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Abstract. Fabric defect detection plays an important role in the qual-
ity control of fabric products. In order to effectively detect defects for
fabric images with numerous kinds of defects and complex texture, a
novel fabric defect detection algorithm based on multi-channel feature
extraction and joint low-rank decomposition is proposed. First, at the
feature extraction stage, a multi-channel robust feature (Multi-channel
Distinctive Efficient Robust Feature, McDerf) is extracted by simulating
the biological visual perception mechanism for multiple gradient orienta-
tion maps. Second, joint low-rank decomposition algorithm is adopted to
decompose the feature matrix into a low rank matrix and a sparse matrix.
Finally, for the purpose of localizing the defect region, the threshold seg-
mentation algorithm is utilized to segment the saliency map generated by
sparse matrix. Comparing with the existing fabric defect detection algo-
rithms, the experimental results show that the proposed algorithm has
better adaptability and detection efficiency for the plain and patterned
fabric images.
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1 Introduction

Fabric defect detection plays an important role in the quality control of fabric
products. The traditional manual detection results depend on human subjec-
tivity to a large extent. But due to human fatigue, high labor costs, and slow
inspection speed, their performance is often unreliable. Therefore, the automatic
detection technology of fabric defect based on image processing has become a
research focus.

The existing automatic fabric defect detection algorithms can be divided into
four categories: model-based method, spectral analysis method, statistical-based
method, and learning-based method [1]. (1) The model-based methods extract
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image texture features via modeling and parameter estimation techniques. The
defect detection problem can be treated as a statistical hypothesis-testing prob-
lem on the statistics derived from this model. It includes Gauss Markov random
field model [2], Poisson model [3] and Wold model [4]. However, the model-
based methods share high computational complexity, and the detection results
are not satisfactory. (2) Spectral analysis methods transform fabric images into
the spectral domain and then detect the defects by some energy criterions, such
as Fourier transform, wavelet transform and Gabor filter. But the detection
performance depends on the selection of filter banks [5]. (3) Statistical-based
methods employ the spatial distribution of gray values to detect fabric defects.
However, they have the disadvantages that we should design the specific detec-
tion method for different fabric types, and they are hard to detect the defects
with small size [6–8]. (4) The performance of the learning-based methods highly
depends on the large scale training dataset. In addition, it is difficult to establish
an effective and stable defect model through the limited training dataset because
some fabric defects rarely occur, which causes the unsatisfactory results [9].

The low-rank decomposition model is consistent with the low-rank sparsity
of human visual system. It can divide the image matrix into a low-rank part
which corresponds to the background and a sparse matrix which corresponds
to the object, and it has achieved good results in saliency detection and object
detection [10–12]. For fabric images with complex texture, the background is
highly redundant and the defects are saliently sparse, so the low-rank decom-
position model is more suitable for the fabric defect detection than the object
detection in the natural scene. Recently, we and some other researchers have
exploited the low-rank decomposition model for fabric defect detection [8,13,14]
and obtained good results in the fabric images with relatively simple texture.
It demonstrates that it is feasible to use the low-rank decomposition model for
fabric defect detection.

Effective image representation is crucial for fabric defect detection based on
low-rank decomposition model, it can make the background of fabric images lie
in a low-dimensional subspace, and the salient defects deviate from this subspace.
Therefore, the low-rank decomposition model can easily divide the image into
the background part and object part. However, the proposed fabric defect detec-
tion methods based on low-rank decomposition model adopted the traditional
feature extraction methods, such as local binary pattern (LBP), Gabor filtering
and histogram of oriented gradient (HOG), they cannot effectively represent the
fabric image with complex texture, which lead to poor detection performance.
Hence, it is necessary to propose an effective feature representation method for
different fabric images. Fabric is woven by warp and weft. The normal fabric
image has specific orientation information and the defects destroy the normal
orientation information. For this reason, the effective extraction of orientation
feature is crucial for the final detection results. However, the orientation infor-
mation varies with the different fabric texture. Therefore, the multi-orientation
feature should be extracted to efficiently describe the fabric texture.
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In this paper, we proposed a novel fabric defect detection algorithm based
on the multi-channel feature extraction and joint low-rank decomposition. First,
the fabric image is filtered to generate multiple gradient orientation maps, a
multi-channel robust feature is extracted by adopting the approach proposed in
literature [15] by simulating the biological visual perception mechanism for mul-
tiple gradient orientation maps. Then, joint low-rank decomposition algorithm
is employed to divide the multi-channel feature matrix into low-rank matrices
and sparse matrices. Finally, an improved threshold segmentation algorithm is
used to segment the saliency map generated by sparse matrices to localize the
defective region.

