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Abstract. This paper proposes an effective two-stage saliency fusion method to
generate the fusion map, which is used as a prior for object segmentation. Given
multiple saliency maps generated by different saliency models, the first stage is
to produce two fusion maps based on average and min-max statistics, respec‐
tively. The second stage is to perform the Fourier transform (FT) on the two fusion
maps, and to combine the amplitude spectrum of average fusion map and the
phase spectrum of min-max fusion map, so as to reform the spectrum, and the
final fusion map is obtained by using the inverse FT on the reformed spectrum.
Last, object segmentation is performed under graph cut by using the final fusion
map as a prior. Extensive experiments on three public datasets demonstrate that
the proposed method facilitates to achieve the better object segmentation perform‐
ance compared to using individual saliency map and other fusion methods.

Keywords: Object segmentation · Saliency fusion · Statistical fusion
Fourier transform

1 Introduction

Automatic object segmentation is a key requirement in a number of applications [1].
Some object/background prior is necessary for object segmentation, and undoubtedly,
saliency map is an effective option. Saliency models that generate saliency maps can be
classified into two categories. One is concerned with predicting human fixation, and the
pioneer work of this category originated from [2]. The other one tries to detect salient
objects with well-defined boundaries to highlight the complete objects. Obviously, the
latter one is a more suitable prior for object segmentation. Fortunately, plenty of saliency
models with high performances are developed in the recent years [3]. Especially, inte‐
grating multiple features, multiple levels, multiple scales, multiple stages and multiple
saliency maps have demonstrated the effectiveness for improving saliency detection
performance, such as multiple kernel boosting on multiple features [4] and Bayesian
integration of low-level and mid-level cues [5]. In [6], the stacked denoising autoen‐
coders are used to model background and generate deep reconstruction residuals at
multiple scales and directions, and then the residual maps are integrated to obtain the
saliency map. In [7], four Mahalanobis distance maps based on the four spaces of back‐
ground-based distribution are first integrated, and then are enhanced within Bayesian
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perspective and refined with geodesic distance to generate the saliency map. In [8], the
sum fusion method is evaluated and the results verify that combining several best sali‐
ency maps can actually enhance saliency detection performance. A data-driven saliency
aggregation approach under the conditional random field framework is proposed in [9],
which focuses on modeling the contribution of individual saliency map. Besides, the
work in [10] integrates different saliency maps for fixation prediction and also demon‐
strates the performance improvement. A selection framework from multiple saliency
maps adaptive to the input image is proposed in [11].

In this paper, we focus on fusion of multiple saliency maps, and specifically, the
fused saliency map is used as an object prior for effective object segmentation. A high-
quality saliency map for segmentation should effectively highlight object pixels and
suppress background pixels, i.e., the contrast of saliency values between object pixels
and background pixels should be as high as possible. For this purpose, the proposed
saliency fusion method has the following two main contributions, which makes it
different from the previous works: (1) The saliency fusion is performed in both spatial
domain and frequency domain; (2) The fusions in the two domains are implemented in
two stages in sequel to achieve a controllable SNR-contrast trade-off. Specifically, in
the first stage, based on the statistics in the spatial domain, the average fusion map and
min-max fusion map are generated. In particular, the saliency values of potential object
pixels and background pixels are increased and decreased, respectively, as much as
possible by using the min-max fusion. In the second stage, the above two fusion maps
are further fused in the frequency domain. Specifically, the amplitude spectrum of
average fusion map and the phase spectrum of min-max fusion map are integrated to
reduce the errors and preserve the prominent contrast between object and background
simultaneously.

2 Proposed Saliency Fusion for Object Segmentation

An overview of the proposed two-stage saliency fusion for object segmentation is illus‐
trated in Fig. 1. Given the input image in Fig. 1(a), a number of existing saliency models
are exploited to generate multiple saliency maps as shown in Fig. 1(b). For example, we
can use the top six high-performing saliency models as reported in [3] to generate six
saliency maps for the input image. The proposed two-stage saliency fusion method
sequentially performs fusion in spatial domain and frequency domain, which are
described in Sects. 2.1 and 2.2, respectively. Then the fusion map is used as a prior to
perform object segmentation, which is described in Sect. 2.3.
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Fig. 1. Overview of the proposed method. (a) Input image; (b) multiple saliency maps generated
by using different saliency models; (c) average fusion (AF) map; (d) min-max fusion (MMF) map;
(e) AAPMF map by integrating the amplitude spectrum of AF map and the phase spectrum of
MMF map; (f) segmentation result via graph cut.

