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Abstract. Since the computation of fluid animation is often too heavy
to run in real-time simulation, we propose a fast grid-based method with
parallel acceleration. In order to reduce the cost of computation keeping
a balance between fluid stability and diversity, we consider the Navier-
Stokes equation on the grid structure with momentum conservation, and
introduce the kinetic energy for collision handling and boundary condi-
tion. Our algorithm avoids the mass loss during the energy transfer, and
can be applied to the two-way coupling with a solid body. Importantly,
we propose to use the forward-tracing-based motion and design for paral-
lel computing on Graphics Processing Unit (GPU). In particular, these
experiments illustrate the benefits of our method, both in conserving
fluid density and momentum. They show that our method is suitable to
solve the energy transfer when object interaction is considered during
fluid simulation.
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1 Introduction

Fluid effects play an important role in the computer games industry: these are
the complex interplay of various phenomena, such as convection, diffusion, tur-
bulence and surface tension. Considerable research has taken place to improve
the behaviour and performance and with the ever-increasing performance of
hardware, simulations of the underlying physics can better approximate natural
dynamics for representing water, waves, fire and gas. Hence, currently researches
propose to simulate the interaction of multiple materials (fluid and solid objects).
Physically, the Navier-Stokes Equation describes the state of the fluid, and there
are many methods for solving incompressible flow by this equation.

1.1 Physical Equation

It is well known in Computational Fluid Dynamics (CFD) that the Navier-
Stokes Equation that precisely describes the fluid’s acceleration by governs the
behaviour of the fluid
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∇ · v = 0 (1)

∂v

∂t
= − (v · ∇)v − 1

ρ
∇p + μ∇2v + f (2)

where v is the fluid’s velocity at a grid’s centre, p is pressure, ρ is density, μ
is the coefficient of viscosity and f includes any other external forces such as
gravity or boundary confinement. These equations give a precise description of
the evolution of a velocity field over time, and tell exactly how the velocity will
change over an infinitesimal time-step as a function of the four terms (advec-
tion, pressure, viscosity and external-forces) in Eq. 2, but these equations do not
consider the mass evolving in the computational physics transferring.

1.2 Related Work

The Eulerian grid-based fluid implementations have been popular for real time
solutions as they provide a better description of the fluid properties. However,
they do have a major disadvantage in that the grid must be fixed in the space,
so making it difficult to track and depict the detailed behaviours (such as mist,
foam and spray). The Navier-Stokes Equation was first used in [7] to animate
gases and it produced good results on relatively coarse grids. In order to increase
the details with lower memory consumption for grid-based simulation, [17] used
a dynamic grid that had a low memory footprint when representing a high-
resolution Level Set method. In [12], all quantities at cell centres were stored
for an iterative solver, although a staggered MAC grid is robust and can make
it easier to define boundary conditions [11,20]. In order to reduce the effect of
numerical dissipation caused by the use of an implicit semi-Lagrangian integra-
tion scheme [6], physical based approaches have considered to use momentum
conservation in incompressible flow and the work in [14] can conserve the energy
with the semi-Lagrangian method used in the simulation.

For the coupling between fluid and solid objects, there exist alternative con-
cepts to incorporate boundary conditions for Eulerian fluids. [2] improved the
FLIP method of [21] for two-way solid-fluid interaction. In that approach, the
intra-pressure is formulated as a kinetic energy for the coupling problem. [10]
presented a two-way coupling for deformable and solid thin objects, the algo-
rithm using ray-casting to avoid fluid leaking through thin solids represented by
mesh. [15] presented a GPU approach for the semi-Lagrangian scheme of [19]
with arbitrary boundary conditions for the fluid simulation being generated and
traced directly in Real-time.

For the GPU acceleration, NVIDIA’s Compute Unified Device Architec-
ture (CUDA) has been applied to a large number of GPU-based fluid dynamics
implementations, primarily in the engineering and scientific computing fields [9].
[13] proposed a CPU-GPU multigrid Poisson solver that exploits both the CPU
and GPU to improve the performance and accuracy of the advection step. Later,
the work in [3] presented a hybrid grid of two kinds of cell composition, and [4]
described a novel gas simulation system that dynamically translates the fluid
simulation domain to track the object and fluid surface.
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1.3 Contribution

In this paper, we propose to maximize the performance of fluid simulation, focus-
ing on a grid-based solution that can be efficient with parallel acceleration. For
the Navier-Stokes Equation, we introduce a stable handling for the viscosity-
friction term while updating the mass and momentum. The pressure-gradients
term can be obtained by the Ideal Gas Law as suggested by [16]. Different from
the traditional backwards advection method, we propose to use the forward-
tracing-based motion and the evolving of fluid component (A) can be obtained by

