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Abstract. Deep convolutional neural networks have been successfully
applied to image super resolution. In this paper, we propose a multi-
context fusion learning based super resolution model to exploit context
information on both smaller image regions and larger image regions for
SR. To speed up execution time, our method directly takes the low-
resolution image (not interpolation version) as input on both training
and testing processes and combines the residual network at the same
time. The proposed model is extensively evaluated and compared with
the state-of-the-art SR methods and experimental results demonstrate
its performance in speed and accuracy.
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1 Introduction

Aim to recover a high-resolution (HR) image from the corresponding low-
resolution (LR) image, single image super-resolution (SR) has been utilized in
the area of computer vision for several decades. Typical image SR methods can
be roughly categorized into three kinds, i.e., interpolation-based, reconstruction-
based, and learning-based [1].

Recently, learning-based SR methods using convolutional neural network
(CNN) have demonstrated notable progress. Dong et al. first proposed a CNN-
based SR method known as SRCNN, which learns a mapping from LR to HR
in an end-to-end manner and shows the state-of-art performance in accuracy
and visual. A neural network that closely mimics the sparse coding approach for
image SR is proposed by Wang et al. [2]. Kim et al. proposed a very deep neural
network with residual architecture to exploit contextual information over large
image regions [3].

Although the CNN-based models mentioned above have achieved good per-
formance, there are two main issues should not be neglected. First, most of exist-
ing methods upscale a single low-resolution image to the desired size using bicu-
bic interpolation before applying the network for prediction. This pre-processing
step increases unnecessary computational cost and often results in visible recon-
struction artifacts. Several approaches are observed to perform better which
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accelerate SRCNN directly by learning from the LR image and embedding the
resolution change into the network [4]. These method, however, use relatively
small networks and cannot learn complicated mappings well due to the limited
network capacity. In addition, most methods rely on the context information of
small image regions. These ways don’t make full use of the information of large
image regions.

To solve the aforementioned issues, we propose a Multi-context Fusion Super-
Resolution Network (MFSR) based on a cascade of convolutional neural networks
(CNNs) and a residual network. Note that very deep CNN model would increase
the model capacity, but it would introduce more parameters which is infeasible
on the scene requiring the higher speed. Thus, an architecture with trade-off
between accuracy and speed is essential for practical applications. In this paper,
we adopt the suitable network width (namely the number of filters in a layer) to
reduce the amounts of parameters. Experiments prove that the proposed model
can achieve both state-of-the-art PSNR and SSIM results and visually pleasant
results.

2 Related Work

Lately, many convolutional neural network based SR methods have been pro-
posed in the papers. So, we focus on recent convolutional neural networks based
SR approaches.

2.1 Convolutional Neural Network for Image Super-Resolution

The SRCNN [1] aims at learning an end-to-end mapping, which takes the low-
resolution image Y as input and directly outputs the high-resolution one F (Y ).
This model contains three layers: patch extraction and representation, non-linear
mapping and reconstruction. The VDSR network [3] demonstrates significant
improvement over SRCNN [1] by increasing the network depth from 3 to 20 con-
volutional layers. To speed-up the training, VDSR suggests the residual-learning
CNN and uses high learning rates. To achieve real-time performance, the FSR-
CNN network [4] takes the LR image as input and enlarges feature maps by
using transposed convolution.

2.2 Residue Learning

It is pointed by [3] that enabling residue learning during network training results
in a faster convergence as well as a better performance in the final result. Kim
et al. point out carrying the input to the end is conceptually similar to what
an auto-encoder does. In this way, the network concentrates on the learning
of residual image, so that the convergence rate is significantly decreased. To
facilitate residue learning in our network, we up-sample the input LR image
with bicubic interpolation algorithm, then add it to the output of the transposed
convolutional layer.
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Our approach builds upon existing CNN-based SR algorithms with a main
difference. We joint residual learning and multi-context fusion learning by using
convolutional and transposed convolutional layers.

3 Proposed Method

In this section, we describe the design methodology of the proposed multi-context
fusion learning network.

3.1 Network Architecture

We propose to construct the network by using a series of convolutional layers, as
shown in Fig. 1. Our model takes an LR image as input (rather than interpolated
version of the LR image) and predicts a residual image. The proposed model has
two parts, feature extraction and image reconstruction.

Feature Extraction. We use n cascaded containers, one convolutional layer
and one transposed convolutional layer upsampling the extracted features. Each

