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Abstract. The fusion of monocular visual and inertial cues has become popular
in robotics, unmanned vehicle and augmented reality fields. Recent results have
shown that optimization-based fusion strategies outperform filtering ones. The
visual-inertial ORB-SLAM is optimization-based and has achieved great suc-
cess. However, it takes all measurements into IMU initialization, which contains
outliers, and it lacks of termination criterion. In this paper, we aim to resolve
these issues. First, we present an approach to estimate scale, gravity and
accelerometer bias together, and regard the estimated gravity as an indication for
estimation convergence. Second, we propose a methodology that is able to use
weight w derived from the robust norm for outliers handling, so that the esti-
mated scale can be refined. We test our approaches with the public EuRoC
datasets. Experimental results show that the proposed methods can achieve good
scale estimation and refinement.
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1 Introduction

The combination of vision and inertial sensors has long been a popular research field
for three-dimensional structure, ego-motion estimation and visual odometry. Both
monocular camera and Inertial Measurement Unit (IMU) are cheap, low-cost,
low-weight and complementary. A moving camera can provide us accurate state
estimation and sufficient environment 3D structure up to an unknown metric scale.
While inertial sensors with high frame-rate can help us handle fast camera motion,
scale ambiguity and short-term motion estimation.

Many Visual-inertial fusion strategies have been proposed, which can be divided
into the loosely coupled modality and the tightly coupled one. Loosely coupled strategy
is to estimate 6D pose and position separately. On the contrary, tightly coupled fusion
strategy is to jointly optimize all sensor states. Most recent works concentrate on
tightly-coupled visual-inertial odometry, using keyframe-based non-linear optimization
[1–4] or filtering [5–8]. Non-linear optimization and tightly coupled methods have
attracted much interest of researchers in recent years due to its good trade-off between
accuracy and computational efficiency. This article follows this trend and focuses on
the monocular unknown scale problem.
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Visual scale estimation is a research hotspot in the monocular SLAM. The early
MonoSLAM [11] initializes from a target of known size, which help to assign a precise
scale to the estimated map. Filter-based methods include ROVIO [12], MSCKF [5] and
[13, 14], where the scale information is added to the extended Kalman filter as an
additional state variable. The paper [15] proposed a maximum-likelihood estimator for
the scale of the monocular SLAM system. In [16] and visual-inertial ORB-SLAM [9],
the scale is estimated within the process of optimization using methods such as
Gauss-Newton. While promising, taking all visual and inertial measurements for scale
estimation may contain outliers, which lead to declined accuracy of scale estimation.
Besides, the method introduced in [9] is lack of robust termination criterion for IMU
initialization, which results in increased computation and reducing the effect of IMU
information.

In this paper, we devote to solve above problems existed in [9]. The main con-
tribution of our research work is two-fold. Firstly, we present an approach to estimate
scale, gravity and accelerometer bias together, and regard the estimated gravity as an
indication for identifying convergence and termination for scale estimation procedure.
Secondly, we propose a keyframe-based method that uses a weighted term to reduce
the influence of large residuals, which lead to scale estimation refinement.

The remainder of this article is organized as follows. In the main Sect. 2 we explain
the camera model, the IMU noise models, and the kinematics models of IMU, we also
give a brief introduction about IMU pre-integration technique. In Sect. 3, we describe
our approach as a whole, in particular we introduce the method for scale estimation and
refinement. We also propose an automatic termination criterion. Section 4 is dedicated
to show the performance of our approaches and we compare them with the ground
truth. We conclude the paper in Sect. 5.

2 Preliminaries

In this section, we first introduce some notation throughout this paper: the matrix
TEF ¼ REF EPF½ � represents the transformation from reference F to reference E.

Then we will introduce some preliminary knowledge about the coordinate system,
the camera model, inertial sensor model, and IMU pre-integration. Figure 1 shows the
situation of the camera-IMU setup with its corresponding coordinate frames. Multiple
camera-IMU units represent the consecutive states at continuous time, which is con-
venient for understanding the following Equations in Sect. 3.1. The camera provides
the pose and the unscaled position in the camera frame C. We denote the world
reference frame with W and the IMU body frame B. The transformation TCB ¼
RCB CPB½ � between camera and IMU reference systems can be calibrated using
Kalibr [17].

