
Efficient Deep Belief Network Based
Hyperspectral Image Classification

Atif Mughees(B) and Linmi Tao

Computer Vision and Graphics Lab, Department of Computer Science
and Technology, Tsinghua University, Haidian, Beijing 100084, China

atif.mughees@gmail.com, linmi@mail.tsinghua.edu.cn

Abstract. Hyperspectral Image (HSI) classification plays a key role
remote sensing field. Recently, deep learning has demonstrated its effec-
tiveness in HSI Classification field. This paper presents a spectral-spatial
HSI classification technique established on the deep learning based deep
belief network (DBN) for deep and abstract feature extraction and
adaptive boundary adjustment based segmentation. Proposed approach
focuses on integrating the deep learning based spectral features and seg-
mentation based spatial features into a framework for improved perfor-
mance. Specifically, first the deep DBN model is exploited as a spectral
feature extraction based classifier to extract the deep spectral features.
Second, spatial contextual features are obtained by utilizing effective
adaptive boundary adjustment based segmentation technique. Finally,
maximum voting based criteria is operated to integrate the results of
extracted spectral and spatial information for improved HSI classifica-
tion. In general, exploiting spectral features from DBN process and spa-
tial features from segmentation and integration of spectral and spatial
information by maximum voting based criteria, has a substantial effect
on the performance of HSI classification. Experimental performance on
real and widely used hyperspectral data sets with different contexts and
resolutions demonstrates the accuracy of the proposed technique and per-
formance is comparable to several recently proposed HSI classification
techniques.
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1 Introduction

Recent advances in remote sensing technology has enabled the sensors to acquire
hyperspectral images (HSI) in hundreds of continuous narrow spectral channels
captured in the wide range of electromagnet spectrum ranging from visible to
infrared. Each pixel in HSI is a representation of the spectral characteristics of
the spatial location in the scene [29] and composed of a vector of spectral entries
form available spectral channels. Rich spectral and spatial information leads to
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extensive applications such as land cover mapping, target detection, classifica-
tion, mineral detection, surveillance and so on. However rich information and
extensive application comes with lot of challenge connected to high dimensional-
ity and limited available samples [2] together with Hughes phenomena [13] and
heterogeneity [4].

Large number of spectral channels but limited number of training samples
leads to curse of dimensionality [13]. Therefor exploiting spatial/structural fea-
tures along with the spectral features and design of a classifiers plays a cru-
cial role in HSI classification. Many techniques has been proposed so far to
deal with the HSI classification. Traditional pixel-wise classifiers deal each pixel
autonomously without taking spatial information into account. K-nearest neigh-
bour classifier (K-NN), conditional random fields [32], neural networks [24], sup-
port vector machine [9,18] have been investigated. Out of these pixel-wise clas-
sifiers, SVM performed better due to its ability to handle high dimensional data.
Majority of the above mentioned classifiers suffers from curse of dimensionality
and limited training data [1]. Moreover spatial information is not taken into
account as there is strong association between adjacent pixels [29] but pixel-wise
classifiers deals each pixels independently. Dimensionality reduction approaches
were also proposed to handle the higher dimensionality and limited training sam-
ples. Principal component analysis (PCA) [25], independent component analysis
(ICA) [28] are some of the well known approaches. These approaches reduces
the features/dimensions from hundreds to just few bands hence results into loss
of spectral information. Band/feature selection [23] is another technique of han-
dling the above mentioned issues.

Integration of spatial information along with pure spectral information for
improved performance in HSI classification has been getting more and more
attention of the researchers in recent years [3]. It is widely established that the
complement of spectral and spatial features can result into more effective clas-
sification [22]. It is therefore necessary to incorporate the spatial features into a
spectral-spatial classifier. Spectral spatial techniques can broadly be divided into
three categories in which the spatial information is incorporated along with the
spectral features (a) before the classification (b) during the classification process
(c) after the classification process. In the first category, many techniques extracts
the spatial features and integrate it with spectral features before the classification
process such as spatial feature extraction through morphological profiles [7,8,15]
and through segmentation [22]. Similarly composite kernel methods concatenate
spatial features with other spectral features [17,33]. However, in most of the
cases these features requires human knowledge and are mostly handcraft. In the
second category of spectral-spatial classification, spatial features are incorpo-
rated into a classifier during the classification process such as statistical learning
theory (SLT) [4], simultaneous subspace pursuit (SSP) [5]. In the third cate-
gory of spectral-spatial classification, spatial features are incorporated after the
classification process. Authors in [26] first utilized SVM for pixel-wise spectral
classification and watershed segmentation for spatial feature extraction followed
by majority voting within the result of pixel-wise classification and watershed



Efficient Deep Belief Network Based Hyperspectral Image Classification 349

segmentation. Authors in [16] utilized augmented Lagrangian multilevel logistic
with a multilevel logistic (MLL) prior (LORSAL-MLL). Similarly authors in [21]
integrates the results from segmentation and SAE based classification through
majority voting.