Fig. 1. The overview of our proposed method. Red arrows indicate convolutional layers.
The blue straight arrow indicates transposed convolutional layer and the blue curved
arrow indicates the combination of the split operation and convolutional operation,
namely split operation is performed first and then convolutional operation is deployed.
The purple arrow denotes bicubic interpolation operator and the green arrow denotes
element-wise addition operator. Orange arrows and ‘Concat box’ represent data flow
from orange arrows to ‘Concat box’ to accomplish feature maps fit together in channel
dimension. We cascade n containers (broken blue box) repeatedly. A low-resolution
(LR) image goes through our network and transforms into a high-resolution (HR)
image. (Color figure online)
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container has two parallel paths, which are used as multi-context fusion fea-
tures extractor. One path contains two cascaded convolutional layers and each
convolutional layer has 16 filters of spatial sizes 3 × 3, the other path has one
convolutional layer with 32 filters of spatial sizes 3 × 3. Two 3 × 3 layers bring
receptive field with the same size as one 5× 5 layer. Each of our containers uses
receptive fields of different sizes for taking context information on the larger
image regions and the smaller image regions into account simultaneously and
can be regarded as local context fusion unit. Here, sub-networks in each con-
tainer adopt two different depths which means to combine contextual feature
information on both shallow sub-network and deep sub-network. And then, one
3 × 3 layer with 48 filters merges these extracted feature maps and takes the
results as the next container’s input. And a convolutional layer with 64 filters
of size 3 × 3 is followed by the last container mainly increase the dimension
of previous extracted features. The last layer on this stage adopts one trans-
posed convolutional layer with 1 filter of size 9 × 9 to upsample and aggregate
the previous generated feature maps. Then the output is the predicted residual
image.

Image Reconstruction. On this stage, the input coarse image is upsampled
by the customized bicubic upscaling layer. The upsampled image is then com-
bined (using element-wise summation) with the predicted residual image from
the feature extraction stage to produce a high-resolution output image.

3.2 Loss Function

Mean square error (MSE) is employed as the loss function to train the network,
and our optimization objective can be expressed as

min
Θ

∑

i

∥∥∥MFSR
(
I(i)y ;Θ

)
− I(i)x

∥∥∥
2

2
, (1)

where I
(i)
y and I

(i)
x are the i-th pair of LR/HR training data, and MFSR (Iy;Θ)

denotes the HR image for Iy predicted using the MFSR model with parameter
set Θ. All the parameters are optimized through the standard back-propagation
algorithm.

4 Experiments

In this section, we first explain the implementation details in the experiments
and then compare the MFSR with state-of-the-arts on four benchmark datasets
to demonstrate the effectiveness of our proposed method.

4.1 Implementation Details

In the proposed model, we initialize the convolutional filters using the method of
He et al. [5]. The size of the transposed convolutional filter is 9×9 and the weight
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is initialized from bilinear interpolation kernel. For the activation function after
each convolution layer, we suggest the use of Parametric Rectified Linear Unit
(PReLU) [5] instead of the commonly-used Rectified Linear Unit (ReLU). We
pad zeros around the boundaries before applying convolution to keep the size of
all feature maps. As the training is implemented with the caffe package [6], the
transposed convolution filter will output a feature map with (s− 1)-pixel cut on
the border (s is the stride of kernel namely magnification). As to the number of
the containers, we set n = 7 to achieve the trade-off between performance and
the execution time.

We use 91 images from Yang et al. [7] and 200 images from Berkeley Segmen-
tation Dataset [8] as our training data. The optimization is conducted by the
mini-batch stochastic gradient descent method with a batch size of 64, momen-
tum of 0.9, and weight decay of 1e−4. The learning rate is initially set to 1e−4
and fixed during the whole training phase. In addition, data augmentation (rota-
tion, scaling and flipping) is used.

Table 1. Quantitative evaluation of state-of-art SR algorithms: average PSNR/SSIM
for scale 2×, 3× and 4×. Red text indicates the best and blue text indicates the
second best performance.

Algorithm Scale
Set5

PSNR / SSIM
Set14

PSNR / SSIM
BSD100

PSNR / SSIM
Urban100

PSNR / SSIM
Bicubic 2 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403
A+ 2 36.54 / 0.9544 32.28 / 0.9056 31.21 / 0.8863 29.20 / 0.8938
SRCNN 2 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946
SelfExSR 2 36.49 / 0.9537 32.22 / 0.9034 31.18 / 0.8855 29.54 / 0.8967
RFL 2 36.54 / 0.9537 32.26 / 0.9040 31.16 / 0.8840 29.11 / 0.8904
FSRCNN 2 37.00 / 0.9558 32.63 / 0.9088 31.50 / 0.8906 29.85 / 0.9009
MFSR 2 37.71 / 0.9593 33.13 / 0.9132 31.94 / 0.8965 30.80 / 0.9143
Bicubic 3 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349
A+ 3 32.59 / 0.9088 29.13 / 0.8188 28.29 / 0.7835 26.03 / 0.7973
SRCNN 3 32.75 / 0.9090 29.28 / 0.8209 28.41 / 0.7863 26.24 / 0.7989
SelfExSR 3 32.58 / 0.9093 29.16 / 0.8196 28.29 / 0.7840 26.44 / 0.8088
RFL 3 32.43 / 0.9057 29.05 / 0.8164 28.22 / 0.7806 25.86 / 0.7900
FSRCNN 3 33.16 / 0.9140 29.43 / 0.8242 28.52 / 0.7893 26.42 / 0.8064
MFSR 3 33.76 / 0.9217 29.82 / 0.8318 28.82 / 0.7976 27.06 / 0.8266
Bicubic 4 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577
A+ 4 30.28 / 0.8603 27.32 / 0.7491 26.82 / 0.7087 24.32 / 0.7183
SRCNN 4 30.48 / 0.8628 27.49 / 0.7503 26.90 / 0.7101 24.52 / 0.7221
SelfExSR 4 30.31 / 0.8619 27.40 / 0.7518 26.84 / 0.7106 24.79 / 0.7374
RFL 4 30.14 / 0.8548 27.24 / 0.7451 26.75 / 0.7054 24.19 / 0.7096
FSRCNN 4 30.71 / 0.8657 27.59 / 0.7535 26.96 / 0.7128 24.60 / 0.7258
MFSR 4 31.49 / 0.8841 28.08 / 0.7686 27.29 / 0.7254 25.11 / 0.7513
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Our model is tested on four benchmark data sets, which are Set5 [9], Set14
[10], BSD100 [11] and Urban100 [12]. The ground truth images are downscaled
by bicubic interpolation to generate LR/HR image pairs for both training and
testing databases. We convert each color image into the YCbCr color space and
only process the luminance channel with our model, and bicubic interpolation
is applied to the chrominance channels, because the visual system of human is
more sensitive to details in intensity than in color.

