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Abstract. Human gait, as a soft biometric, helps to recognize people by
walking without subject cooperation. In this paper, we propose a more
challenging uncooperative setting under which views of the gallery and
probe are both unknown and mixed up (uncooperative setting). Joint
Bayesian is adopted to model the view variance. We conduct experi-
ments to evaluate the effectiveness of Joint Bayesian under the proposed
uncooperative setting on OU-ISIR Large Population Dataset (OULP)
and CASIA-B Dataset (CASIA-B). As a result, we confirm that Joint
Bayesian significantly outperform the state-of-the-art methods for both
identification and verification tasks even when the training subjects are
different from the test subjects. For further comparison, the uncoopera-
tive protocol, experimental results, learning models, and test codes are
available.
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1 Introduction

Biometrics refers to the use of intrinsic physical or behavioral traits in order
to identify humans. Besides regular features (face, fingerprint, iris, DNA and
retina), human gait, which can be obtained from people at larger distances and at
low resolution without subjects’ cooperation has recently attracted much atten-
tion. It also has a vast application prospect in crime investigation and wide-area
surveillance. For example, criminals usually wear gloves, dark sun-glasses, and
face masks to invalidate finger print, eyes, and face recognition. In such scenarios,
gait recognition is the only useful and effective identification method. Previous
research [1,2] has shown that human gait, specifically the walking pattern, is
difficult to disguise and unique to each people.

In general, video sensor-based gait recognition methods are divided into
two families: appearance-based [3–5] and model-based [6–8]. In the appearance-
based methods, it focus on the motion of human body and usually operate
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on silhouettes of gait. They extract gait descriptors from the silhouettes. The
general framework of appearance-based methods usually consists of silhouette
extraction, period detection, representation generation, and recognition. A typ-
ical example is gait energy image (GEI) [3] which is proposed as a mixture of
dynamic and static features. In model-based gait recognition, it focus more on
the extraction of the stride parameters of subject that describe the gait by using
the human body structure. The model-based methods usually require high res-
olution images as well as are computationally expensive while gait recognition
needs to be real-time and effective at low resolution. However, the performance
of gait recognition is often influenced by several variations such as clothing, walk-
ing speed, observation views, and carrying bags. For appearance-based methods,
view changes are the most problematic variations.

A. Joint Bayesian for modeling view variance
When dealing with view change problems, many appearance-based meth-

ods are proposed: (1) view transformation model (VTM) based generative
approaches [9,10]. (2) view-invariant feature-based approaches [11]. (3) multi-
view gallery-based approaches [12]. (4) subspace-based view-invariant discrim-
inative approaches [13–15]. However, VTM-based approaches(e.g. TCM+ [10],
wQVTM [9]) as well as some discriminative approaches (GMMFA [13]) often
require view information for a matching pair, while the information usually can’t
be obtained easily without subject’s cooperate.

So, we introduce Joint Bayesian to model the view variance which differs from
the above approaches, and the commonly used GEI is adopted as the input gait
representation. After the training process, the proposed method can be easily
used without any view information in advance.

B. Uncooperative gait recognition and transform learning
Most exist cross-view gait recognition methods [9,10,13] are based on the

assumption that gallery and probe views are known as a priori or fixed (cooper-
ative setting) while this assumption is often not valid in practice.

Usually, the gallery and probe view are often unknown and mixed up (unco-
operative setting). However, to the best of our knowledge, only a few stud-
ies [11,14,15] focus on uncooperative gait recognition. In [14,15], the unco-
operative setting just consider two different views every time while our pro-
posed setting consider four different views and is more complex. Our proposed
uncooperative setting is same with [11], but they just conduct experiments on
OU-ISIR Large Population Dataset (OULP) [16] while we also use the famous
CASIA-B Dataset (CASIA-B) [17] as a benchmark. Additionally, the training
subjects are often different from the test subjects, so that transfer learning is
performed [14,15].

2 Gait Recognition

Usually, gait recognition can be divided into two major tasks: gait verification
and gait identification as in face recognition [18–20]. Gait verification is used for
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verifying whether two input gait sequences (Gallery, Probe) belong to the same
subject. In this paper, we calculated the similar score (SimScore) using Joint
Bayesian to evaluate the similarity of two given sequences. Euclidean distance
was also adopted as a baseline method for comparison. In gait identification,
a set of subjects are gathered (The gallery), and it aims to decide which of
the gallery identities are similar to the probe at test time. Under the closed
set identification condition, a probe sequence is compared with all the gallery
identities, then identity which has the largest SimScore is the final result.