2.1 Fusion Based on Average and Min-Max Statistics

The average statistics is one widely used statistics, and it is effective to average all
saliency maps at pixel level for improving saliency detection performance [8]. Therefore
we use the average operation to first generate the average fusion (AF) map as shown in
Fig. 1(c). Although the AF map achieves performance improvement, it is not always a
good candidate of prior for segmentation due that it cannot sufficiently highlight object
pixels and suppress background pixels. In other words, the AF map generally weakens
the contrast between object pixels and background pixels. Therefore, as a complement,
we propose a novel fusion scheme which relies on the minimum and maximum of all
saliency values. Specifically, the fusion value of each pixel is adaptive to the corre‐
sponding pixel’s value in the AF map and a threshold. For each pixel, if its corresponding
pixel’s value in the AF map is less than a threshold, the pixel will be determined to be
a potential background pixel, and the minimum among all saliency values of the pixel
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will be assigned to the pixel’s fusion value. Otherwise, the pixel will be determined to
be a potential object pixel, and the maximum among all saliency values of the pixel will
be assigned to the pixel’s fusion value. We term the fusion result as the min-max fusion
(MMF) map, and the min-max statistical fusion is fusion defined as follows:

FMMF(p) =

{
min

i=1,2,⋯N

[
Si(p)

]
, if FAF(p) ≤ T

max
i=1,2,⋯N

[
Si(p)

]
, otherwise

, (1)

where Si(p) denotes the saliency value of each pixel p in the ith saliency map, and N is
the total number of saliency maps. FMMF and FAF denote the MMF map and the AF map,
respectively. For each saliency map Si, the Otsu’s method [12] is applied to obtain the
threshold Ti, and the average of all N thresholds is assigned to the threshold T, i.e.,

T =
∑N

i=1 Ti∕N. For the multiple saliency maps shown in Fig. 1(b), the corresponding
MMF map is shown in Fig. 1(d).

2.2 Fusion Based on Fourier Transform of AF Map and MMF Map

Depending on the min-max operation, it is understandable that the MMF map owns the
expected property of highlighting potential object pixels and suppressing potential
background pixels, respectively, as intensively as possible. However, the MMF map
will inevitably falsely highlight some background pixels and/or suppress some object
pixels. Therefore, the AF map is exploited to alleviate such errors via the use of Fourier
Transform (FT).

As we know, saliency map is in nature a grey-scale map, so its signal-noise ratio
(SNR) is reflected in the amplitude spectrum and the boundaries between object regions
and background regions are reflected in the phase spectrum. The two spectrums are
obtained via FT on AF map and MMF map. The SNR of AF map is higher than that of
MMF map since the AF map is the average of multiple saliency maps, while the MMF
map contains more noises introduced by the min-max operation including wrongly
judged object pixels and background pixels. On the other hand, the contrast between
object pixels and background pixels in the MMF map are higher than that in the AF map,
also due to the min-max operation for generating MMF map. Obviously, the higher the
contrast between object pixels and background pixels is, the more complete boundaries
between object regions and background regions will be preserved. Therefore, we choose
the amplitude spectrum of AF map and the phase spectrum of MMF map to reform a
new spectrum so as to obtain a better SNR-contrast trade-off than both AF map and
MMF map.

The inverse FT (IFT) is performed on the reformed spectrum to obtain the final fusion
map, which is abbreviated to AAPMF (Amplitude spectrum of AF map and Phase spec‐
trum of MMF map based Fusion) map, as follows:

FAAPMF = IFT
[
𝐀(FAF),𝐏(FMMF)

]
, (2)
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where A refers to extracting the amplitude spectrum and P refers to exacting the phase
spectrum. The AAPMF map as shown in Fig. 1(e) is used as a prior for object segmen‐
tation.

To further verify the reasonableness and effectiveness of the proposed spectrum
integration strategy, we also generate the fusion map by reforming the new spectrum
with the amplitude spectrum of MMF map and the phase spectrum of AF map, and
similarly, we denote it as AMPAF map. Some examples of AF, MMF, AAPMF and
AMPAF maps are shown in Fig. 2. It can be seen from Fig. 2 that AAPMF maps can
highlight object regions and suppress background regions better than the other maps,
and the corresponding segmentation results using AAPMF maps also achieve the better
quality than the other segmentation results. Therefore, the AAPMF map can serve as
the better prior for object segmentation.