A′ =
∂A

∂t
+ (A · ∇) A = −1

ρ
∇p + μ∇2A (3)

Consider the velocity evolving in Navier-Stokes Equation, the transmissions of
velocities would be replaced by the transporting of momentum and mass (explain
in Sect. 2). Further, we propose a fast component collection method for the fluid
transport handling. This idea is designed for parallel implementation and the
processing time taken is O (n log n) which is suitable for real-time simulations.
In addition, the kinetic energy transferring and conservation of momentum can
calculate the coupling status, when solid object interaction is considered during
fluid simulation.

2 Solution Method

Commonly, the Navier-Stokes Equation in Eq. 2 can describe the velocity field,
but it is not enough to describe the density field only by the changing veloc-
ity. [19] provided an improved solution to this problem and implemented a gas
simulation with the density being described by the Navier-Stokes Equation. We
extend this idea into both the momentum and mass fields. We know that the
relation between mass and velocity can be considered as momentum, and the law
of conservation of momentum describes the energy transfer in nature. Thus, we
use mass and momentum instead of the velocity then apply to Eq. 3 as follows,

E′ = −1
ρ
∇p + μ∇2E (4)

m′ = −1
ρ
∇p + μ∇2m (5)

where E = mv is momentum. In these equations, we focus on the internal
(viscosity, pressure) status and external coupling forces as described in Sect. 2.3.
After solving, the new velocity can be obtained by the new momentum and
mass as

v+Δt =
E+Δt

m+Δt
(6)
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2.1 Viscosity-Friction

The viscosity is an internal friction force that describes a fluid’s internal resis-
tance to flow. This resistance results in diffusion of the momentum (also velocity,
density, etc.). It causes the fluid’s components to move towards the neighbour-
hood balance. To solve the mass and momentum fields we use:

E+Δt = E +
∫

E′dt (7)

m+Δt = m +
∫

m′dt (8)

where E′ = ∂E/∂t and m′ = ∂m/∂t. However, this method is unstable when
the viscosity is large, so we refer to an efficient method in [19] for a discussion
on the Gauss-Seidel Relaxation iterative technology, given by,

E+Δt =
Ei + μ (Δx)2 · Δt · ∑J Ej

1 + μ (Δx)2 · Δt · |J | (9)

m+Δt =
mi + μ (Δx)2 · Δt · ∑J mj

1 + μ (Δx)2 · Δt · |J | (10)

where J is the set of neighbouring grids of current i, j is the element index of
J , |J | is the number of elements in set J . This method can avoid the density
becoming a negative value, and the new velocity can be more stable and realistic
than that obtained by only solving the velocity field directly in Eq. 6.

2.2 Pressure-Gradients

Commonly, the pressure is computed by solving an adequately built equations
system using a Conjugate Gradient solver [20], which is heavy in computational
load and memory consumption. Focusing on the fluid sample taken on a cell,
pressure can be sampled on the centre of the cell. Such a scheme is chosen due
to it having better stability properties than a scheme where the samples are
taken from the same location. Thus, we invoke the Ideal Gas Law to calculate
the recent pressure. It can be obtained from the current density as

p = kρ (11)

where k is the gas stiffness that depends on the temperature. We know that
there is a constant rest density in the material and this state is more obvious
in liquid behaviour. Thus, we use a modified Ideal Gas Law suggested in [16],
where the fluid internal pressure can be obtained from the current density as

p =

{
k (ρ − ρrest) , ρ > ρrest

0, otherwise
(12)
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where ρrest is the rest density in the material. The pressure will be minimized as
the density approaches to this value. The condition ρ > ρrest recognizes that the
pressure is an internal repulsion force, and ignores the attraction force between
the two nearest grids: this result/effect is more obvious in liquid behaviour. Con-
sequently, the fluid should exhibit some internal cohesion formation, resulting in
attraction-repulsion force as

f i = − 1
Δx · ρi

∇pi (13)

2.3 Energy Transfer

In addition to model the boundary conditions, we must handle the momentum
along both the fluid and solid object. Since the conservation of the total momen-
tum demands that, the total momentum before the collision is the same as the
total momentum after the collision,

E+Δt
fluid + E+Δt

rigid = Efluid + Erigid (14)

In order to make sure the overall energy is conserved during coupling, we have
to find the relation between momentum and energy items. Moreover, the con-
servation of the total kinetic energy can be expressed by

