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Abstract. Due to the massive amount of network parameters and great
demand for computational resources, large-scale neural networks, espe-
cially deep convolutional neural networks (CNNs), can be inconvenient
to implement for many real world applications. Therefore, sparsifying
deep and densely connected neural networks is becoming a more and
more important topic in the computer vision field for addressing these
limitations. This paper starts from a very deep CNN trained for face
recognition, then explores sparsifying neuron connections for network
compression. We propose an activation-based weight significance crite-
rion which estimates the contribution that each weight makes in the
activations of the neurons in the next layer, then removes those weights
that make least contribution first. A concise but effective procedure is
devised for pruning parameters of densely connected neural networks.
In this procedure, one neuron is sparsified at a time, and a requested
amount of parameters related to this neuron is removed. Applying the
proposed method, we greatly compressed the size of a large-scale neural
network without causing any loss in recognition accuracy. Furthermore,
our experiments show that this procedure can work with different weight
significance criterions for different expectations.
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1 Introduction

Since the breakthrough in [1], deep convolutional neural networks have become
the state-of-the-art techniques for various computer vision tasks, especially for
image classification and recognition problems. Different architectures [1–5] have
been proposed over the years and achieved better and better classification or
recognition accuracy. One of the main trends of improving the network architec-
tures is by increasing their depth, adding more layers to the network structures.
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While improving the classification or recognition results, a deeper network always
requires higher computational complexity and larger disk memory, which in a
way hinders its utilization in certain scenarios, such as embedded systems or
real-time applications.

Face recognition is one of the most challenging problems in image processing
and computer vision. Many excellent works [13,17,19] have successfully applied
deep CNNs to tackle face recognition tasks. Massive parameters ensure the abil-
ity of deep CNNs to express and discriminate complex face images. And deeper
architectures are often useful in learning better and more abstract features.
Another critical factor to the success of deep CNNs in face recognition is their
capability to exploit large training datasets, which sometimes may be difficult to
obtain, though. Meanwhile, these factors also contribute to their rapidly growing
demand for model storage and computational resources.

To balance recognition performance against the size of network models, we
can first train a densely connected baseline model to learn good face features,
and then prune redundant connections to perform compression while preserving
good recognition accuracy as much as possible.

Sparsifying connections is often performed in fully-connected layers, in which
weights are sorted according to some significance criterions, and those weights
with less significance are pruned. Such criterions are sometimes defined in terms
of saliency. In this paper, we propose an activation-based criterion to sort the
connections by their contributions in the activations of the next layer. Our prun-
ing procedure sparsifies one neuron at a time, pruning a certain amount of con-
nections of a neuron and then continues pruning the next one until the expected
compression rate is reached. It also includes a surgeon step, in which whenever
weights are removed in a pruning step, the remaining weights would be adjusted
to maintain the whole network status. Therefore, after a model is pruned, the
retraining or fine-tuning process is not requested. However, many observations
including ours show that fine-tuning the pruned models can further improve
their recognition performance, which would be verified by experimental results
in this paper.

The main contributions that we made in this paper are as follows: (1) we
propose a simple and yet effective weight pruning procedure, which performs well
in compressing deep convolutional neural networks with large parameter sets;
(2) we propose an activation-based weight significance criterion, which indicates
that weights with less contribution to the activations of neurons in the next
layer should be removed first; (3) The pruning procedure that we devise can be
combined with different weight significance criterions for different performance
improvements, such as higher compression rate or better recognition results.

The rest of this paper is organized as follows. Section 2 introduces some
related works in sparsifying deep neural networks. The proposed method is
described in detail in Sect. 3. The experimental results are displayed and ana-
lyzed in Sect. 4. Finally, we conclude this paper by Sect. 5.
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2 Related Work

The motivation of pruning densely connected networks is that it helps to reduce
the model size and therefore make it easier to implement deep neural networks in
certain scenarios like embedded platforms with limited disk memory and compu-
tational resources. And also in many studies like [7,9], it is believed that smaller
and sparser models can address the over-fitting problem and lead to better gen-
eralization.

One of the most classical works of dropping weights in deep neural networks
is done by LeCun et al. [6] and known as Optimal Brain Damage (OBD). The
authors used second derivative information to evaluate the saliencies of weights
and perform pruning. Optimal Brain Surgeon (OBS) [11] further calculates the
second derivative by dropping some approximations made by OBD.