Fig. 2. The impact of amplitude spectrum and phase spectrum of saliency map. (a) Input image;
(b) ground truth; (c) AF map; (d) segmentation result using (c); (e) MMF map; (f) segmentation
result using (e); (g) AMPAF map; (h) segmentation result using (g); (i) AAPMF map; (j)
segmentation result using (i).

2.3 Object Segmentation

Given the saliency prior such as AAPMF map, the object segmentation is formulated as
assigning labels to each pixel by solving an energy minimization problem under the
framework of graph cut [13]. As a result, each pixel p gets its label Lp ∈ {0, 1}, where
Lp = 1 denotes object and Lp = 0 denotes background. The energy function is defined
as follows:

E =
∑

p
D
(
Lp

)
+ 𝜆

∑
(p,q)∈Ω
Lp≠Lq

𝜃
(
Lp, Lq

)
D
(
Lp

)
=

{
SF(p), Lp = 0
1 − SF(p), Lp = 1

𝜃
(
Lp, Lq

)
= exp

[
−
(Ip − Iq)

2

2𝜎2

]
⋅

1
dist(p, q)

,

(3)
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where D(⋅) is the data term, 𝜃(⋅) is the smoothness term, and Ω is the set of pairs of
neighboring pixels. The parameter 𝜆 is used to balance the two terms, and is set to 0.1
for a moderate effect of smoothness. SF denotes the saliency prior, which uses the
AAPMF map here. In the smoothness term, Ip denotes the color feature of the pixel p,
the parameter 𝜎2 is set to 2.5, and disp(p, q) is the Euclidean distance between a pair of
pixels, p and q. The max-flow algorithm [14] is adopted to minimize the energy function
and obtain the labels of pixels, which represent the object segmentation result. For
example, Fig. 1(f) is the object segmentation result by using AAPMF map as the saliency
prior.

3 Experimental Results

3.1 Experimental Setting

To verify the effectiveness of the proposed saliency fusion method for object segmen‐
tation, we evaluated its performance on the three public benchmark datasets including
MSRA10 K [15], ECSSD [16] and PASCAL-S [17], with 10000, 1000 and 850 images,
respectively. For each image in the three datasets, the manually annotated pixel-level
binary ground truth of objects is provided. According to the benchmark [3], we selected
the top six saliency models with the highest performances, i.e., DRFI [18], QCUT [19],
RBD [20], ST [21], DSR [22] and MC [23], to generate saliency maps. In addition to
AAPMF map, we also tested AF map, MMF map and AMPAF map, and compared with
the other two fusion methods, i.e. maximum and multiplication, which generate MaxF
map using the pixel-wise maximum of all saliency values as the fusion value and PF
map using the pixel-wise multiplication of all saliency values as the fusion value,
respectively. We specified SF in Eq. (3) with each of the above mentioned saliency maps
and fusion maps to obtain the corresponding object segmentation results.

3.2 Quantitative Comparison

We evaluated all segmentation results using the conventional F-measure defined as
follows:

F𝛽 =
(1 + 𝛽2)Precision × Recall

𝛽2Precision + Recall
, (4)

and the weighted F-measure, which is recently introduced in [24], as follows:

F𝜔

𝛽
=

(1 + 𝛽2)Precision𝜔 × Recall𝜔

𝛽2Precision𝜔 + Recall𝜔
, (5)

where Precision𝜔 and Recall𝜔 (namely weighted Precision and weighted Recall) are
computed by the extended basic quantities including true positive, true negative, false
positive and false negative, which are weighted according to the pixels’ location and
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neighborhood. The coefficient 𝛽2 is set to 0.3 indicating more importance of precision
than recall as suggested in [3]. Here we compute all measures for each image and then
obtain the average on all images in a given dataset for performance comparison. All
results are listed in Table 1. In each row of Table 1, the 1st, 2nd and 3rd place of
performance are marked with red, green and blue, respectively. It can be observed that
in terms of F-measure and weighted F-measure, AAPMF map consistently performs
best on all datasets. This objectively reveals the overall better performance of AAPMF
map as a prior for object segmentation. Particularly, the advantage of AAPMF map over
AF map, MMF map and AMPAF map further demonstrates the reasonableness of
reforming the spectrum by combining the amplitude spectrum of AF map and the phase
spectrum of MMF map.

Table 1. Average F-measure (F) and average F𝜔

𝛽
-measure (F𝜔

𝛽
) of object segmentation results

on three public benchmark datasets (D) consisting of MSRA10 K (M), ECSSD (E) and
PASCAL-S (P).