(a) I. Spectral stage II. Spatial stage III. Combined stage (b) Spectral-Spatial Classification Framework

Fig. 1. Spectral-Spatial Classification stages and Framework.

Recently, a latest development in neural network, deep learning has proved
its efficiency and efficacy in many fields particularly in computer vision such as
image classification [11], speech recognition [30], language processing [19]. Deep
learning based architectures has also performed well in HSI classification [31].
However incorporating spatial features into a deep network is still a persistent
issue.

In this paper, spectral-spatial HSI classification based on deep learning based
deep belief network (DBN) and hyper-segmentation based spatial feature extrac-
tion is proposed. Spectral feature extraction is exploited through deep learning
based DBN architecture [10] and logistic regression (LR) is applied as a pixel-
wise classifier while spatial features are extracted through structural boundary
adjustment based hyper-segmentation [20] which adaptively segments the HSI
image. Proposed approach is based on the third category of spectral-spatial HSI
classification where spectral and spatial information is effectively incorporated
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after the classification. Decision to label the target pixel for a specific class is
simultaneously based on the DBN based pixel-wise classification and additional
spatial features obtained from effective segmentation. Accurate segmentation
approach to exploit the spatial features makes this approach more effective.

2 Proposed Methodology

It is strongly believed in HSI research community that incorporating spatial
contextual features can significantly improve the classification performance [34].
Proposed method first exploits multi-layer DBN for effective deep and abstract
feature extraction and ML is utilized for subsequent pixel-wise classification.
For contextual spatial features, adaptive boundary adjustment based hyper-
segmentation [20] is employed. In the third phase, majority voting [14] base
process is utilized to fully exploit and integrate the spectral and spatial fea-
tures for final spectral-spatial classification. Detailed description of each phase
is depicted in Fig. 1.

Fig. 2. Framework of the DBN based pixel-wise classification.

2.1 Spectral Feature Extraction via DBN

Deep belief network is composed of neural network based Restricted Boltzmann
Machine (RBM) learning module that consists of input data layer or visible layer
x and a hidden layer y that learn to distinguish features with higher correlations
in the input data as shown in Fig. 1. The energy function can be described as:
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where σ is the standard deviation (SD)of a Gaussian visible unit, and V (.) is the
Gaussian distribution. A deep belief network is mainly comprised of restricted
Boltzmann machine stacks, and the learning of RBM plays an essential role
in DBN. The block diagram of image classification using DBN, in general, is
shown in Fig. 2. At learning stage, training dataset is processed in order to
get the spatial and spectral information from hyperspectral images. After that,
the parameters of DBN model are adjusted by learning which includes back
propagation for fine tuning. In the classification stage, the learned network is
used to classify the test sample set and output the classification results. We
have used DBN-LR in which DBN is use for feature extraction from spectral
images and classification is made by logistic regression.

2.2 Spatial Feature Extraction via Hyper-segmentation

Two spatial constraints must be incorporated while spatial feature extraction, (1)
There is a high probability that pixels with the same spectral signatures shares
the same class label (2) There is a high probability that neighbouring pixels with
the similar spectral signatures share the same class label. In order to full fill the
above constraints an effective adaptive boundary adjustment based approach
[20] is exploited to segment the HSI. The tri-factor based energy function is
given by:

A(q, Pi) =
√

|xq − gi|2 + λñi(q)|Grad(q)| (4)

where xq is the spectral vector at the boundary pixel, gi is the majority vector,
ñi(q) is the straightness factor, |Grad(q)| is the local gradient at target pixel q.
Detailed implementation of the algorithm for spatial segmentation can be viewed
in [20] (Fig. 3).

Fig. 3. Framework of the hyper-segmentation process.
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2.3 Majority Voting

The individual classification results obtained from DBN-LR classifier and Seg-
mentation based spatial classification are integrated through majority voting
(MV) [14]. In MV each pixel in the segmentation region is assigned to a most
repetitive class allocated by the DBN-LR classifier. Hence both spectral and
spatial features are taken into account.

