results for this experiment in terms of the Peak Signal Noise
Ratio (PSNR) are shown in Table 1 and Structural Similarity (SSIM) [18] in
Table 2. From the Table 1, one can see that our method clearly outperforms the
other four method in the most cases. In Table 2, the proposed method achieve
significant SSIM improvements over other leading methods. In average, our algo-
rithm outperforms other methods by 0.05 for the SSIM comparison.

To show the visual comparison clearly, we show some results of experiments in
Fig. 3. One can find that our method can enhance edges and reduce noise better,
whereas other algorithms suffer from edge blurring or noise. From Table 1 and
Figs. 3, 4 and 5 one can observe that the proposed approach is effective for noisy
complex scenes and can obtain clearer high resolution depth images.

In order to show the stability of the proposed deconvolution algorithm, we
give the convergence curve of the alternative optimization in Fig. 6. We plot the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Joint upsampling on “Art” image. (a) high-resolution RGB image, (b) original
depth map, (c) low-resolution and noisy depth image (enlarged using nearest neighbor
upsampling), (d) He et al. [8], (e) Park et al. [13], (f) Chan et al. [2], (g) SRF [10], (h)
our method.

(a) (b) (c) (d)

(e) (f) (h)(g)

Fig. 4. Joint upsampling on “Books” image. (a) high-resolution RGB image, (b) origi-
nal depth map, (c) low-resolution and noisy depth image (enlarged using nearest neigh-
bor upsampling), (d) He et al. [8], (e) Park et al. [13], (f) Chan et al. [2], (g) SRF [10],
(h) our method.

histories of the relative error | Sk+1 − Sk |. Three depth images (Art, Book and
Moebius) are used and the scaling factor is 8. It is noticeable that the proposed
method is stable.

In order to improve computational time and storage efficiency, we only com-
pute the “best” neighbors, that is, for each pixel p, we only include the 10 best
neighbors in the searching window of 7× 7 centered at p and the size of patch is
5 × 5, the parameters a and h are empirically set to 0.5 and 0.25, respectively.
7–10 iterations are generally performed in our algorithm.

For computational time, the proposed approach takes about 2.3 s for a com-
puter which runs Windows 7 64bit version with Intel Core i5 CPU and 8 GB
RAM to construct the weight function of a 256 × 256 image in Matlab 2010b.
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(a) (b) (c) (d)

(e) (g) (h)(f)

Fig. 5. Joint upsampling on “Moebius” image. (a) high-resolution RGB image,
(b) original depth map, (c) low-resolution and noisy depth image (enlarged using near-
est neighbor upsampling), (d) He et al. [8], (e) Park et al. [13], (f) Chan et al. [2], (g)
SRF [10], (h) our method.
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Fig. 6. Convergence curves of the alternative optimization.

Once the weight is constructed, the iteration of our method is comparable to
ROF [15] in speed. The computation speed depends on the number of iterations.
In general, it takes around 3.5 s for 10 iterations.

4 Conclusion

In this work, we propose a solution for nonlocal L0 gradient minimization and
show its applications for depth image upsampling. We propose an effective
smoothing approach based on minimizing discretely counting nonlocal spatial
changes. Different from many optimized based filters, the proposed method has
the property of joint filtering, so our filter can be used for many applications.
In particular, it achieves good performance in the depth image super resolution.
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Treating the high-resolution RGB image as a reference image, the proposed algo-
rithm is well suited for upsampling the low-resolution depth image. The experi-
mental results demonstrate that the proposed approach is promising, and it has
better objective performance compared to the existing upsampling methods.
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