2 McDerf Feature Extraction

The great progress of the visual perception mechanism research demonstrates
that invariant feature extraction is one of the most important information pro-
cessing tasks for the human visual system and is also a common characteristic of
senior cortex cells in the process of information integration. Therefore, the fea-
ture descriptors based on the mechanism of the human visual system are more
suitable to characterize the complex texture of all kinds of fabric. In the litera-
ture [15], the authors proposed a local image descriptor denoted as Distinctive
Efficient Robust Feature (DERF) by modeling the response and distribution
properties of the ganglion cells in the retina, it is superior to the traditional
design methods based on artificial experience hand-crafted local descriptors.

In this paper, we proposed an improved multi-channel Derf denoted as
McDerf to efficiently describe the orientation feature based on the DERF pro-
posed by Weng et al. [15]. First, the gradient orientation maps generated by

Fig. 1. Construction process of the proposed McDerf
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DERF are filtered by DoG (Difference of Gaussian), respectively. And then the
filtered gradient orientation maps are pooled according to the ganglion cell cod-
ing, so we can get the orientation feature matrix for each gradient orientation
map respectively. It is necessary to divide the fabric image into image patches in
the process of defect detection and combine the McDerf features of image patches
into multiple feature matrices so as to realize the localization of the defective
regions. The specific extraction process includes: (1) multi-channel Derf feature
extraction; (2) feature matrix generation. The feature extraction process is shown
in Fig. 1.

2.1 Multi-channel Derf Feature Extraction

Based on the Derf feature proposed in [15], we proposed the McDerf, and its
construction can be described as follows.

(1) The H gradient orientation maps are calculated using Eq. (1).

Go = (
∂I

∂o
)+, 1 ≤ o ≤ H (1)

where I is the input image, o is the orientation of the derivative, (·)+ and is
the operator such that (a)+ = max(a, 0).

(2) Each gradient orientation map of H is convolved S +1 times using Gaussian
kernels with different value Σ to obtain Gaussian convolution orientation
maps GΣ

o for the sake of allowing the gradients without abrupt changes under
the circumstance of neighborhood slight changes, the standard deviation of
the Gaussian kernel is proportional to the radius of the given neighborhood.

GΣ
o = GΣ ∗ Go (2)

where GΣ is a Gaussian kernel with scale Σ.
For each orientation of the Gaussian convolution orientation maps, the

DoG convolution orientation maps is obtained by subtracting the large scale
from the small scale of the two adjacent Gaussian convolution orientation
maps.

DΣ1
o = GΣ1

o − GΣ2
o , Σ1 < Σ2 (3)

(3) We assemble the feature vector by sampling the DoG convolution orientation
maps. The sampling grid points are located in many concentric rings with
different radii increasing in exponential manner, and the corresponding DoG
convolution kernel scale is also increased in exponential manner, as shown
in Fig. 1. Therefore, there are four parameters that determine the shape
of the pooling arrangement, i.e. the radius of the region (R), number of
concentric rings with different scales (S), the number of gradient orientations
(H), number of grid points on each concentric ring (T). Let Fso represent
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the single scale vector of one channel constructed of the values at location
(x, y) in the DoG convolution orientation maps:

Fso(x, y) = [l1o(x, y)
l1o(x, y,Σ1), l2o(x, y,Σ1) · · · , lTo(x, y,Σ1),
l1o(x, y,Σ2), l2o(x, y,Σ2) · · · , lTo(x, y,Σ2),

...
l1o(x, y,Σs), l2o(x, y,Σs) · · · , lTo(x, y,Σs)]

(4)

where 1 ≤ o ≤ H, ljo(x, y,Σ) is location with the orientation o on different
scales Σ in the orientation given by j grid point.