3 Experimental Results and Performance Comparison

To validate the performance proposed technique for HSI classification,
experiments are conducted on well known and challenging datasets which are

Fig. 4. Hyperspectral image datasets.
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widely used by other well known HSI classification techniques to validate the
results (Fig. 4).

3.1 Hyperspctral Dataset

Two popular datasets Pavia University and Houston University are utilized for
performance evaluation due to their distinction and difficulty. Houston University
dataset was acquired by AVIRIS sensor in 1992. It consists of 144 spectral channels
with spatial dimension of 349×1905. Indian Pine is considered difficult for classi-
fication due to small spatial structures and presence of mixed pixels. It consists of
15 classes. Pavia University dataset was collected by ROSIS sensor over the Pavia
University, Italy. It comprises of 103 spectral channels with spatial dimension of
610 × 340. This dataset includes both main made structures and natural plants.
It consists of 9 classes. Mostly, in the literature two datasets are considered to
demonstrate the validation and accuracy of proposed techniques for HSI classifi-
cation. Classification performance is estimated using the evaluation criteria based
on overall accuracy (OA), Average accuracy (AA) and kappa Coefficient (k). OA
is the percentage of pixels correctly classified. AA is the mean of all the class spe-
cific accuracy over the total number for classes for the specific image. Kappa is a

Fig. 5. Classification Results of Houston and Pavia University datasets using proposed
method.
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degree of agreement between predicted class accuracy and reality. Generally, it is
considered more robust than OA and AA.

3.2 Spectral-Spatial DBN-HS Classification

We conducted experiments on windows 7 system, with 4.0 GHz processor and
NVIDIA GeForce GTX 970. The code was implemented in Theano. Number of
hidden layers also known as depths plays a significant role in the classification
performance as it characterizes the quality of the learned features. For each
dataset, we choose randomly 10% of each class as the training data as training
data. For Pavia University and Houston University datasets we selected depth
of size 2 and number of hidden units for each hidden layer is 50 as suggested by
the experiments in [6]. The performance of the proposed DBN-HS technique is
compared with well known existing techniques such as support vector machine
(SVM) [18], orthogonal matching pursuit (OMP) [27], deep belief network with
logistic regression(DBN-LR) [6] and newly developed deep CNN (CNN) [12]. In
case of DBN-LR, only spectral data as an input was considered.

Individual class level accuracy results of Pavia university and Houston Uni-
versity dataset and their comparison with mentioned well known existing tech-

Table 1. Classification accuracy(%) of each class for the Houston University dataset
obtained by the SVM [18], OMP [27], CNN [12] using 10% training samples

Class Training Test SVM OMP CNN DBN-LR DBN-HS

1 125 1126 97.47 98.27 81.20 99.20 99.0

2 125 1129 98.32 98.10 83.55 99.60 99.20

3 70 627 99.37 99.68 99.41 100.0 100

4 124 1120 98.01 96.70 91.57 99.60 99.60

5 124 1118 96.01 98.48 94.79 99.60 99.60

6 33 292 99.83 97.95 95.10 97.2 98.05

7 127 1141 91.23 86.90 63.53 97.0 98.16

8 124 1120 86.23 89.82 42.64 97.8 98.0

9 125 1127 86.99 79.37 58.17 94.0 95.25

10 123 1104 91.42 89.68 41.80 97.4 97.95

11 124 1111 91.67 82.77 75.71 97.3 98.1

12 123 1110 87.05 81.94 84.15 95.2 96.26

13 47 422 78.16 35.55 40.00 88.0 91.1

14 43 385 97.42 98.18 98.79 100 100

15 66 594 99.49 98.40 97.89 100 100

Overall accuracy 93.06 89.70 85.42 97.70 98.98

Average accuracy 93.25 88.78 76.55 97.50 98.46

Kappa coefficient 0.925 0.889 0.7200 0.975 0.9875
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Table 2. Classification accuracy of each class for the Pavia University dataset obtained
by the SVM [18], OMP [27], CNN [12] using 10% training samples