Instead of trying to minimize the growth of the objective function during
pruning parameters like the above two methods, Srinivas and Babu [12] sug-
gested removing those neurons in a layer whose absence cause the minimum
change of the activations of the neurons in the next layer. They proposed a
data-free pruning procedure, which prunes an entire neuron at a time whenever
two neurons have similar weight sets. The saliency is then defined as:

Si,j = 〈a2
j 〉‖εi,j‖22 (1)

Si,j represents the saliency that is evaluated between two neurons i and j. And
aj is the parameter that connects neuron j to a neuron in the next layer, and
〈a2

j 〉 denotes the average of the square of the scalar aj over all neurons in the
next layer, and ‖εi,j‖2 is the Euclidean distance between two weight sets corre-
sponding to the two neurons.

In [13], the authors proposed a correlation-based criterion for weight pruning,
which removes those weights that have small neural correlations first. Their
method performs pruning in one layer at a time, and after a layer is sparsified,
the pruned model needs to be retrained. Due to the lack of the surgeon operation,
OBD also requires retraining after each pruning operation. In the cases of OBS
and [12], they would adjust the rest of the parameters after each pruning step
to maintain the objective function or activations in the next layer, so they do
not need retraining or fine-tuning.

All of the above methods only consider the significance of weights when
pruning and do not care about the structure of pruned networks. To avoid irreg-
ular network structures after pruning, [8] introduces a structure pruning method
which fits the pruned network on parallel computation.

As another line of reducing the size of neural network models, [14–16] applied
singular value decomposition, low rank matrices approximation or vector quan-
tization of weight matrices of the network to perform compression. Only small
amount of parameters are needed to represent or predict all the parameters of
the deep architecture. These methods do not prune weights in the same way as
the above methods. Rather than pruning them, they use the approximations of
weight matrices by which they can store much fewer weights than the original
networks.
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In [10], they used pruning, trained quantization and Huffman coding together
to deeply compress the neural network and achieved good results, which shows
that pruning methods and numerical computation methods can be well imple-
mented together to further reduce the model size. In this paper we focus on
finding a good pruning strategy, including the weight significance criterion and
pruning procedure. And our proposed method is demonstrated to be superior in
the experiments.

3 Pruning Connections of Deep Neural Networks

We choose the classical VGG-16 architecture proposed in [17] as our baseline
model, which starts from a series of convolutional layers and ends with three
fully-connected layers. The fc6 layer and fc7 layer are two fully-connected layers
following the last convolutional layer. The fc8 layer is a n-ways classifier whose
dimension depends on training datasets.

The fully-connected layer fc6 and fc7 contain most of the parameters of the
whole architecture, and many researches [12,13] also point out that most of the
redundancy exists in fully-connected layers. Therefore, our pruning operation is
performed in the fc6 and fc7 layers.

Fig. 1. Illustration of the forward propagation in a neural network.

3.1 Maintaining the Activations of the Next Layer

In [12], the authors proposed to remove neurons that cause the least change in
the activations of the next layer. The weight matrix W connects the neurons in
the previous layer to the neurons in the current layer. A neuron in the current
layer is connected to the previous layer through a weight set Wi (i indicates the
index of a neuron), and is connected to the next layer by a parameter ai. The
forward propagation process is demonstrated in Fig. 1. In order to make it easy
to illustrate the process, let us assume there is only one neuron in the next layer,
when there are two or more neurons, we average the values of ai over all of the
neurons. And the activation of the next layer can be written as:

z = a1h(WT
1 X) + · · · + aih(WT

i X) + · · · + ajh(WT
j X) + · · · + anh(WT

n X). (2)
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When Wi = Wj , the activation z can be written as:

z
′
= a1h(WT

1 X) + · · · + (ai + aj)h(WT
i X) + · · · + anh(WT

n X) (3)

Equation(3) shows whenever two weight sets are equal, one of them can be
effectively remove without causing any change in the activations of neurons in
the next layer. h(x) is the non-linear activation function. In this paper we use
the ReLU function, so that h(x) = max(0, x).

If we keep pruning weights without causing any change in the next layer,
then the output of the network will remain the same, so that the recognition
accuracy will be well retained as the size of model shrinks.