2.1 Gait Verification Using Joint Bayesian

In this paper, we modeled gait representations by summing two independent
Gaussian variables as:

x = μ + ε (1)

where x represents a mean-subtracted representation vector. For a better perfor-
mance, L2 - normalization was applied for gait representations. μ is gait identity
following a Gaussian distribution N(0, Sμ). ε stands for different gait variations
(e.g., view, clothing and carrying bags etc.) following a Gaussian distribution
N(0, Sε). Joint Bayesian models the joint probability of two gait representa-
tions using the intra-class variation (I) or inter-class variance (E) hypothesis,
P (x1, x2|HI) and P (x1, x2|HE). Given the above prior from Eq. 1 and the inde-
pendent assumption between μ and ε, the covariance matrix of P (x1, x2|HI) and
P (x1, x2|HE) can be derived separately as:

ΣI =
[
Sμ + Sε Sμ

Sμ Sμ + Sε

]
(2)

ΣE =
[
Sμ + Sε 0

0 Sμ + Sε

]
(3)

Sμ and Sε are two unknown covariance matrices which can be learned from
the training set using EM algorithm. During the testing phase, the likelihood
ratio (r(x1, x2)) is regarded as the similar score (SimScore):

SimScore(x1, x2) = r(x1, x2) = log
P (x1, x2|HI)
P (x1, x2|HE)

(4)

r(x1, x2) is efficient to obtained with the following closed-form process:

r(x1, x2) = xT
1 Ax1 + xT

2 Ax2 − 2xT
1 Gx2 (5)

where A and G are two final result model, which can be obtained by using simple
algebra operations between Sμ and Sε. Please refer to [21] for more details. We
also public our trained model (A and G) and testing codes in https://pan.baidu.
com/s/1qYk9HoC for further comparison.

https://pan.baidu.com/s/1qYk9HoC
https://pan.baidu.com/s/1qYk9HoC
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2.2 Gait Identification Using Joint Bayesian

For gait identification, the probe sample xp is classified as class i, if the final
SimScore with all the gallery (xi) is the maximum as shown in Eq. 6.

i = arg max
i∈[0,Ngallery−1]

SimScore(xi, xp) (6)

where Ngallery is the number of training subjects. In the experiments, we just
used the first period of the gait sequence.

3 Experiments

To evaluate the performance of Joint Bayesian under uncooperative setting
[11,14,15], extensive experiments have been carried out on the two largest pub-
lic gait dataset: OU-ISIR Large Population Dataset (OULP) [16] and CASIA-B
Dataset (CASIA-B) [17]. For comparison, we just considered four different views
on OULP (55◦, 65◦, 75◦, 85◦) and CASIA-B (36◦, 54◦, 72◦, 90◦), respectively.

Fig. 1. Examples of GEIs from different people in OULP (top) and CASIA-B (bottom)
under four different view conditions. The first S1 appears to be the best match to S2,
because they are under the same view, which can easily lead to a wrong match.

Table 1. Comparison of rank-1 (%) and EERs (%) with other existent methods on
OULP in uncooperative setting.

Joint Bayesian GEINet LDA 1NN

Rank-1 [%] 96.81± 0.60 89.70 91.09± 0.89 21.62± 1.44

EERs [%] 1.58± 0.14 1.60 4.11± 0.24 31.53± 0.95
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Table 2. Comparison of rank-1 (%) and EERs (%) with other existent methods on
CASIA-B in uncooperative setting.

Joint Bayesian RankSVM LDA 1NN

Rank-1 [%] 86.4± 2.78 72.2± 3.80 76.0± 3.56 12.9± 3.8

EERs [%] 8.3± 1.58 15.5± 1.72 12.6± 1.34 42.5± 3.79

3.1 Experiments Settings

Gait Features. We first computed gait periods in each gait sequence and then
extracted the most commonly used gait energy image (GEI) [3] which is proposed
as a mixture of dynamic and static features. GEI is calculated by averaging gait
silhouettes over a gait cycle. If the gait sequence has more than one cycle, we
just chose the first one. For preprocessing, gait silhouette images were scaled to
64×44 pixel-sized images and PCA was adopted to preserve 95% of the variance
before Joint Bayesian was applied. GEIs under four view conditions are shown
in Fig. 1.

Uncooperative Setting. All experiments are carried out following the unco-
operative protocol as follows unless otherwise specified. First of all, the whole set
of gait sequences is equally and randomly divided into two groups of the same
number of subjects, one for training and the other for testing, i.e. the subjects
in the two groups are different and transfer learning is performed. Secondly, the
test data is further split into a gallery set and a probe set as the following steps:
(1) A gallery view of each subject is drawn randomly from four different views;
(2) A probe view of corresponding subject is randomly chosen from the other
three views. We have made public details of our division for all the experiments
in https://pan.baidu.com/s/1qYk9HoC.

Benchmarks. On the two gait datasets, two commonly used methods are
adopted as baseline methods. They are : (1) 1 Nearest Neighbor classifier (1NN).
The original gait representation (GEI) are used in this method, and it has a rel-
atively high dimensionality (64 × 44 = 2816); (2) Linear Discriminant Analysis
(LDA): Firstly, PCA is adopted along with LDA to achieve the best performance
as in [14,15].