2.1 Camera Model

Here we consider a conventional pinhole-camera model [22], which any 3D point
XC 2 R

3 in the camera reference maps to the image coordinates x 2 R
2, through the

camera projection function p : R3 7!R
2:
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pðXCÞ ¼
fu

xC
zC

þ cu
fv

yC
zC

þ cv

� �
; XC ¼ xC yC zC½ �T ð1Þ

where fu fv½ �T is the focal length and cu cv½ �T is the principal point.

2.2 Inertial Sensor Model and IMU Kinematics Model

An IMU generally integrates a 3-axis gyroscope sensor and a 3-axis accelerometer
sensor, and correspondingly, the measurements provide us the angular velocity and the
acceleration of the inertial sensor at high frame-rate with respect to the body frame B.
The IMU measurement model contains two kinds of noise: one is white noise nt, the
other is random walk noise that is a slowly varying sensor bias bt, so we have:

B exðtÞ ¼ BxðtÞþ bgðtÞþ ngðtÞ ð2Þ

BeaðtÞ ¼ RT
WBðtÞðWaðtÞ � WgÞþ baðtÞþ naðtÞ ð3Þ

where the BewðtÞ and BeaðtÞ are the measured values expressed in the body frame, the
real angular velocities BwðtÞ and the real acceleration WaðtÞ are what we need. The left
subscript W denotes in the world frame. And the RWB is the rotational part from the
transformation RWBf WPg, which maps a point from sensor frame B to W . The
dynamics of non-static bias bt are modeled as a random process:

_bg ¼ nbg _ba ¼ nba ð4Þ

where the nbg and nba are the zero-mean Gaussian White noises. Our goal is to deduce
the motion of system from the output of IMU. For this purpose, we show the following
IMU kinematics model [11]:

WX

WY

WZ

12 12,p vΔ Δ
1B

2B
3B

iB NB

1C 2C 3C
iC NC

CBT

i i i
WC WC W CT R p⎡ ⎤= ⎣ ⎦

23 23,p vΔ Δ

Fig. 1. The relationship between different coordinate frames and multiple states of camera-IMU
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W _RWB ¼ RWB Bx
^; W _m ¼ Wa; W _p ¼ Wm ð5Þ

2.3 IMU Pre-integration

The IMU pre-integration technique incorporated with SLAM framework are proposed
correctly in [18]. Here we give an overview of its theory and usage within monocular
visual-inertial SLAM system. The pose and velocity of IMU at time tþDt is obtained
by integrating Eq. (5):

RWBðtþDtÞ ¼ RWBðtÞExpðBxðtÞDtÞ ð6Þ

WmðtþDtÞ ¼ WmðtÞþWaðtÞDt ð7Þ

WpðtþDtÞ ¼ WpðtÞþ WmðtÞDtþ 1
2WaðtÞDt2 ð8Þ

which assumes that Wa and Bx maintain a constant in the time interval t; tþDt½ �.
Equations (6)–(8) become function of the IMU measurements using Eqs. (2)–(3):

RðtþDtÞ ¼ RðtÞExpðð~xðtÞ � bgðtÞ � ngðtÞÞDtÞ ð9Þ

mðtþDtÞ ¼ mðtÞþ gDtþRðtÞð~aðtÞ � baðtÞ � naðtÞÞDt ð10Þ

pðtþDtÞ ¼ pðtÞþ mðtÞDtþ 1
2
gDt2 þ 1

2
RðtÞð~aðtÞ � baðtÞ � naðtÞÞDt2 ð11Þ

Here the coordinate frame subscripts is dropped for readability. In Eqs. (6)–(11) Dt
is the sampling interval of the IMU. Assuming that the IMU is synchronized with the
camera, and provides measurements at discrete times k. Integrating all IMU mea-
surements between two consecutive keyframes at times k ¼ i and k ¼ j, then the IMU
pre-integration DRij, Dvij and Dpij are expressed as:

DRij _¼ RT
i Rj ¼

Yj�1

k¼i

Expðð~xk � bgk � ngkÞDtÞ ð12Þ

Dmij _¼ RT
i ðmj � mi � gDtijÞ ¼

Xj�1

k¼i

DRikð~ak � bak � nakÞDt ð13Þ

Dpij _¼ RT
i ðpj � pi � miDtij � 1

2
gDt2ijÞ

¼
Xj�1

k¼i

DmikDtþ 1
2
DRikð~ak � bak � nakÞDt2

� � ð14Þ

536 X. Mu et al.



3 Scale Estimation and Refinement with a Weighted Item

In this section, we firstly introduce the process of scale estimation based on
visual-inertial ORB-SLAM [9]. Since some visual-inertial measurements between two
kerframes may not be exact, we propose a weighting method for outliers handling and
scale estimation refinement, inspired by [10]. Next, we present a robust termination
criterion for scale estimation procedure. At last, we describe the scale benchmark,
which can be used to verify the accuracy of our estimated results.

3.1 Scale Estimation

In this section, we introduce the scale estimation method in details, which is able to
estimate scale s, gravity Wg, accelerometer bias ba together. The full state vector X is
defined as:

X ¼ s;Wg; ba½ �T2 R
7�1 ð15Þ

In the monocular SLAM system, the camera position and 3D points are all
up-to-scale. It can be solved by integrating IMU data. First we consider the following
equation, which represents that it includes a visual scale s when transforming the
position in the camera frame C to the IMU frame B

WpB ¼ sWpC þRWC CpB ð16Þ

For two consecutive keyframe i and keyframe iþ 1, the corresponding IMU
position and velocity are obtained using pre-integration Eqs. (13) and (14):

Wp
iþ 1
B ¼ Wp

i
B þWv

i
BDti;iþ 1 þ 0:5wgDt2i;iþ 1

þRi
WBðDpi;iþ 1 þ JaDpbaÞ ð17Þ

Wv
iþ 1
B ¼ Wv

i
B þWgDt

2
i;iþ 1 þRi

WBðDvi;iþ 1 þ JaDvbaÞ ð18Þ

where Jacobian Jað�Þ denotes a first-order approximation of the effect of changing

accelerometer bias. Then taking Eq. (16) into Eq. (17), it becomes:

sWp
iþ 1
C ¼ sWp

i
C þWv

i
BDti;iþ 1 þ 0:5wgDt2i;iþ 1

þRi
WBðDpi;iþ 1 þ JaDpbaÞþ ðRi

WC

� Riþ 1
WC ÞCpB ð19Þ

To solve this linear system, we consider two relations (19) between three con-
secutive keyframes (Fig. 1 shows an example) and exploit the velocity relation in (18),
we can get the following equations:

aðiÞ bðiÞ cðiÞ½ �X ¼ wðiÞ ð20Þ

where the visual scale s, gravity Wg and acceleration bias ba are unknown variables.
Writing keyframes i; iþ 1; iþ 2 as 1, 2, 3 for readability, we have:
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aðiÞ ¼ ðwp2c � wp
1
cÞDt23 � ðwp3c � wp

2
cÞDt12 ð21Þ

bðiÞ ¼ 0:5I3�3ðDt212Dt23 þDt223Dt12Þ ð22Þ

cðiÞ ¼ R2
WBJ

a
Dp23Dt12 þR1

WBJ
a
Dv12Dt12Dt23 � R1

WBJ
a
Dp12Dt23 ð23Þ

wðiÞ ¼ ðR1
WC � R2

WCÞCpBDt23 � ðR2
WC � R3

WCÞCpBDt12 � R2
WBDp23Dt12

� R1
WBDv12Dt12Dt23 þR1

WBDp12Dt23
ð24Þ

Stacking all relations between every three consecutive keyframes using Eq. (20),
we can get a linear overdetermined equation groups. Finally, we can solve it via
Singular Value Decomposition (SVD) to get the results of the scale s, gravity Wg,
accelerometer bias ba. Note that we can construct 3ðN � 2Þ equations with 7
unknowns, where N is the number of keyframes, thus we need at least 5 keyframes.

