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Abstract. Cross-modal hashing aims to facilitate approximate near-
est neighbor search by embedding multimedia data represented in high-
dimensional space into a common low-dimensional Hamming space,
which serves as a key part in multimedia retrieval. In recent years, kernel-
based hashing methods have achieved impressive success in cross-modal
hashing. Enlightened by this, we present a novel multiple kernel hashing
method, where hash functions are learned in the kernelized space using
a sequential optimization strategy. Experimental results on two bench-
mark datasets verify that the proposed method significantly outperforms
some state-of-the-art methods.
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1 Introduction

Nowadays, the amount of multimedia data grows explosively with the rapid
development of information technology, consequently making the hashing based
approximate nearest neighbor (ANN) search technique in great demand. The
basic idea of hashing methods is to embed original high-dimensional data into
compact binary codes, which can lead to fast computation of Hamming distances
by hardware accelerated bit-wise XOR operation.

Most previous hashing methods focused on single-modal data. One of the
most well-known work is locality sensitive hashing (LSH) [3], which projects data
samples from original feature space to Hamming feature space while preserving
their similarity as much as possible. To achieve better retrieval performance, var-
ious extensions of LSH were proposed to design more compact hashing, such as
PCA based hashing [14], manifold learning based hashing [7], and kernel learn-
ing based hashing [5,6,13,19]. Spectral Hashing (SH) [16] generates hash codes
by thresholding a subset of eigenvectors of graph Laplacian constructed on data
samples. Co-Regularized Hashing (CRH) [22] presents a boosted co-regularized
framework to learn hashing functions for each bit. Supervised Hashing with
Pseudo Labels (SHPL) [10] uses the cluster centers of training data to generate
pseudo labels, which is utilized to enhance the discrimination of hash codes.
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Supervised Hashing with Kernels (KSH) [6] try to construct the hash functions
by optimizing the code inner products.

These aforementioned methods are only applicable for single modality. How-
ever, most data in real-world applications are in the form of multiple modalities.
For instance, a web page may contain both images and text and a YouTube
video often has relevant tags. Consequently, more and more research interest
has been devoted to cross-modal hashing. CMFH [2] was among the first to
learn cross-modal hash functions using collective matrix factorization, and it
aims to generate unified hash codes for each instance. In [20], Zhang and Li pro-
posed an algorithm with linear-time complexity to learn hash functions, which
can be used for large-scale data. Quantized Correlation Hashing (QCH) [17] aims
to jointly learn binary codes learning and minimize the quantization loss. Ker-
nelized Cross-Modal Hashing for Multimedia Retrieval (KCH) [11] maps data
from different modalities into a common kernel space by canonical correlation
analysis. Notably, multi-kernel learning has emerged as an effective approach
to cross-modal hashing, as the utilization of multiple kernels can explore the
complementary property of each single kernel. In [24], Zhou et al. proposed
an kernelized cross-modal hashing algorithm embedded in boosting framework,
but it only utilizes single kernel. Boosting Multi-kernel Locality-Sensitive Hash-
ing (BMKLSH) [18] uses multi-kernel learning to produce hash codes, and the
experimental results show its superiority over KLSH [5] based on single kernel
learning.

Motivated by the great success of multi-kernel learning, we propose a super-
vised cross-modal hashing approach based on multi-kernel learning, which is
named Multiple Kernel with Semantic Correlation Hashing (MKSH). Unlike the
existing single-kernel methods [4,6,21,23], we aim to learn multi-kernel hash
functions. Moreover, differing from the existing multi-kernel hashing approaches
[15] that assign the same weight to each kernel in a brute-force way, we utilize an
alternated optimization strategy to simultaneously learn the kernel combination
coefficients and hash functions that can lead to higher retrieval accuracy. Our
contributions are summarized as follows:

– We propose a novel cross-modal hashing algorithm utilizing multi-kernel
learning.

– In order to find the optimal allocation of different kernels, we propose an
iterative method to solve the objective function.

– To further enhance the algorithm performance, we utilize a sequential strategy
to learn hash functions.