D Metric
Top Six  Saliency Models Saliency Fusion Methods AAPMF

(proposed ) DRFI DSR MC QCUT RBD ST MaxF PF AF MMF AMPAF

M 
F .856 .784 .784 .728 .816 .844 .836 .505 .861 .874 .845 .880

Fω
β .839 .777 .774 .735 .808 .820 .783 .525 .856 .846 .840 .861

E 
F .740 .651 .647 .604 .645 .708 .715 .356 .734 .756 .709 .760

Fω
β .715 .638 .621 .604 .619 .667 .642 .377 .717 .711 .694 .723

P 
F .617 .541 .553 .511 .580 .600 .628 .279 .629 .651 .597 .652
Fω

β .583 .517 .525 .503 .544 .555 .552 .292 .601 .598 .575 .606

*For Table 1, in the first column, D denotes Datasets, M, E and P denote MSRA10K, ECSSD and 
PASCAL-S dataset, respectively; in the second     column, F and Fω

β denotes F -measure and Fω
β -

measure, respectively.

3.3 Qualitative Comparison

Some object segmentation results are shown in Fig. 3 for a qualitative comparison.
Overall, the segmentation results with AAPMF maps show the best visual quality
compared to others. Besides, it can be seen from Fig. 3(c)–(h) that the segmentation
results with the saliency maps may miss some object regions and/or contain some back‐
ground regions. The results with MaxF maps shown in Fig. 3(i) usually introduce some
irrelevant regions, while the results with PF maps shown in Fig. 3(j) usually miss some
portions of object regions. Compared to the results with AF, MMF and AMPAF maps
shown in Fig. 3(k)–(m), the results with AAPMF maps shown in Fig. 3(n) can generally
segment more complete objects with more accurate boundaries.
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Fig. 3. Object segmentation results of sample images from MSRA10 K (the first two rows),
ECSSD (the middle two rows) and PASCAL-S (the bottom two rows). (a) original images; (b)
ground truths; (c)–(h) segmentation results with DRFI, DSR, MC, QCUT, RBD and ST; (i)–(j)
segmentation results with MaxF and PF; (k)-(m) segmentation results with AF, MMF and
AMPAF; (n) segmentation results with AAPMF (our results).

3.4 Computation Cost

Our method is implemented using Matlab on a PC with an Intel Core i7 4.0 GHz CPU
and 16 GB RAM. The average processing time for an image with a resolution of
400 × 300 is 0.88 s excluding the generation of saliency map. The first-stage fusion takes
0.51 s, the second-stage fusion takes 0.06 s, and the object segmentation takes 0.31 s. It
can be seen that the two-stage saliency fusion is computationally efficient. The other
saliency fusion methods are also computationally efficient. Specifically, MaxF, PF, AF,
MMF and AMPAF take 0.02 s, 0.03 s, 0.03 s, 0.48 s and 0.58 s, respectively, to generate
saliency fusion maps. The object segmentation based on these saliency fusion maps also
takes about 0.31 s.

3.5 Discussion

Since the saliency fusion heavily depends on the individual saliency maps involved in
the fusion, the proposed method will fail once all the individual saliency maps are
insufficient to highlight salient objects. Some failure examples from the PASCAL-S
dataset, which is a more challenging dataset for object segmentation, are shown in
Fig. 4. Nonetheless, the results reported in Table 1 indicate that even in the PASCAL-
S dataset with more challenging images, the segmentation performance using AAPMF
map as a prior is still better than the results using individual saliency maps, MaxF, PF,
AF, MMF and AMPAF maps as a prior.
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Fig. 4. Failure examples of the proposed method. (a) Input images; (b) ground truths; (c)–(h)
saliency maps generated by the top six models: DRFI, DSR, MC, QCUT, RBD and ST; (i) AAPMF
maps generated by the proposed fusion method; (j) our segmentation results by using AAPMF
map as a prior.

4 Conclusion

This paper proposes a novel approach to fuse multiple saliency maps in two stages for
object segmentation. In the first stage, the AF map and MMF map are obtained based
on the average and min-max statistics, respectively. In the second stage, the amplitude
spectrum of AF map and the phase spectrum of MMF map are integrated to generate
the AAPMF map via the use of FT and IFT. Experimental results demonstrate that the
two-stage saliency fusion as a prior actually boosts the performance of object segmen‐
tation.
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