However, in large scale neural networks, a weight set in fully-connected layers
contains a large amount of parameters, and there may not be two weight sets
which are exactly the same. When Wi �= Wj , the change of the activation is:

(z − z
′
)2 = a2

j

(
h(WT

j X) − h(WT
i X)

)2
. (4)

As the above equation shows, the change of the activation is no longer zero. In
order to minimize it, we can find two most similar weight sets which minimize
(4), and remove one of the neuron accordingly. Then we come to the definition
of saliency as (1). To see how this method works, we evaluate the saliencies
between every possible pair of neurons in fc6 layer, and we get the distribu-
tion of saliencies as Fig. 2(b) shows. Except for a peak around zero, there are
many neuron pairs with large saliency values. When pruning process proceeds
to remove those neurons, considerable change in the activations of the next layer
becomes inevitable. This observation reveals that there is still much room for
better maintaining the activation.

activation change in the next layer
0 0.5 1 1.5 2 2.5 3

am
ou

nt
 o

f n
eu

ro
ns

0

100

200

300

400

500

600

700
activation-based
magnitude-based
data-free
random

(a) Activation change after pruning
salicency 10-6

-2 0 2 4 6 8 10 12 14 16

am
ou

nt
 o

f n
eu

ro
n 

pa
irs

106

0

1

2

3

4

5

6

(b) Saliency of all possible neuron pairs

Fig. 2. Activation change after pruning



Activation-Based Weight Significance Criterion 67

3.2 Activation-Based Criterion for Further Maintaining
the Activations

In this part, instead of pruning the whole neuron, we propose an activation-based
criterion to prune weights within a neuron, keeping a small amount of weights
to compensate for the change in the activation. By keeping a small amount of
parameters, for example 1%, we can remove 99% parameters in Wj and obtain
the sparsified weight set W

′
j . The change in activation becomes:

a2
j

(
h(WT

j X) − h(W
′T
j X)

)2

(5)

When h(WT
j X) = h(W

′T
j X), the change of activation is minimized. It is known

that h(WT
j X) ≥ 0. When h(WT

j X) = 0, we can simply set aj = 0. When
h(WT

j X) > 0, we have:

h(WT
j X) =

n∑

i=1

wixi. (6)

In the above equation, w1, . . . , wn and x1, . . . , xn represent the elements in the
weight sets and input vectors, respectively. We can use a relatively small dataset
to evaluate

E
(
h(WT

j X)
)

=
n∑

i=1

E(wixi) (7)

Parameter wi of bigger abs (E(wixi)) contributes more to the activations of
neurons in the next layer. Therefore, we can sort wi by their abs (E(wixi)) value
in the descending order, reserve the first 1%, and remove the rest of parameters
in Wj . Then we get the sparsified weight vector W

′′
j . We use the dataset to

calculate E
(
h(W

′′T
j X)

)
. Let

W
′
j =

E
(
h(WT

j X)
)

E
(
h(W ′′T

j X)
)W

′′
j (8)

Finally we obtain
E

(
h(WT

j X)
)

= E
(
h(W

′T
j X)

)
(9)

This method can better maintain the activations of the next layer than sim-
ply removing the whole neuron at a time. To verify this point, we estimate
and compare the activation changes in fc7 layer, after 99% of the parameters
in the fc6 layer are pruned using different pruning methods. Figure 2(a) shows
the distribution of the activation changes of all neurons in fc7 layer after prun-
ing. The method that removes one neuron at a time is referred to as data-free
on account of requiring no training data to perform pruning, and is described
in detail in [12]. Our method is referred to as activation-based. The other two
methods are naive pruning techniques by removing weights randomly or remov-
ing those weights with small magnitudes. We can see from Fig. 2(a) that our
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method is significantly better than the other methods in maintaining the acti-
vations of the next layer. The pruning procedure that we propose is summarized
in Algorithm 1. The order of the list of neurons to be pruned is the same as the
data-free method.

Algorithm 1. The proposed algorithm for weight pruning
Input: A list of weight sets Wi that connect the neurons to be pruned to the previous
layer.
Start from the first neuron in the input neuron list.

1: while the requested compression rate is not reached do
2: Sort all the weights in Wi by the weight significance criterion described in

Sect. 3.2 in the descending order.
3: Keep the first 1% weights and drop the rest of the weights in Wi, and get the

sparsified weight set W
′′
i .

4: Evaluate E
(
h(WT

i X)
)

and E
(
h(W

′′T
i X)

)
, and let

W
′
i =

E
(
h(WT

i X)
)

E
(
h(W

′′T
i X)

)W
′′
i

5: Move on to the next neuron to be pruned.
6: end while
7: Retrain or fine-tune the pruned model if requested.