Every time a new keyframe is inserted by ORB-SLAM, the procedure runs to get
new estimated values of scale, gravity and accelerometer bias. When the termination
criterion is established, the estimation procedure ends up.

3.2 Weighting Method for Scale Estimation Refinement

In the Sect. 3.1, it takes all visual-inertial measurements into the scale estimation
procedure, which may contain outliers, so we utilize the weight wi to handle outliers for
estimation refinement. Simply, we exploit the initial values to weight the residual in a
similar way to the Huber norm [20], and define the residual as the first moment norm:

ri ¼ CiXest � Dij j ð25Þ

where Xest is the estimated results from Sect. 3.1, Ci and Di are from Eq. (20) for the
i-th consecutive three keyframes, and defined as:

Ci ¼ aðiÞ bðiÞ cðiÞ½ � ð26Þ

Di ¼ wðiÞ½ � ð27Þ

The weight is associated with the residual.

wi ¼ 1 ri\threshold
threshold

ri
otherise

�
ð28Þ

If the measurement is obviously wrong for our scale estimate, its wi is set to zero.
And in our experiments, we set the threshold to 0.002. With the N keyframes in the
process of scale estimation, we are able to build an overconstrained linear system as:

538 X. Mu et al.



w1 � C1

w2 � C2

..

.

wN�2 � CN�2

2
6664

3
7775 � X ¼

w1 � D1

w2 � D2

..

.

wN�2 � DN�2

2
6664

3
7775 ð29Þ

where Ci and Di are from Eqs. (26) and (27) for the i-th consecutive three keyframes.
Once we get the Eq. (29), the procedure runs to estimate an updated vector X̂ by
solving Eq. (29) via SVD.

3.3 Termination Criterion

In this section we propose an automatic criterion to determine when we consider the
scale estimate successful. Because the norm of the nominal gravity is a constant
*9.8 m/s2, we regard it as one convergence indicator. The other is that the difference
of consecutive solutions X in Sect. 3.1 is under a certain threshold for several times.
The visual scale estimation terminates when both conditions above are established.

3.4 Scale Benchmark

In monocular SLAM system, the translation decomposed from essential matrix is
ambiguous up to an unknown scale. To obtain a globally consistent scale factor,
visual-inertial ORB-SLAM system initializes mean depth of all the feature points to
one. In other words, the real visual scale is determined at the start of the system
initialization. Because the first two keyframes selection and the map points generation
is random in the ORB-SLAM system initialization, the initial scale is not fixed. For this
reason, we need to calculate the actual scale according to the ground truth data, which
is extracted by Leica MS50 and motion capture system and provide us the accurate 6D
pose in the IMU body reference frame B.

Once the initialization of ORB-SLAM system completes, it outcomes an initial
translation t between the first two keyframes. Meanwhile, we can calculate the actual
translation C1pC2 according to their corresponding ground truth states. Then the actual
scale s is computed by the following formula:

B1pB2 ¼ RB1C2 C2pB2 þRB1C1 C1pC2 þ B1pC1 ð30Þ

s ¼ C1pC2=t ð31Þ

where B1pB2 is the position of B2 in the body frame B1; B1 and B2 are the IMU frames
corresponding to the camera frame C1 and C2 at the same timestamp (see Fig. 1).
RB1C2 ¼ RB1B2RBC is computed from the orientation RB1B2 computed by the ground truth
data and calibration RBC.

Scale Estimation and Refinement in Monocular Visual-Inertial SLAM System 539



4 Experimental Results

We conducted several experiments using the sequence V1 01 easy and V2 01 easy
in the EuRoC dataset [21] to analyze the performance of our approach. It provides
synchronized global shutter stereo images at 20 Hz with IMU measurements at 200 Hz
and trajectory ground truth. We conduct the experiments in a virtual machine with
2 GB RAM.