1
2
E+Δt

fluidv
+Δt
fluid +

1
2
E+Δt

rigidv
+Δt
rigid =

1
2
Efluidvfluid +

1
2
Erigidvrigid (15)

Specially, note that gravity should directly add momentum to fluid as potential
energy then be converted into kinetic energy. The bottom boundary forces can
offset it symmetrically. Thus, we ignore the momentum changes based on gravity
in these equations. By solving Eqs. 14 and 15, the evolved fluid velocity v+Δt

fluid in
the new frame of reference can be determined by

v+Δt
fluid =

Efluid + Erigid − C (mfluidvrigid − Efluid)
mfluid + mrigid

(16)

where C is the coefficient of the restitution and slip belonging to the normal
and tangential directions at the collided face. We can demonstrate the scale of
coefficient (C ∈ [0.0, 1.0]) for the handling various boundary conditions, as well
as complex external constraints such as perfect elastic and free slip effects.

3 Implementation

In order to do simulation in real-time, we prefer to implement the fluid model
in a GPU to accelerate our computation by parallelism.



304 K.-H. Chan and S.-K. Im

3.1 Fluid Diffusion and Distribution

In the Eulerian grid-based approach, the fluid behaviour is described in terms
of a fixed grid. Fluid components cannot be transported by moving these grids
directly. To consider the cell size and diffusing the fluid mass (m) would lose the
details in vorticity, so we change to diffuse the density (ρ = m/Δxd, d is the
dimension) instead. Consider the advection term − (v · ∇)v in Eq. 2, the minus
symbol means these fluid components should be found by backward tracing [19].
However, this method may cause some mass loss. If mass (also momentum) is
lost and there are few areas of coupling to exchange energy to, changes in energy
may cause undesirable noise. To avoid this issue we introduce a forward tracing
method that can conserve the total ρ throughout the simulation.

Fig. 1. These figures illustrate the forward tracing steps: after these components have
been transported, they should be assigned to their nearest 4 (in 2D, 8 in 3D) grids.

As shown in Fig. 1 in a 2D case, fluid material moves (forward) to a new
position. These source components (density, momentum) have been divided by
Linear-Interpolation and added to the nearest four grids (e.g. ρa will distribute
to grid 8, 9, 13 and 14). Assume ρa is the current density in grid 21, the source
ρa will divide to ρ8a, ρ9a, ρ13a and ρ14a respectively, with ρ8a + ρ9a + ρ13a + ρ14a = ρa.
Additionally, the final density of grid 8 should be ρ8a + ρ8b + ρ8c . Every grid must
repeat this operation to obtain the final state.

3.2 Fluid-Grid Relation Table

In the forward tracing method, all grids must wait for fluid movement to finish,
then each grid should evolve to the sum of the fluid components that have
arrived, but it is difficult to distribute momentums and density to the grids
efficiently. In our proposal, we define a pair of index arrays to represent the
Fluid-Grid relation between the grid and the arrived fluid after diffusion (see
Fig. 2).

As shown in Fig. 2, array (a) stores the index of the grid that receives the
fluid density and array (b) stores the sorted index of the density relevant to
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ρ8
a 8 ρ2

c 2 (0,1) 2

ρ9
a 9 ρ3

b 3

ρ13
a 13 ρ3

c 3

ρ14
a 14 ρ4

b 4 (3,1) 4

ρ3
b 3 ρ7

c 7 (4,1) 7

ρ4
b 4 ρ8

a 8

ρ8
b 8 ρ8

b 8

ρ9
b 9 ρ8

c 8

ρ2
c 2 ρ9

a 9

ρ3
c 3 ρ9

b 9

ρ7
c 7 ρ13

a 13 (10,1) 13

ρ8
c 8 ρ14

a 14 (11,1) 14

Sort Group
=⇒ =⇒

Fluid-Grid relation table (First, Number)

(1,2) 3

(5,3) 8

(8,2) 2

(a) (b) (c)

Fig. 2. Flow chart of sorting and grouping the fluid density in the same grid.

the corresponding grids. Sorting is by the parallel radix algorithm in the GPU
environment and the performance is O (n log n). According to these two arrays,
we must provide the (First, Number) pair for each cell coordinate to record the
table index of the first related density and the number of related densities in the
sorted table.

Finally, every cell and its received density are grouped into the same region
of the table, thus there is only one loop of the sum of densities and we know
exactly how many densities must be queried in our method. This makes it suit-
able for parallel programming design and implementation. Note that using our
conservative advection with diffusing can conserve the total mass throughout
the simulation.