2 Proposed Algorithm

In this section, we detail the procedure of our hashing approach. Let O =
{oi}n

i=1 denote a set of multi-view samples and X = {xi}n
i=1, Y = {yj}n

j=1

represent two different views of O, where X ∈ �dx and Y ∈ �dy . The
goal of MKSH is to learn two hash functions for each modality respec-
tively: f(x) =

[
f(1)(x), f(2)(x), . . . , f(k)(x)

]
: �dx → {−1, 1}k and g(y) =
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[
g(1)(y), g(2)(y), . . . , g(k)(y)

]
: �dy → {−1, 1}k, where k denotes the length of

hash codes.

2.1 Learning Hash Functions

We use multiple kernels to define the mapping function in each modality as:
⎧
⎪⎨

⎪⎩

K(xi) =
[
μ1K1(x

(1)
i ) + μ2K2(x

(2)
i ) . . . μMKM (x(M)

i )
]

K(yj) =
[
μ1K1(y

(1)
j ) + μ2K2(y

(2)
j ) . . . μMKM (y(M)

j )
] (1)

where M indicates the number of kernels, and KM (x(M)
i ) is defined as

KM (x(M)
i ) = kM (x̄i, xj) (KM (y(M)

j ) = kM (ȳi, yj)), and x̄ ∈ X (ȳ ∈ Y) are
landmarks. We can use clustering methods to obtain landmarks. Then we define
a prediction function with kernel as follows:

p(x) =
m∑

j=1

K(xj)wj − b (2)

where m is the number of landmarks, and b ∈ � is the bias, wi ∈ �
is the coefficient. As a fast alternative to the median, following [6], we set
b = 1

n

∑n
i=1

∑m
j=1 K(xj)wj . Then we have:

p(x) =
m∑

j=1

(

K(xj) − 1
n

n∑

i=1

K(xj)

)

wj

= WT K(x).

(3)

The hashing functions are defined as follows:
⎧
⎪⎨

⎪⎩

f(x) = sgn
(
WT

x K(x)
)

g(y) = sgn
(
WT

y K(y)
) (4)

where sgn(u) is set to 1 if u > 0, otherwise −1, and Wx ∈ �dx×k represent
the projection matrices. We utilize the cosine similarity between the semantic
label vectors to construct the pairwise semantic similarity S̃ij , where S̃ij =
(li · lj)/(‖li‖2‖lj‖2), li and lj are label vectors. We also use L to store label
information, with Lij = li,j/‖li‖2, where Lij denotes the element at the ith row
and the jth column in the matrix L, then we write S̃ij = L ∗ LT , finally, we
perform element wise linear transformation on S̃ij to get semantic similarity
matrix Sij as follows:

Sij = 2L ∗ LT − 1n1T
n . (5)
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where Sij ∈ [−1, 1] is the semantic similarity matrix, and 1n is an all-one column
vector. Then we define the objective function minimizing the squared error as
follows:

min
f,g

∑

i,j

(
f(xi)T g(yj) − Sij

)2
(6)

Eq. (6) can be rewritten as:

min
Wx,Wy

∥
∥
∥sgn (K(x)Wx) sgn (K(y)Wy)T − Sij

∥
∥
∥
2

F
. (7)

2.2 Learning Projection Matrices

The problem described in Eq. (7) is NP hard. However, we can use spectral
relaxation to obtain a close-formed solution. We rewrite Eq. 7 as follows:

min
Wx,Wy

∥
∥
∥K(x)Wx (K(y)Wy)T − Sij

∥
∥
∥
2

F
(8)

s.t.

{
WT

x K(x)T K(x)Wx = nIc

WT
y K(y)T K(y)Wy = nIc

Removing the constant, then we have:

max
Wx,Wy

tr
(
WT

x K(x)TSijK(y)Wy

)
(9)

s.t.

{
WT

x K(x)T K(x)Wx = nIc

WT
y K(y)T K(y)Wy = nIc

In Eq. (9), Ic denotes an identity matrix of size c × c, the term K(x)TSK(y)
can be regarded as to weigh the relationship between two different modali-
ties. If we define Cxy = K(x)TSK(y) and Cxx = K(x)TSK(x) and Cyy =
K(y)TSK(y), then the problem (9) can be viewed as a generalized eigenvalue
problem. Consequently, we can get the optimal value of Wx and Wy by eigen-
decomposition.