4.2 Comparisons with the State-of-the-arts

We compare the proposed MFSR with 5 state-of-the-art SR algorithms: A+ [13],
SRCNN [1], SelfExSR [12], REL [14] and FSRCNN [4]. Table 1 shows the average
PSNR and SSIM [15] of the results by different SR methods. It can be observed
that the proposed method achieves the best SR performance in all experiments.

Figure 2 shows visual comparisons on image “butterfly” with a scale factor of
3×. Our method accurately reconstructs the very thin line on the butterfly. We
observe that methods using the bicubic upsampling for pre-processing generate
results with noticeable artifacts. In contrast, our approach effectively suppresses
such artifacts. Similarly, in Figs. 3, 6 and 7, contours are clean in our method
whereas they are severely blurred or distorted in other methods.

(a) Original / PSNR (b) Bicubic / 24.04 dB (c) A+ / 25.90 dB

(d) SRCNN-Ex / 27.95 dB (e) FSRCNN / 28.68 dB (f) MFSR / 29.98 dB

Fig. 2. The “butterfly” image from the Set5 dataset with an upscaling factor 3.
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(a) Original / PSNR (b) Bicubic / 31.68 dB (c) A+ / 33.08 dB

(d) SRCNN-Ex / 33.67 dB (e) FSRCNN / 33.85 dB (f) MFSR / 34.02 dB

Fig. 3. The “lenna” image from the Set14 dataset with an upscaling factor 3.

4.3 Execution Time

Our network is implemented using the Python interface of Caffe package [6] and
is trained and tested on a machine with 4.2 GHz Intel i7 CPU (32G RAM) and
Nvidia TITAN X (Pascal) GPU (12G Memory). Table 2 shows the execution time
of our model on Set5, Set14, BSD100 and Urban100 by using CPU implementa-
tion and GPU implementation. The speed of the proposed MFSR using GPU is
much faster than that of using CPU. Figure 4 shows the trade-offs between the

Table 2. Comparison of the execution time (sec) of our method on the 4 benchmark
datasets with CPU implementation and GPU implementation.

CPU / GPU Scale Set5 Set14 BSD100 Urban100

CPU 2 0.832 1.589 1.004 5.267

GPU 2 0.015 0.018 0.010 0.041

CPU 3 0.254 0.523 0.341 1.746

GPU 3 0.012 0.013 0.007 0.023

CPU 4 0.147 0.301 0.187 0.972

GPU 4 0.009 0.010 0.005 0.016
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Fig. 4. The average PSNR and the average inference time for upscaling factor 4× on
Set5. SRCNN and FSRCNN use the public slower MATLAB implementation of CPU.
Our MFSR uses the matcaffe implementation of CPU.
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Fig. 5. The average PSNR and the average inference time for upscaling factor 4× on
Set14. All methods use CPU implementation.

run time and performance on Set5 for 4× SR. We measure the run time of all
methods on CPU. Similarly, from Fig. 5, we can see that the proposed MFSR
generates SR images efficiently and accurately on Set14 with scaling factor 4.
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(a) Original / PSNR (b) Bicubic / 23.71 dB (c) A+ / 25.03 dB

(d) SRCNN-Ex / 27.04 dB (e) FSRCNN / 27.11 dB (f) MFSR / 28.05 dB

Fig. 6. The “ppt3” image from the Set14 dataset with an upscaling factor 3.

(a) Original / PSNR (b) Bicubic / 26.63 dB (c) A+ / 28.43 dB

(d) SRCNN-Ex / 29.29 dB (e) FSRCNN / 29.42 dB (f) MFSR / 29.83 dB

Fig. 7. The “zebra” image from the Set14 dataset with an upscaling factor 3.
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5 Conclusions

In this work, we investigate a deep convolutional network for single image super-
resolution. Our method presents the multi-context fusion leaning and combine it
with residual learning. MFSR is compared with several state-of-art SR methods
(both DL and non-DL) in our experiments, and shows a visible performance
advantage both quantitatively and perceptually. In the future, this approach
of image super-resolution will be explored to facilitate other image restoration
problems such as denoising and compression artifacts reduction.
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