Researchers have recently found that the receptive field of ganglion cells
can be resized to a certain extent [16–18], which results in the variable size
of the receptive field. But the degree of size change is slight. Considering
this modulation mechanism of receptive field of ganglion cells, we add two
neighboring scales to the inherent scale of each grid point, which results in
a total of three scales for each grid. However, for the grids with the smallest
scale, we add the second scale to each grid, and for the grids with the largest
scale, we add the reciprocal second scale. Formally, the multiple scales one
channel of McDerf descriptor centered at (x, y) is defined as follows:

Fmo(x, y) = [l1o(x, y),
l1o(x, y,Σ1), l2o(x, y,Σ1) · · · , lTo(x, y,Σ1),
l1o(x, y,Σ2), l2o(x, y,Σ2) · · · , lTo(x, y,Σ2);
l1o(x, y,Σ1), l2o(x, y,Σ1) · · · , lTo(x, y,Σ1),
l1o(x, y,Σ2), l2o(x, y,Σ2) · · · , lTo(x, y,Σ2),
l1o(x, y,Σ3), l2o(x, y,Σ3) · · · , lTo(x, y,Σ3);

...
l1o(x, y,Σs−1), l2o(x, y,Σs−1) · · · , lTo(x, y,Σs−1),
l1o(x, y,Σs), l2o(x, y,Σs) · · · , lTo(x, y,Σs)]

(5)

where 1 ≤ o ≤ H, we can extract H channel features for the fabric image.

2.2 Feature Matrices Construction

In order to localize the defective region, the fabric image is divided into N
image patches with the same size. Then we extract their multi-channel features
fk

i (where i is the image patches index, i = 1, 2, · · · , N , k is the channel index,
k = 1, 2, · · · ,H) to project the normal image patches into a low-dimension sub-
space. All the features of the image patches are concentrated into H feature
matrices FK = [fk

1 , fk
2 , · · · , fk

N ], and then low-rank decomposition model can
divide the feature matrix into low-rank part and sparse part. Finally, fabric
defect detection is transformed into the low-rank decomposition of the feature
matrix F , where the low-rank matrix L is the normal fabric image, the sparse
matrix S corresponds to the salient object.
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3 Joint Low-Rank Decomposition

For one feature matrix F k, it can be decomposed into a low-rank matrix L0 and
a sparse matrix S0 corresponding to the non-salient background and the salient
object, respectively. It is defined as low-rank matrix recovery problem, and can
be realized by the following equation:

min
L0,S0

‖L0‖∗ + λ ‖S0‖1
s.t. F k =L0 + S0

(6)

where ‖·‖∗ denotes the matrix nuclear norm (sum of the singular values of a
matrix), which is a convex relaxation of the rank function. ‖·‖1 is the l1–norm
to improve the sparsity, λ > 0 is used to balance the effect of the two parts.

The above low-rank decomposition model only can model a single type of
visual features, which cannot be directly used for multi-channel feature case. To
combine the low-rank decomposition model with the multi-channel feature, we
adopt a new solution of multi-task sparsity pursuit (MTSP) [19] for fabric defect
detection, as shown in Fig. 2.

MTSP model looks for a joint sparse matrix S by solving the following convex
optimization problem:

min
L1,··· ,LH
S1,··· ,SH

H∑

k=1

‖Lk‖∗ + λ ‖S‖2,1

s.t. F k = F kLk + Sk, k = 1, · · · ,H

(7)

Fig. 2. Multi-task sparsity pursuit model: for a given image, we extract H orientation
feature matrices F 1, F 2, · · · , FH , with F corresponding to a certain orientation of
feature. Its saliency map is inferred by seeking the consistently sparse elements S from
the joint decompositions of multiple feature matrices F i into pairs of low-rank and
sparse matrices.
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where ‖·‖2,1 is the l2,1–norm defined as the sum of l2–norm of the columns of a
matrix:

‖S‖2,1 =
∑

i

√∑

j

(S(j, i))2 (8)

The minimization of l2,1–norm leads the column of S to be sparsity (most
of its elements are zeros). S = [S1;S2; · · · ;SH ] is formed by vertically con-
catenating S1, S2, · · · , SH together along column. The integration of multiple
channel features is achieved by minimizing the l2,1–norm of S, which requires
the columns of S1, S2, · · · , SH to have jointly consistent magnitudes. Since the
columns in different matrices with the same index correspond to the same image
patch, this method is also to encourage different features with synergistic effect
to produce consistent saliency maps.