Output:The sparsified weight matrices W
′
i .

As illustrated above, we propose an activation-based weight significance cri-
terion as well as a pruning procedure (see Algorithm 1). We believe that this
algorithm can also be combined with other existing criterions to pursue other
expectations. Here we present this point by introducing the correlation criterion
into this procedure.

In [13], the authors found that connections that are strongly correlated have
stronger predictive power for the activities of the latter layers in a deep archi-
tecture. A parameter or weight in neural networks represents a connection of
two neurons in two adjacent layers. We compute correlations in the connec-
tions and sort them in a descending order, and remove those connections with
small correlation values. In fact, we just simply replace activation-based criterion
with correlation-based criterion in step 2 of Algorithm 1. By doing so, we can
see if this algorithm can work well with other criterions and also compare our
activation-based criterion with the correlation-based criterion.

3.3 Testing and Fine-Tuning

We use a pre-trained model and the pruned models to deal with the face verifica-
tion task on the LFW face dataset [18], and compare the results by following the
standard evaluation protocol. 6000 face pairs are evaluated to decide whether



Activation-Based Weight Significance Criterion 69

the two faces in a pair belong to the same person. The last fully-connected layer
fc8 is removed during testing, and the output 4096-dimensional vectors of the
fc7 layer are extracted as features of the corresponding faces. Every face image
is first rescaled to three different sizes: 256 × 256, 384 × 384, and 512 × 512. For
each size, five patches of 224 × 224 pixel are cropped from the four corners and
the center of the image with horizontal flip. As in [2], these 30 cropped image
patches are input to the network, and 30 feature vectors of the face are extracted
and averaged. The final averaged feature vectors will be compared by using the
Euclidean distance.

A pre-trained baseline model would be used in our pruning experiments.
Certain amount of parameters of certain layers will be pruned, and then the
pruned model would be fine-tuned when requested. A deep neural network would
converge to a minimum point during training. Any vibration on the parameters
of the trained network would deviate the network from the minimum point. The
motivation of minimizing the change in activations of the next layer is that it
helps to keep the trained model remaining close to the minimum point. However,
the optimal status of the trained network would be sabotaged inevitably by
pruning operations. Fine-tuning the pruned network tries to make it converge
to a minimum point again.

The collection of the training dataset is described in detail in [17]. Although
the training dataset contains a massive amount of face images, the image qual-
ity of this dataset is not of satisfaction. So we used an augmented subset of
the training dataset to fine-tune the pruned model. This dataset contains face

Table 1. Verification accuracy on LFW after pruning (the data-free method performs
pruning in both of the fc6 and fc7 layers since it removes the whole neurons)

fc6 pruned Random Magnitude-based Activation-based Data-free [12]

0.25 0.9606 0.9613 0.9613 0.9613

0.50 0.9583 0.9611 0.9573 0.9531

0.75 0.9555 0.9573 0.9572 0.9420

0.99 0.6716 0.9303 0.9483 0.9202

Table 2. Verification accuracy on LFW after pruning and fine-tuning (pruning opera-
tion is performed on the fc6 layer except for the data-free method, which removes the
whole neurons)

Weights
pruned

Random Magnitude-
based

Activation-
based

Correlation-
based

Data-free [12]

97 MB 0.9743 0.9694 0.9737 0.9723 0.9730

194 MB 0.9707 0.9743 0.9720 0.9758 0.9712

291 MB 0.9680 0.9716 0.9703 0.9700 0.9697

384 MB 0.9510 0.9649 0.9657 0.9547 0.9644
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images of 300 identities. These images were detected for face regions using the
Viola&Jones face detector [20]. The faces were cropped out along with part of
the background and then resized to the same scale. Erroneous faces were further
filtered manually. We used this augmented dataset to retrain the pruned model
for 5 epochs, and the learning rate is set to decrease from 10−4 to 10−6.

4 Experimental Results

The pre-trained baseline model that we use in our pruning experiments is trained
and released by the group of [17]. When it is tested on the LFW verification task,
it reports an accuracy of 96.13%. Experimental results of various pruning meth-
ods performed on the pre-trained model are shown in Table 1. The pruning pro-
cedures are carried out on the fully-connected layer fc6. As it is shown in Table 1,
when 25% of the parameters in the fc6 layer are pruned using the magnitude-
based or the activation-based method, the verification accuracies of the network
do not degrade at all. When 50% or 75% of the parameters are pruned, the
activation-based method does not show its edge over the other two methods.
However, after pruning 99% parameters which means compressing the fc6 layer
by 100 times, the model pruned with the activation-based method achieves a
significantly better accuracy than those of the other methods. We also conduct
experiments using the method in [12], which prunes a whole neuron (two layers
related) at a time. When it removes the same amount of parameters in the two
layers as the other methods do in one layer, it achieves accuracies of 0.9613,
0.9530, 0.9420, and 0.9202, which cannot compare to the proposed activation-
based method.