Class Training Test SVM OMP CNN DBN-LR DBN-HS

1 597 6034 97.50 64.16 87.34 87.37 89.78

2 1681 16971 97.70 82.23 94.63 92.10 94.01

3 189 1910 78.53 71.04 86.47 85.57 88.50

4 276 2788 89.29 93.43 96.29 95.11 97.40

5 121 1224 98.77 99.90 99.65 99.74 99.89

6 453 4576 83.04 69.47 93.23 91.94 94.30

7 120 1210 64.58 87.31 93.19 92.21 93.96

8 331 3351 86.90 71.57 86.42 87.02 88.14

9 85 862 99.92 97.27 100 100 100

Overall accuracy 92.04 78.07 92.56 91.18 93.98

Average accuracy 88.47 81.82 93.02 92.34 93.46

Kappa coefficient 0.903 0.711 0.9006 0.8828 0.9175

niques is shown in Tables 1 and 2. Mixed pixel is the major challenge in Hous-
ton dataset due to its low spatial resolution and small spatial size. In Houston
University dataset, proposed technique performed well in classes with small spa-
tial regions as effective segmentation plays a very important role in segmenting
those small spatial regions and making them available for effective classifica-
tion. The complete HSI classification result of proposed method is shown in
Fig. 5. Each color characterizes a specific type of ground cover area which is
the same as aforementioned ground truth image. Results confirm that spectral-
spatial classification using contextual feature extraction has significant effect on
the classification accuracy because spatial features help prevent the salt and
paper noise.

Overall, experimental results demonstrates the significant improvement in
HSI classification by incorporating spatial information and spectral feature selec-
tion. The algorithm has performed significantly well on the low spatial resolution
dataset.

4 Conclusion

In this paper a new hyperspectral image classification DBN-HS approach based
on Deep Belief Network and hyper-segmentation is proposed by taking spectral
and spatial information into account. DBN based logistic regression (DBN-LR)
is used for extraction of deep spectral features and hyper-segmentation is uti-
lized for exploiting the spatial features. In the final step, DBN-LR based spectral
features and hyper-segmentation based spatial features are integrated through
majority voting (MV) for the efficient spectral-spatial classification of HSI.
Hyper-segmentation based segmentation defines an adaptive neighborhood for
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each pixel. Experimental results and comparisons with the well known existing
methods demonstrates that the spectral-spatial classification, based on major-
ity voting within the regions obtained by the hyper-segmentation algorithms,
led to higher classification accuracy as compare to pixel-wise classification. Use
of MV for the fusion of local spectral information through DBN-LR and spa-
tial information through effective hyper-segmentation based segmentation has a
significant effect on the accuracy of the final HSI classification.

References

1. Ambikapathi, A., et al.: Convex geometry based outlier-insensitive estimation of
number of endmembers in hyperspectral images. Signal 1, 1–20 (2012)

2. Benediktsson, J.A., Chanussot, J.C., Moon, W.M., et al.: Advances in Very high-
resolution Remote Sensins. IEEE (2013)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

4. Camps-Valls, G., et al.: Advances in hyperspectral image classification: earth mon-
itoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54
(2013)

5. Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification via
kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 51(1), 217–231
(2013)

6. Chen, Y., Zhao, X., Jia, X.: Spectral-spatial classification of hyperspectral data
based on deep belief network. IEEE J. Sel. Top. Appl. Earth Observations Remote
Sens. 8(6), 2381–2392 (2015)

7. Ghamisi, P., Benediktsson, J.A., Sveinsson, J.R.: Automatic spectral-spatial clas-
sification framework based on attribute profiles and supervised feature extraction.
IEEE Trans. Geosci. Remote Sens. 52(9), 5771–5782 (2014)

8. Ghamisi, P., et al.: Automatic framework for spectral-spatial classification based
on supervised feature extraction and morphological attribute profiles. IEEE J. Sel.
Top. Appl. Earth Observations Remote Sens. 7(6), 2147–2160 (2014)

9. Gualtieri, J.A., Chettri, S.: Support vector machines for classification of hyperspec-
tral data. In: IEEE 2000 International Geoscience and Remote Sensing Symposium,
Proceedings, IGARSS 2000, vol. 2, pp. 813–815. IEEE (2000)

10. Hinton, G.E., Osindero, S.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

11. Hinton, G.E.: Reducing the dimensionality of data with neural networks. Science
313(5786), 504–507 (2006)

12. Hu, W., et al.: Deep convolutional neural networks for hyperspectral image classi-
fication. J. Sens. 2015 (2015)

13. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans.
Inf. Theory 14(1), 55–63 (1968)