The Eq. (7) is a convex optimization problem. In this paper, we adopted
the augmented Lagrange multiplier (ALM) algorithm to solve it [20]. Let
{S∗

1 , S∗
2 , · · · , S∗

H} be the sparse part which is obtained by the optimal solution of
the Eq. (7). We quantify the response of the sparse matrices to obtain a saliency
score for the i−th patch Pi. And the calculation equation can be describes as
follows:

S(Pi) =
H∑

k

‖S∗
k(:, i)‖2 =

H∑

k

√∑

j

(S∗
k(j, i))2 (9)

where ‖S∗
k(:, i)‖2 is the l2–norm of the i−th column of S∗

k , the higher saliency
score S(Pi) represents the image patch i belongs to the defect with high proba-
bility. Finally, the threshold segmentation algorithm [21] is adopted to segment
the saliency map generated by multiple sparse matrices to localize the defect
region.

4 Experimental Results and Analysis

In order to verify the effectiveness of our algorithm for different fabric images,
we randomly select several kinds of fabric defect images from the fabric
image database (TILDA, patterned fabrics datasets: dot-, box-, star-patterned
datasets) (including: broken end, netting multiple, hole, thick bar, thin bar, etc.).
The fabric image size is 256×256, and they are divided into image patches with
size of 16 × 16 for localizing the defect region. All experiments are implemented
in the environment of Intel(R) Core(TM) i5-4570, 8 GHz CPU by using software
Matlab 2011a.

We first analyze the influences of different channel. The McDerf feature with
different channel is extracted for detecting the defects, and the results are shown
in Fig. 3. The first column is the original fabric image, detection results are
listed from the second column to the last by setting H = 2, 4, 6, 8. From the
detection results we can see that when the number of channel is small, some
detected defects are not continuous. The detection performance is improved with
increasing the channel number. When the channel number is greater than 6, the
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Fig. 3. The saliency detection for different channel: the first column is the original
fabric image. Detection results are listed from the second column to the last by setting
H = 2, 4, 6, 8.

detection accuracy keeps unchanged. Therefore, the channel number is set to 6
for the tradeoff between efficiency and accuracy.

In order to further verify the effectiveness of the proposed algorithm, we have
compared our method with the existing saliency detection methods, such as the
unified method based on low-rank matrix recovery (ULR) [22], wavelet transform
method (WT) [23], histogram of oriented gradient (HOG) [13], least squares
regression (LSR) [8]. The experimental results are demonstrated in Fig. 4. The
first column is the original images. The detection results of ULR, WT, HOG, LSR
and our method are listed from the second column to the sixth column. From
Fig. 4, we can see that the results of ULR, WT and HOG methods have serious
noise and error. This demonstrates that the three methods are only suitable
for the fabric images with simple texture, while not for the fabric images with
complex texture. For the LSR method, it can nearly localize all the defective



Fabric Defect Detection Algorithm 451

Fig. 4. Comparison of the detection results for different methods: the first column is
the original fabric images. Detection results of ULR [22], WT [23], HOG [13], LSR [8]
and our method are listed from the second column to the six column, the last column
is the final segmentation result generated by our method.

regions, but the defective regions are not precise enough, such as the fourth
and the last image in Fig. 4. The result of our method is shown in the sixth
column, and the last column is the binarization result obtained by threshold
segmentation. It can be seen from Fig. 4 that our method not only precisely
localize the defective region of all the fabric images, but also can outline the
correct defect shape.

5 Conclusion

Fabric defect detection is a key part of quality control in the textile industry.
In this paper, a novel fabric defect detection algorithm based on multi-channel
feature extraction and joint low-rank decomposition is proposed. The proposed
method has two contributions: (1) the multi-channel orientation features are
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extracted by gradient calculation and spooling technology based on the gan-
glion cell coding; (2) the joint low-rank decomposition technology is adopted
to decompose the multiple feature matrixes into low-rank part and sparse part.
The detection results are obtained by segmenting the saliency map generated by
the sparse part. Experimental results demonstrate that our method can accu-
rately detect the defect regions of various fabric defects, even for the image with
complex texture.
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