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Abstract. Object tracking has theoretical and practical application value in
video surveillance, virtual reality and automatic navigation. Compressive
tracking(CT) is widely used because of its advantages in accuracy and effi-
ciency. However, the compressive tracking has the problem of tracking drift
when there are object occlusion, abrupt motion and blur, similar objects. In this
paper, we propose adaptive learning compressive tracking based on Kalman
filter (ALCT-KF). The CT is used to locate the object and the classifier
parameter can be updated adaptively by the confidence map. When the heavy
occlusion occurs, Kalman filter is used to predict the location of object.
Experimental results show that ALCT-KF has better tracking accuracy and
robustness than current advanced algorithms and the average tracking speed of
the algorithm is 39 frames/s, which can meet the requirements of real-time.
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1 Introduction

Object tracking has been widely used in video surveillance and robotics which is a very
popular topic in computer vision [1]. In recent years, although many tracking methods
have been proposed and much success has been demonstrated, robust tracking is still a
challenging task due to factors such as occlusion, fast moving, motion blur and pose
change [2].

In order to deal with these factors, how to build an effective adaptive appearance
model is particularly important. In general, tracking algorithms can be categorized into
two classes: generative and discriminative algorithms [3]. The generative tracking
algorithms aim at modeling the target and finding the location of the target by searching
the image blocks which are the most similar to the target model. Kumar et al. [4]
combine Kalman filter with geometric shape template matching method and can solve
multi-target segmentation and merging. Zhan et al. [5] propose a combination of mean
shift algorithm and Kalman filter tracking algorithm which can avoid the model update
error. Wang et al. [6] use partial least squares (PLS) to study low dimensional dis-
tinguishable subspaces, and the tracking drift problem is alleviated by online update of
the apparent model. Hu et al. [7] introduce the sparse weight constraint to dynamically
select the relevant template in the global template set and use the multi-feature joint
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sparse representation for multi-target tracking under occlusion. However, the above
generative algorithms ignore the background information. When the other object with
similar texture to the target or the object is occluded, the tracking algorithm is easily
interrupted or tracking failure.

Discriminative tracking algorithms consider that target tracking as a two element
classification problem, the purpose is to find a boundary that divide the target from the
background [8]. Babenko et al. [9] propose a multiple instance learning (MIL) ap-
proach, because of its feature selection calculation complexity, it leads to poor real-time
performance. Kaur and Sahambi et al. [10] propose an improved steady-state gain
Kalman filter. By introducing a fractional feedback loop in the Kalman filter, the
proposed algorithm solves the problem of abrupt motion. Zhang et al. [11] make full
use of hybrid SVMs for appearance models to solve the blurring problem of the former
background boundary and avoid the drift problem effectively. But these discriminative
methods involve high computational cost, which hinders their real-time applications.

In order to take advantage of the above two kinds of methods, this paper proposes
an adaptive learning compressive tracking algorithm [12, 13] based on Kalman filter
(ALCT-KF), which is used to solve the problems of severe occlusion, fast moving,
similar object and illumination change. The adaptive learning compressive tracking
algorithm uses CT algorithm to track the target, and calculate the value of the
Peak-to-Sidelobe (PSR) by confidence map to update Bayesian classifier adaptively.
When the PSR is less than a certain threshold, the object is considered to be heavy
occlusion, then uses the Kalman filter to predict the location of object.

The rest of this paper is organized as follows. Section 2 gives a brief review of
original CT. The proposed algorithm is detailed in Sect. 3. Section 4 shows the
experimental results of proposed and we conclude in Sect. 5.

2 Compressive Tracking

As shown in [12, 13] are based on compressive sensing theory, a very sparse random
matrix is adopted that satisfies the restricted isometry property (RIP), facilitating
projection from the high-dimensional Haar-like feature vector to a low-dimensional
measurement vector

V ¼ Rx; ð1Þ

where R 2 Rn�m ðn� mÞ is sparse random matrix, feature vector x 2 Rm�1, com-
pressive feature vector V 2 Rn�1.

Rði; jÞ ¼ ri;j ¼
ffiffi
s
p �

1 with probability
1
2s

0 with probability 1� 1
s

� 1 with probability
1
2s

8>>>>><
>>>>>:

ð2Þ
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where s ¼ m=ða log10ðmÞÞ, m ¼ 106� 1010, a ¼ 0:4. R becomes very sparse, and the
number of non-zero elements for each row is only 4 at most, further reducing the
computational complexity.