4 Experiment Results and Discussion

These experiments has been implemented on a PC with 2 GB memory with video
card NVIDIA Quadro 6000 GPU. These simulations are implemented by CUDA
7.5. The scene was rendered by OpenGL 4.5, GLSL 4.5 in 2D and OptiX 3.9 in
3D.

4.1 Results

As shown in Fig. 3, the smoke is running in 2D and the cycle time-step is less than
1/60 s with the Courant-Friedrichs-Lewy (CFL) condition. Note that there is no
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Fig. 3. These figures show the density of smoke at different time-steps. This simulation
uses our method with the smoke injected from below. It processes at a resolution of
500 × 900 grids scale and coupling with two rotating stars.

gravitational effect in smoke, thus external forces only include the boundary and
coupling forces. We use Eq. 11 for computing the smoke pressure; it illustrates
that while the smoke rises by buoyancy, the potential energy will decrease with
increasing kinetic energy and that will apply to the energy transference. However,
there is no mass loss in our method, but it does cause some areas to contain
undesirable dispersion-density/noise that is obvious in the smoke simulation. To
alleviate this problem we should adjust neighbouring smoke-grid (For example
in Fig. 1, very low density of smoke ρ7c in grid 7 has prorated to its neighbouring
smoke-grid 2 and 8).

As shown in Fig. 4, water is running in a 3D scene. We use Eq. 12 for comput-
ing the water pressure, and we also add some vorticity confinement [18] to the
system for momentum conservation. Note that a particle level set method [5] is
used to advect and treat the boundary tracing. For forward advection we need to
treat the level set as a solid object, since there is no guarantee that the particle
level set method had been also used in both time t and t+Δt. Furthermore, the
water would be affected by gravity and the upper grids energy will increase so
that the energy becomes very large at the bottom. This is non-conservative from
a global perspective. To solve this we produce a reaction vertical momentum
after the gravity is added to these bottom grids.

These GPU-based fluid simulations with momentum conservation can be
simulated in real time. The results show that our method can be used in gas and
liquid with conservation of energy. The time performance of the experimental
results is shown in Table 1.

4.2 Comparison

For rendering purposes, we improve the visual quality of the simulation by gener-
ating particles that penetrate the level set surface, then applying a local momen-
tum conservation force to slightly alter the level set velocities in fluid surface
regions. The comparison between our method, the methods using the GPU-
based stable fluid in [1], and the mass and momentum conservation fluid [14] is
shown in Fig. 5.
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(a) Water is poured onto solid balls with different densities.

(b) Red ball is low density; green ball is equal to water density; blue ball has higher
density.

(c) The interactive force by fluid does not significantly move the blue ball, and the red
ball is floating on the water. The green ball can be pushed by the water but is not
floating on the water.

Fig. 4. These figures show the interaction between water and solid balls in different
time-steps. This simulation processes at resolution 128 × 128 × 128 grids scale in 3D,
and the fluid surface is constructed by the marching cube algorithm [8]. (Color figure
online)

Compared with [14], a speedup of around 10% to 20% can be achieved.
Although the speed is slower than in [1], a reason is that the fluid surface ren-
dering is also time-consuming, but there is not much difference and our method
can avoid the mass loss and converse the energy of interaction.



308 K.-H. Chan and S.-K. Im

Table 1. Performance results of GPU-based of fluid simulation with momentum con-
servation.

Grid Size Fluid Solver
(ms)

Diffusion &
Distribution (ms)

Surface
Render (ms)

Overall (ms)

32 × 32 × 32 4.29 0.42 2.31 7.02

32 × 64 × 32 9.94 0.83 4.57 15.34

64 × 32 × 64 19.01 0.95 5.23 25.19

64 × 64 × 64 21.01 1.19 6.55 28.75

64 × 128 × 64 39.06 1.48 8.14 48.68

128 × 64 × 128 75.76 2.07 11.39 89.22

128 × 128 × 128 149.25 3.12 17.16 169.53
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Fig. 5. Comparison of the simulation speed in FPS.

5 Conclusion

In this paper, we have presented a novel momentum conservation method for
simulating a wide variety of fluid behaviours. Our algorithm can avoid mass loss
during the energy transfer, and the solution, designed for parallel computing,
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can be implemented in a Graphics Processing Unit (GPU). Moreover, a fast
forward-tracing-based motion has been presented to handle the distribution of
the fluid components. With the momentum conservation, we also considered
the conservation of energy for various boundary conditions, including perfect
elastic and free slip effects. The experiment results showed that our method can
be around 10% to 20% faster than the previous momentum conservation fluid
simulation and this is significant.
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