Some literatures have experimentally verified that orthogonal constraints are
helpless to produce discriminative hash codes [14]. Following the idea in [20], we
turn to use a sequential optimization strategy to learn hash functions. Suppose
that the latter projection is related to the former, we solve hashing functions by
defining a residue. The residue matrix Vt is denoted by:

Vt = S −
t−1∑

k=1

sgn
(
K(x)W(k)

x

)
sgn

(
K(y)W(k)

y

)T

(10)
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Algorithm 1. Sequential Learning Algorithm for MKSH
Require: The kernel matrices in different views Km(x),Km(y),m = 1, . . .M and the

similarity matrix S.
Ensure: The kernel weights vector µ, the projection matrices Wx and Wy.
1: Initialize µ with equal weights, and utilize Eq. (1) to calculate the initial kernel

matrices K(x) and K(y).
2: repeat
3: Update Wx, Wy by Eq. (11).
4: Update µ by Eq. (12).
5: Update K(x) and K(y) according to Eq. (1).
6: until convergence.
7: f(x) = sgn(WT

xK(x)), g(y) = sgn(WT
y K(y)).

Then Cxy can be computed by:

Ct
xy = K(x)TVtK(y)

= K(x)TSK(y) −
t−1∑

k=1

K(x)T sgn
(
K(x)W(k)

x

)
sgn

(
K(y)W(k)

y

)T

K(y)

= C(t−1)
xy − K(x)T sgn

(
K(x)W(t−1)

x

)
sgn

(
K(y)W(t−1)

y

)T

K(y)

We rewrite Eq. (8) as follows:

max
Wx,Wy

∥
∥
∥
∥
(
K(x)W(t)

x

)(
K(y)W(t)

y

)T

− Vt

∥
∥
∥
∥

2

F

(11)

Once the optimal value of Eq. (11) is obtained we can get the projections of
two modalities Wx and Wy.

2.3 Optimizing the Weights of Multiple Kernels

The objective function is written as:

�L(S,Wx,Wy, μ) =
1
2
μT Fμ (12)

s.t.
M∑

m=1
μm = 1,μm � 0

where F = tr
(
WT

x K(x)TSK(y)Wy

)
. If Wx and Wy are available, Eq. (12)

can be regarded as a quadratic programming problem.
The overall algorithm is summarized in Algorithm 1.

3 Experiments

In this section, we conduct experiments on two benchmark datasets to verify the
effectiveness of our approach.
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3.1 Datasets

The used datasets are the Wiki dataset [8] and the NUS-WIDE dataset [1].
The Wiki dataset contains 2866 image-text pairs. Each image is represented

by a SIFT feature vector with 1000-dimensional Bag-of-Visual-Words SIFT his-
togram, and each text is represented by an index vector of the top 5000 most
frequent tags. There are 10 categories in the Wiki dataset.

The NUS-WIDE dataset contains 269648 images collected from Flickr. Fol-
lowing the experimental protocol in [12], we choose a subset comprising the
most frequently-used 10 classes. Each image is represented by a 500-dimensional
bag-of-visual-words SIFT histogram, and each text is represented by a Bag-
of-Words feature vector with top 1000 most frequent tags. In the subset, we
randomly choose 5000 image-tag pairs as the training set, and randomly choose
1866 image-text pairs from the remaining documents as the test set. Table 1
shows the details of the evaluated datasets in our experiments.

Table 1. The details of the evaluated datasets

Dataset Wiki NUS-WIDE

Image modality BoVW(1000-D) BoVW(500-D)

Text modality BoW(5000-D) BoW(1000-D)

Dataset size 2866 186577

Training set size 2173 5000

Testing set size 693 1866

Num. of categories 10 10

3.2 Experimental Setup

We perform two cross-modal retrieval tasks on the NUS-WIDE and the Wiki
datasets respectively, i.e., ‘img to text’ and ‘text to img’. We compare MKSH
to six state-of-the-art cross-modal hashing methods, i.e., LCMH [25], LSSH [23],
SCM-Seq [20], CMFH [2], RCMH [9], and KSH-CV [24]. We employ the mean
Average Precision (mAP) to evaluate the retrieval performance. The average
precision is defined as: AP = 1

N

∑R
i=1 P (i)×δ(i), where P (i) means the retrieval

accuracy of top i retrieved documents, and δ(i) is an indicator function, if the
i-th rank is a relevant instance, δ(i) = 1, otherwise δ(i) = 0. N is the number of
relevant instances in the training set.