The compressed features v are obtained by (1) and (2) which inputs to the naive
Bayesian classifier and the position of the target is determined by the response value.
Assuming that the elements in v are independently distributed, the naive Bayesian
classifier is constructed:

HðvÞ ¼ log

Qn
i¼1 pðvi j y ¼ 1Þpðy ¼ 1ÞQn
i¼1 pðvi j y ¼ 0Þpðy ¼ 0Þ

� �

¼
Xn
i¼1

log
pðvi j y ¼ 1Þ
pðvi j y ¼ 0Þ

� � ð3Þ

where pðy ¼ 1Þ ¼ pðy ¼ 0Þ ¼ 0:5, and y 2 f0; 1g is binary variable which represents
the sample label. The conditional distributions pðvi j y ¼ 1Þ and pðvi j y ¼ 0Þ in HðvÞ
are assumed to be Gaussian distributed with four parameters ðl1i ; d1i ; l0i ; d0i Þ

pðvi j y ¼ 1Þ�Nðl1i ; r1i Þ ; pðvi j y ¼ 0Þ�Nðl0i ; r0i Þ ð4Þ

where l1i ðl0i Þ and l0i ðd0i Þ are mean and standard deviation of the positive (negative)
class. These parameters can be updated by

l1i  kl1þð1� kÞl1i
r1i  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðr1Þ2þð1� kÞðr1i Þ2þ kð1� kÞðl1i � l1Þ2

q ð5Þ

where k is the learning parameter, and

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn�1
k¼0jy¼1 ðviðkÞ � l1Þ2

r

l1 ¼ 1
n

Xn�1
k¼0jy¼1 viðkÞ

ð6Þ

Negative sample parameters l0i and r0i are updated with the similar rules.
Compressive tracking is simple and efficient, but the problem still exits: the clas-

sifier is updated by Eq. (5) which uses a fixed learning rate k. When the occlusion and
other conditions occur, it may cause the classifier update error.

3 Proposed Algorithm

3.1 Adaptive Learning Compressive Tracking (ALCT)

Compressive tracking algorithm is difficult to re-find the right object when it tracks drift
or failure. One of the main reasons is that pðvi j y ¼ 0Þ and pðvi j y ¼ 1Þ are determined
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by the four parameters l0i , l
1
i , r

0
i , r

1
i while a fixed learning parameter k is used in

Eq. (5). When the occlusion or other conditions occur, k may cause the classifier to
update incorrectly.

According to Eq. (3), we define the non-linear function for the naive Bayes clas-
sifier HðvÞ as objective confidence

cðxÞ ¼ pðy ¼ 1 j xÞ ¼ rðHðvÞÞ ð7Þ

where rð�Þ is a sigmoid function, rðxÞ ¼ ð1=1þ e�xÞ.
The Peak-to-Sidelobe(PSR) [14], which measures the strength of a correlation

peak, can be used to detect occlusions or tracking failure.

PSRðtÞ ¼ maxðctðxÞÞ � lt
rt

ð8Þ

where ctðxÞ denotes the classifier response value for all the candidate positions at the t-
th frame, split into the peak which is the maximum value maxðctðxÞÞ and the sidelobe
which is the rest of the search position excluding an 11� 11 window around the peak.
lt and rt are the mean and standard deviation of the sidelobe. Taking the Cliff bar
sequence as an example, the PSR distribution is shown in Fig. 1.

Figure 1 shows the PSR can locate the most challenging factors of that video. In the
first 75 frames, object has few interference factors and PSR stabilized at about 1.6. The
object moves fast and causes the target area to be blurred, PSR is down to point A in
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Fig. 1. Analysis of PSR in sequence of Cliff bar
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the 75–90 frames. When there is no longer moving blur, PSR gradually returns to the
normal level. In the same way, when the object undergoes occlusion, fast motion, scale
change, rotation, which cause the values of PSR down to the valley point, corre-
sponding to B, C, D, E, F respectively in Fig. 1. The value of PSR can reflect the
influence of factors. The higher PSR is, the higher confidence of target location.
Therefore, when the PSR is less than a certain threshold, the classifier should be
updated with a smaller learning rate, which can improve the anti-interference ability of
the model.