14. Lam, L., Suen, S.Y.: Application of majority voting to pattern recognition: an
analysis of its behavior and performance. IEEE Trans. Syst. Man Cybern. Part A
Syst. Hum. 27(5), 553–568 (1997)

15. Li, J., Zhang, H., Zhang, L.: Supervised segmentation of very high resolution images
by the use of extended morphological attribute profiles and a sparse transform.
IEEE Geosci. Remote Sens. Lett. 11(8), 1409–1413 (2014)



Efficient Deep Belief Network Based Hyperspectral Image Classification 357

16. Li, J., Bioucas-Dias, J.M.: Hyperspectral image segmentation using a new Bayesian
approach with active learning. IEEE Trans. Geosci. Remote Sens. 49(10), 3947–
3960 (2011)

17. Li, J., et al.: Generalized composite kernel framework for hyperspectral image
classification. IEEE Trans. Geosci. Remote Sens. 51(9), 4816–4829 (2013)

18. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images
with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790
(2004)

19. Mohamed, A., Dahl, G., Hinton, G.E.: Deep belief networks for phone recogni-
tion. In: NIPS Workshop on Deep Learning for Speech Recognition and Related
Applications, vol. 1, no. 9, p. 39 (2009)

20. Mughees, A., Chen, X., Tao, L.: Unsupervised hyperspectral image segmentation:
merging spectral and spatial information in boundary adjustment. In: 2016 55th
Annual Conference of the Society of Instrument and Control Engineers of Japan
(SICE), pp. 1466–1471. IEEE (2016)

21. Mughees, A., Tao, L.: Efficient deep auto-encoder learning for the classification
of hyperspectral images. In: 2016 International Conference on Virtual Reality and
Visualization (ICVRV), pp. 44–51. IEEE (2016)

22. Mughees, A., Tao, L.: Hyper-voxel based deep learning for hyperspectral image
classification. In: 2017 IEEE International Conference on Image Processing (ICIP)
(2017, Accepted)

23. Mughees, A., et al.: AB3C: adaptive boundary-based band-categorization of hyper-
spectral images. J. Appl. Remote Sens. 10(4), 046009–046009 (2016)

24. Ratle, F., Camps-Valls, G., Weston, J.: Semisupervised neural networks for efficient
hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 48(5), 2271–
2282 (2010)

25. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image clas-
sification. Surveying Land Inform. Sci. 62(2), 115 (2002)

26. Tarabalka, Y.: Classification of hyperspectral data using spectral-spatial
approaches. PhD thesis, Institut National Polytechnique de Grenoble-INPG (2010)

27. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

28. Wang, J., Chang, C.-I.: Independent component analysis-based dimensionality
reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci.
Remote Sens. 44(6), 1586–1600 (2006)

29. Willett, R.M., et al.: Sparsity and structure in hyperspectral imaging: sensing,
reconstruction, and target detection. IEEE Signal Process. Mag. 31(1), 116–126
(2014)

30. Yu, D., Deng, L., Wang, S.: Learning in the deep-structured conditional random
fields. In: Proceedings of NIPS Workshop, pp. 1–8 (2009)

31. Zhang, L., Zhang, L., Bo, D.: Deep learning for remote sensing data: a technical
tutorial on the state of the art. IEEE Trans. Geosci. Remote Sens. 4(2), 22–40
(2016)

32. Zhang, L., Zhang, L., Du, B.: Learning conditional random fields for classification
of hyperspectral images. IEEE Trans. Image Process. 19(7), 1890–1907 (2010)

33. Zhou, Y., Peng, J., Chen, C.L.P.: Extreme learning machine with composite kernels
for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Observations
Remote Sens. 8(6), 2351–2360 (2015)

34. Zhu, Z., et al.: Assessment of spectral, polarimetric, temporal, and spatial dimen-
sions for urban and peri-urban land cover classification using Landsat and SAR
data. Remote Sens. Environ. 117, 72–82 (2012)


	Efficient Deep Belief Network Based Hyperspectral Image Classification
	1 Introduction
	2 Proposed Methodology
	2.1 Spectral Feature Extraction via DBN
	2.2 Spatial Feature Extraction via Hyper-segmentation
	2.3 Majority Voting

	3 Experimental Results and Performance Comparison
	3.1 Hyperspctral Dataset
	3.2 Spectral-Spatial DBN-HS Classification

	4 Conclusion
	References