Additionally, on CASIA-B, RankSVM [14,15] achieves the best performance
under uncooperative setting while they just consider two different views every
time. RanSVM are so computationally expensive when the training subjects
increase that it is not suitable for OULP which has a large training population
(956 subjects). On OULP, GEINet [11] is the state-of-the-art method which uses
the deep learning method and the performance is dependent on the number of
training subjects, so that it is not suitable for CASIA-B. RankSVM and GEINet
are also adopted as the comparison methods separately on the two datasets. The
results of GEINet are provided by the authors while RankSVM are implemented
by ourselves.

https://pan.baidu.com/s/1qYk9HoC
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Evaluation Criteria. The recognition performance is evaluated using four met-
rics: (1) cumulative match characteristics (CMC) curve, (2) rank-1 identification
rates, (3) the receiver operating characteristic (ROC) curve of false acceptance
rates (FAR) and false rejection rates (FRR), and (4) equal error rates (EERs).
CMC curve, and rank-1 identification rates are used for identification task while
ROC curve and EERs are used for verification task.

(a) OULP (b) CASIA-B

Fig. 2. CMC curves of two different datasets in uncooperative setting.

(a) OULP (b) CASIA-B

Fig. 3. ROC curves of two different datasets in uncooperative setting.

3.2 Experimental Results on OULP

The OULP has nearly 4000 subjects, and because of the largest population,
experimental results can be calculated in a statistically reliable way. Each subject
has two video sequences (Gallery, Probe) and is at four view angles (55◦, 65◦,
75◦, 85◦). GEIs at different views with four sample subjects are shown in Fig. 1.

We used a subset (1912 subjects) of OULP following the uncooperative proto-
col of [11] and the subset was further divided into two groups of the same number
of subjects, one for training while the other one for testing. To reduce any effect
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of random grouping, five 2-fold cross validations were performed. During each
train phase, 956 ∗ (956 − 1) = 912980 intra-class samples and 956 ∗ 1 = 956
inter-class samples were used for training Joint Bayesian. For preprocessing, gait
silhouette images were scaled to 64 × 44 pixel-sized images and PCA was adopted
to preserve 95% of the variance.

We summarize rank-1 identification rate and EERs in Table 1. Furthermore,
Figs. 2a, and 3a show more details of CMC and ROC curves. We find that our
proposed method significantly outperforms the benchmarks with respect to rank-
1 and EERs under uncooperative setting. More specifically, compared with the
state-of-the-art method (GEINet), rank-1 identification rates of Joint Bayesian
improves from 89.70% to 96.81%; for verification task, our proposed method
also achieve a competitive result with respect to EERs. We can also find that
learning based method (1NN PCA+LDA) significantly outperforms the existing
template matching methods (1NN).

3.3 Experimental Results on CASIA-B

In CASIA-B, totally 124 subjects gait data are captured from 11 views (0◦–180◦).
Between two nearest view directions, the interval angle is 18◦. Three covariate
condition changes, i.e., clothing, carrying, and view angle are all considered. In
this dataset, each subject has 10 gait sequences: 6 normal walking sequences
(nm), 2 carrying-bag sequences (bg), and 2 wearing-coat sequences (cl).

For consistency with the result of OULP, we just considered the view covari-
ate condition change (6 nm sequences), and four similar views (36◦, 54◦, 72◦,
90◦) were selected. Following the uncooperative protocol, the dataset was also
divided into two groups of the same number of subjects, on for training and one
for testing. As in Sect. 3.2, five repeated experiments performed. As a result 5
2-fold cross validations were performed, and the same processing are adopted as
in 3.2.

We summarize the rank-1 identification rate and EERs in Table 2. CMC and
ROC curves are also shown in Figs. 2b and 3b. They show similar trends as
those in the OULP experiments that Joint Bayesian achieves the best results
for both the identification and verification tasks. We can also find that: (1)
the corresponding methods perform better on OULP than on CASIA-B due to
OULP’s cleaner silhouettes and larger training subjects; (2) RankSVM loses it’s
stronger power than in [14,15] because our proposed uncooperative setting is
more challenging; (3) the insufficient dataset leads to volatile results for all the
methods.

4 Conclusion

In this paper, Joint Bayesian is used for model the view variance for uncooper-
ative gait recognition. Extensive experiments have been conducted to validate
the effectiveness of our method particularly under our proposed more challenging
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uncooperative setting. Our proposed method which learns transferable informa-
tion independent of the identity of people achieved state-of-the-art results for
both the identification and verification tasks through experiments on OULP and
CASIA-B datasets. What’s more important, Joint Bayesian can be trained from
different subjects and performs better which makes it more generally applicable.

In our future works, we will evaluate our proposed method with a wider
view variation, or other variations (e.g. clothing, carrying bags). Additionally,
cross-dataset gait recognition will be evaluated and the novel deep convolutional
features will also be considered.
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