Experiments (see Fig. 1) show that when the value of PSR is higher than 1.6, the
tracking results are completely credible. If PSR is less than 1.6, the object may be
occlusion, pose and illumination change. So we can determine the update weight of the
classifier according to thePSR of each frame. The newupdate formula is shown inEq. (9):

wt ¼
0 PSRt\PSR0

exp½�ðPSRt � PSR1Þ2� PSR0\PSRt\PSR1

1 other

8><
>:

l1i  ð1� kwtÞl1i þ kwtl1

r1i  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� kwtÞðr1i Þ2þ kwtðr1Þ2þ kwtð1� kwtÞðl1i � l1Þ2

q

8>>>>>>><
>>>>>>>:

ð9Þ

where PSRt represents the PSR at the t-th frame, PSR0 and PSR1 are two thresholds.
When PSR0\PSRt\PSR1, it is considered that the object may undergo partial
occlusion, fast motion, pose change. When PSRt\PSR0, it is considered that the
object is completely occluded, and classifier is not updated at this time. At this time,
Kalman filter is used to predict the position of object.

3.2 Heavy Conclusion

In the process of object tracking, occlusion, illumination change, fast moving and
similar target can not be avoided. If the above factors occur, the accuracy of many
algorithms are obviously decreased. The adaptive learning compressive tracking
algorithm proposed in this paper can meet the factors of partial occlusion and slow
illumination change, but it needs to improve the algorithm for heavy occlusion.

Kalman filter algorithm [15] is mainly used to estimate the target location and state.
The algorithm uses the position and velocity of the object as the state vector to describe
the change of the object state. Kalman filter algorithm can also effectively reduce the
influence of noise in the object tracking process. The state equations and the obser-
vation equation of the Kalman filter are as follows:

xtþ 1 ¼ /xt þwt ð10Þ

Zt ¼ Hxt þVt ð11Þ

where xtðxtþ 1Þ is the state vector of the tðtþ 1Þ moment, Zt is the observation vector of
the t moment, / is state transition matrix, H is observation matrix, wt is state noise
vector of system disturbance, vt is observed noise vector.
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In Sect. 3.1, it is proved when PSRt\PSR0 considers the target to be heavy
occlusion. Because the Kalman filter can predict the position of the target in the next
frame and effectively reduce the influence of noise, we use it to solve the above
problems.

Kalman filter can be divided into two phases: prediction and updating. The pre-
diction phase is mainly based on the state of the current frame target to estimate the
state of the next frame. In the update phase, the estimate of the prediction phase is
optimized by using the observations of the next frame to obtain more accurate new
predictions. Assuming that the target has a serious occlusion at (t + 1)-th frame, the
Kalman filter is used to re-estimate the object position.

(1) prediction phase
State prediction equation:

x�tþ 1 ¼ /xþt ð12Þ

where xþt is the tracking result of the ALCT algorithm at the t-th frame.
Error covariance prediction equation:

P�tþ 1 ¼ /Pþt /T þQ ð13Þ

where Pþt is the covariance matrix at t frame, Q is the state noise covariance matrix and
the value is constant.

(1) updating phase
Gain equation:

Ktþ 1 ¼ P�tþ 1H
TðHP�t HT þRÞ�1 ð14Þ

where Ktþ 1 is the Kalman gain matrix, R is the measurement noise covariance matrix
and the value is constant.

Error covariance modification equation:

Pþtþ 1 ¼ ð1� Ktþ 1HÞP�tþ 1 ð15Þ

State modification equation:

xþtþ 1 ¼ x�tþ 1þKtþ 1ðZtþ 1 � Hx�tþ 1Þ ð16Þ

where Ztþ 1 is the object position that the ALCT algorithm tracks when it is at (t + 1)-th
frame, xþtþ 1 is the position of the estimated object at the (t + 1)-th frame.

Then, using the ALCT algorithm to track the position of object at the t-th frame. If
PSRtþ 2\PSR0 then re-estimate the target in the frame position by Eqs. (12)–(16),
otherwise, ALCT is used to track the object at next frame. The flow chart of adaptive
learning compressive tracking algorithm based on Kalman filter (ALCT-KF) is shown
in Fig. 2.

Firstly, the position of the target in the first frame is manually calibrated and the
object is tracked by the ALCT algorithm. Then, the PSR is calculated by the target
confidence map and the Bayesian classifier is updated by the PSR. If the PSR is less
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than a certain threshold, it is considered that the target is serious occlusion. At this time,
the Kalman filter is used to predict the position of the target in the current frame and the
predicted position is assigned to ALCT algorithm for object tracking in next frame.