4.1 Scale Estimation Results

The scale estimation procedure runs every time a new keyframe is inserted by
ORB-SLAM [19]. Figure 2 shows the estimated scale, gravity and accelerometer bias.
All variables are converged to stable values after 11 s. Figure 2(a) shows that the
converged scale (*2.25972) is quite close to the ground truth scale (2.28132) which is
the scale benchmark computed by the method that we have introduced in Sect. 3.4.
Figure 2(b) indicates that the 3-axis accelerometer biases converge to almost 0. Fig-
ure 2(c) indicates that the components around x and z axes of gravity is converged
quickly, and its y-axis component is converged to 9:256973 m

�
s2 (near nominal

gravity value). Hence the gravity direction is closed to y-axis. Figure 2(d) also shows
the process of gravity estimation (depicted in blue), the green one is the nominal
gravity value 9:802m

�
s2, they also come near after 11 s.

Fig. 2. The converged procedure of scale, accelerometer biases and gravity in the sequence
V1 01 easy. (Color figure online)
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Once we have estimated a stable and accurate scale. All 3D points in the map and
the position of keyframes are updated according to the estimated scale. Figure 3(b)
shows the final reconstructed sparse map, we also show a processed image in
V1 01 easy.

4.2 The Performance of Weighted Method for Scale Estimation
Refinement

We evaluated the accuracy of proposed scale estimation and refinement by comparing
it with the scale benchmark computed by the method in Sect. 3.4. As can be indicated
in the Tables 1 and 2: for the sequence V1 01 easy and V2 01 easy, we list the
results of five tests. The second column is the scale estimation values scale which is
almost the same as the estimated scale s of [9], and the w scale is the results of
estimation refinement introduced in Sect. 3.3. We show the scale benchmark in the last
one. The results indicate that our scale estimation refinement method can improve the
accuracy of the estimated scale.

Fig. 3. A processed image and the reconstruction from sequence V1 01 easy

Table 1. The results of scale estimation and refinement, compared with scale benchmark for
V1 01 easy

Test number s Scale w_scale Benchmark

1 2.25409 2.25972 2.26318 2.28132
2 2.10896 2.12254 2.13477 2.35991
3 2.22838 2.24186 2.27997 2.27073
4 2.28314 2.34132 2.31572 2.26904
5 2.15126 2.16206 2.21084 2.26057
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4.3 The Effect of Termination Criterion

Here we test our automatic criterion to determine when we consider the scale esti-
mation successful. In the sequence V1 01 easy, the norm of recovered gravity Wg is
gradually close to the nominal gravity value *9.8 m/s2, after 11 s the difference is
under the threshold (0:1m

�
s2). And the other condition is established after the esti-

mated scales come near for n ¼ 5 times. Both conditions are established after the
procedure runs about 11 s as depicted in the Fig. 3(a) and (d), and the scale estimation
achieves convergence at that moment. And the converged speed in the paper [16] is
30 s, but its termination criterion is not mentioned.

5 Conclusions

In this paper, we showed our approaches for visual scale estimation and refinement.
Firstly, we have presented an approach for the estimation of scale, gravity and
accelerometer bias. Secondly, we proposed a weighting method for monocular visual
scale estimation refinement, which utilizes weight w derived from the robust norm for
outliers handling. Thirdly, we proposed an automatic way to identify convergence and
termination for scale estimation procedure. We experimentally showed that the scale
estimation is accurate, and the deduced weighting method further promotes the scale
accuracy for the monocular visual map, and the termination criterion performs well,
tested in the EuRoC dataset [21].
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Table 2. The results of scale estimation and refinement, compared with scale benchmark for
V2 01 easy

Test number s Scale w_scale Benchmark

1 2.79302 2.80926 2.83144 2.92792
2 2.52695 2.52974 2.55774 2.59554
3 3.02662 3.01114 3.06962 3.11365
4 3.16472 3.17584 3.20926 3.35001
5 3.41774 3.41055 3.43063 3.46943
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