Table 3. Experimental results after pruning two fc layers and fine-tuning

fc6 pruned fc7 pruned Activation-based Correlation-based Data-free [12]

194 MB 32 MB 0.9605 0.9694 0.9611

291 MB 48 MB 0.9704 0.9610 0.9590

384 MB 32 MB 0.9549 0.9406 –

384 MB 63 MB 0.9547 0.9268 0.9430

Experimental results after fine-tuning the pruned models are shown in
Table 2. As we can see, after fine-tuning, the results of all pruned models are
improved. The best accuracy achieved by the correlation-based method after
fine-tuning is up to 97.58%, while the best results of other methods are around
97.4%, which suggests that the correlation criterion provides a better initializa-
tion for fine-tuning when certain amount of weights are removed. Also, these
results in a way resonate the idea that sparse networks lead to better gener-
alization. However, when it comes to removing 99% of the parameters in fc6
(384 MB), the activation-based method still gets the best result, which means
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Fig. 3. ROC curves of pruned models, where 99% of parameters of the fc6 layer are
removed.

that this method is a better choice for performing deeper pruning. The ROC
curves of the models pruned by different methods are shown in Fig. 3. From
these ROC curves we can know the advantage of the activation-based method
when pruning a large amount of parameters of the network. Removing 99% of
parameters in fc6 using the proposed method, we can reduce the model size from
553 MB to 128 MB, and the pruned model achieves an accuracy of 96.57%, which
is even higher than the baseline model.

We have also conducted experiments on pruning both of the fc6 layer and the
fc7 layer at the same time. And the results are shown in Table 3. We can see that
the activation-based method performs significantly better than the correlation-
based method and the data-free method, when it comes to pruning two fc layers
at the same time. Even when both of fc6 and fc7 layers are deeply pruned using
the activation-based technique, which amounts to compressing the network size
from 553 MB to 65 MB, there is still only a slight drop in accuracy.

Compared to the study in [17], which improves the verification accuracy to
97.27% by increasing the depth of the network architecture, in this paper, we
improve the accuracy to around 97.4% by sparsifying the network structure, and
reduce the model size at the same time.

Table 4. The computational speeds

Model size Total time Time per face Total time
(GPU-accelerated)

Time per face
(GPU-accelerated)

553 MB 193.81 s 0.48453 s 18.65 s 0.04662 s

65 MB 185.78 s 0.46445 s 12.18 s 0.03045 s

After the baseline model is pruned, the size of the model shrinks greatly. In
the meantime, the decrease in the amount of parameters reduces the total times
of addition and multiplication needed in forward propagation, which can speed
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up the recognition process theoretically. So we compare the speeds of the pruned
model and the baseline model by using them to extract face features from 400
face images. The experimental results are displayed in Table 4, which shows that
the processing time needed for the pruned model is less than the baseline model.
Especially when GPU is used, the speed is improved by 34.68%. However, the
improvement in speeding up the recognition process is not as distinct as reducing
the model size, because although the fully-connected layers contain most of the
parameters, the convolutional layers require most of the computations.

The above experimental results show that the proposed method can deeply
compress the size of deep neural networks without causing much loss in the
recognition accuracy. Also, it is beneficial for speeding up the recognition process.
Therefore, it has the potential to make deep neural networks easier to implement
in many real applications.

5 Conclusion

In this paper, we propose an activation-based criterion to evaluate the impor-
tance of weights in deep convolutional neural networks. The proposed criterion
is applied to a deep CNN trained for face recognition. We have carried out a
series of experiments to verify the effectiveness of the proposed method. It is
demonstrated that when the pre-trained baseline model is deeply compressed,
the proposed method achieves the best performance, indicating that the activa-
tion information can be a useful indicator for estimation of weight significance.
The study reported in this paper provides insights for reducing deep CNNs for
face recognition. We believe that the proposed method is applicable in many
deep learning scenarios independently or when combined with other methods.
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