4 Experiment

In order to validate the proposed algorithm, 6 different challenging video sequences are
adopted, including occlusion, illumination, pose change, fast motion, and similar
object. We compare the proposed ALCT-KF algorithm with the state-of-art methods,
Compressive tracking(CT) [13], Online discriminative feature selection(ODFS) [16],
Spatio-temporal context learning(STC) [17], Tracking-Learning-Detection(TLD) [18].
Implemented in MATLAB2013a, Core(TM)i5-4570CPU and 4 GB RAM. As is shown
in Fig. 1, the thresholds of Eq. (9) are set to PSR0 2 ½1:2; 1:4� and PSR1 2 ½1:6� 1:8�.
The Kalman filter parameter is set to:

u ¼

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

2
6664

3
7775; R ¼ 0:2845 0:0045

0:0045 0:0045

� �
; Q ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775; H ¼ 1 0 0 0

0 1 0 0

� �

P ¼

400 0 0 0

0 400 0 0

0 0 400 0

0 0 0 400

2
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Manually appoint the region of 
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tracking
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by Kalman filter

Get new target position

Heavy
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Fig. 2. Flow of ALCT-KF algorithm
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Two metrics are used to evaluate the experimental results. (1) The first metric is the
success rate which is defined as,

score ¼ areaðROIT \ROIGÞ
areaðROIT [ROIGÞ ð17Þ

where ROIG is the ground truth bounding box and ROIT is the tracking bounding box.
If score is larger than 0.5 in one frame, the tracking result is considered as a success.

Table 1 shows the comparison of success rate in the test video. The proposed
algorithm achieves the best or second best performance. Compared with the CT
algorithm, the average tracking success rate of M-ALCT is improved by 15.7%. The
last row of Table 1 gives the average frames per second. ALCT-KF performs well in
speed (only slightly slower than CT method) which is faster than ODFS, TLD methods.

The second metric is the center location error which is defined as the euclidean
distance between the central locations of the tracked object and the manually labeled
ground truth.

CLE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxT � xGÞ2þðyT � yGÞ2

q
ð18Þ

The tracking error of the proposed algorithm is smaller than other algorithms,
which can be maintained within 15 pixels (see Fig. 3).

The object in the Dudek and FaceOcc2 sequences (see Fig. 4) is subject to partial
occlusion and heavy occlusion. In the Cliff bar and Motocross sequences (see Fig. 5),
the object is abrupt motion and rotation which lead to the appearances of objects
change significant and motion blur. The David and Pedestrian sequences (see Fig. 6)
are challenging due to illumination variation and similar object. Through the above
experiments the proposed algorithm effectively avoids the tracking failure when
occlusion, abrupt motion, motion blur, similar target and other situations occur.

Table 1. Success rate (SR) (%) and average frames per second (FPS). (Top two result are shown
in Bold and italic).

Sequences ALCT-KF CT ODFS STC TLD

Dudek 97.2 73.1 71.2 61.6 72.6
FaceOcc2 96.3 86.2 98.5 93.0 70.2
Motocross 92.4 70.7 60.6 77.8 69.2
Cliff bar 91.1 82.0 89.2 86.4 63.1
David 96.1 89.8 93.1 97.6 92.9
Pedestrian 83.1 63.0 8.5 2.5 32.9
Average SR 93.2 77.5 70.2 69.8 66.8
Average FPS 39 42 38 53 16
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(a) Dudek sequence 

(b) FaceOcc2 sequence

#105 #182 #380 #490 #573

Fig. 4. Tracking results of the occlusion sequences. (Color figure online)
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Fig. 3. Error plots in terms of center location error for 6 test sequences. (Color figure online)
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5 Conclusion

In this paper, an adaptive learning compressive tracking algorithm based on Kalman
filter is proposed to deal with the problem of occlusion, fast moving, rotation and
similar object. Tracking drift problem is alleviated by using tracking confidence map to
adaptively update the classifier model and Kalman filter algorithm is used to predict the
object location and reduce the impact of noise. Experiments show that the proposed
algorithm has better tracking accuracy and robustness and it is easy to implement and
achieves real-time performance.

(a) Cliff bar sequence 

(b) Motocross sequence 

Fig. 5. Some sample tracking results of abrupt motion and rotation sequences. (Color figure
online)

(a) David sequence 

(b) Pedestrian sequence 

Fig. 6. Tracking results of illumination variation and similar object. (Color figure online)
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