In our experiment, we choose the Gaussian RBF kernel K(x, y) =
exp(−‖x−y‖2

2ε2 ), the sigmoid kernel K(x, y) = tanh(αxy + c) and the exponential
kernel K(x, y) = exp(−‖x−y‖

2λ2 ) as kernel functions, and set R = 50.
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3.3 Experimental Results

We compare the mAP values of all the methods on the Wiki and NUS-WIDE
datasets, and the code length ranges from 16 to 64. The detailed results are
reported in Tables 2 and 3. Figure 1 shows the precision-recall curves of two
query tasks on the Wiki dataset. We also compare the performance of our method
using multiple kernels and single kernel respectively, and the results are plotted
in Figs. 2 and 3.

Table 2. mAP results on Wiki dataset.

Task Methods Hash code length

16 bits 32 bits 48 bits 64 bits

Img to text LCMH 0.1166 0.1354 0.1440 0.1489

LSSH 0.1959 0.1801 0.1854 0.1821

SCM-Seq 0.1837 0.1902 0.1751 0.1880

CMFH 0.1627 0.1627 0.1626 0.1635

RCMH 0.1584 0.1600 0.1603 0.1670

KSH-CV 0.1674 0.1765 0.1718 0.1717

MKSH 0.2192 0.2125 0.2249 0.2161

Text to img LCMH 0.1296 0.1365 0.1378 0.1457

LSSH 0.1625 0.1584 0.1524 0.1609

SCM-Seq 0.1711 0.1708 0.1673 0.1705

CMFH 0.1577 0.1580 0.1560 0.1561

RCMH 0.1535 0.1572 0.1618 0.1571

KSH-CV 0.1923 0.1901 0.1885 0.1825

MKSH 0.2048 0.2079 0.2184 0.2348

We can draw two conclusions from the aforementioned experimental results.
Firstly, MKSH outperforms the alternatives, which shows its superiority over
the compared methods. Secondly, MKSH shows its consistent advantage when
the length of hash codes become longer, which can be owed to its sequential
optimization strategy.

From Fig. 1 we also have two observations. Firstly, MKSH outperforms the
compared methods. Secondly, we can find that RCMH and LCMH are not appli-
cable for large-scale cross-modal retrieval due to their poor performance.

3.4 Parameters Sensitivity Study

According to our experimental study, the four parameters, including ε, α, c
and λ, have a slight influence on the performance, so we set ε = 0.6, α = 9,
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Fig. 1. PR-curves on the NUS-WIDE dataset varying code length
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Table 3. mAP results on NUS-WIDE dataset.

Task Methods Hash code length

16bits 32bits 48bits 64bits

Img to text LCMH 0.3376 0.3763 0.3783 0.3745

LSSH 0.4746 0.4920 0.4903 0.4915

SCM-Seq 0.5739 0.5941 0.5920 0.5962

CMFH 0.4741 0.4886 0.4871 0.4853

RCMH 0.3817 0.3820 0.3847 0.3817

KSH-CV 0.4609 0.4678 0.4648 0.4692

MKSH 0.6075 0.6303 0.6537 0.6487

Text to img LCMH 0.4108 0.4183 0.3964 0.3877

LSSH 0.5827 0.6142 0.6125 0.6119

SCM-Seq 0.6159 0.6501 0.6668 0.6658

CMFH 0.4636 0.4781 0.4839 0.4884

RCMH 0.3822 0.3835 0.3806 0.3807

KSH-CV 0.4220 0.4177 0.4111 0.4022

MKSH 0.6890 0.7003 0.7135 0.6684
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Fig. 2. Compare mAP on multiple kernels and single kernels (Wiki)

c = −0.1 and λ = 0.8. The generation of the kernel matrix depends on the
number of landmarks. Figure 4 shows the performance when varying the number
of landmarks on the WIKI and NUS-WIDE datasets respectively. We can observe
that the precision almost remain the same with the variation of the number
of landmarks. Therefore, we can learn that the number of landmarks is not a
sensitive parameter.
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Fig. 3. Compare mAP on multiple kernels and single kernels (NUS-WIDE)
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Fig. 4. The effect of landmarks on MKSH

4 Conclusions

In this paper, we have proposed a novel algorithm for cross-modal hashing
named MKSH. Multi-kernel learning and a sequential optimization strategy are
used to achieve better performance. Experimental results on the Wiki and the
NUS-WIDE datasets show that our method outperforms several state-of-the-art
methods.
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