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Abstract. Emotions play an important role at our day-to-day activi-
ties such as cognitive process, communication and decision making. It is
also very essential for interaction between human and machine. Emotion
recognition has been receiving significant attention from various research
communities and capturing user’s emotional state such as facial expres-
sions, voice and body language, all of which are emerging way to find
the human emotions. In recent years, physiological signals based emo-
tion recognition has drawn increasing attention. Most of the physiologi-
cal signals based methods use well-designed classifiers with hand-crafted
features to recognize human emotions. In this paper, we present an app-
roach to perform emotional states classification by end-to-end learning
of deep convolutional neural network (CNN), which is inspired by the
breakthroughs in the image domain using deep convolutional neural net-
work. The approach is tested using the database “DEAP” including elec-
troencephalogram (EEG) and peripheral physiological signals. We trans-
form EEG into images combine extract hand-crafted features of other
peripheral physiological signals, and classify emotions into valence and
arousal. The results show this approach is possible to improve classifica-
tion accuracy.

1 Introduction

Emotion playing a significant role in human’s daily activities. It is an psycho-
logical expression of affective reaction and mental state based on human subjec-
tive experience [1]. Emotion is critical aspect of the human interpersonal rela-
tionship and essential to the human communication and behaviors. Psycholo-
gists often used discrete and dimensional emotion classification systems. Eight
basic emotion states (anger, fear, sadness, disgust, surprise, anticipation, accep-
tance, and joy) proposed by Plutchik [2] and six basic emotion states based on
facial expressions (anger, disgust, fear, happiness, sadness and surprise) proposed
by Ekman [3] both belong to discrete emotion classification system. And the
most widely used valence and arousal emotion classification model, proposed by
Russell [4] belongs to dimensional system. In this model, the valence axis rep-
resents the quality of an emotion and the arousal axis refers to the emotion
activation level.
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In order to improve human-machine interaction (HMI), emotion recognition
began to attract increasing attention. In the past few decades, various sensory
data have been used to identify human emotion, including facial expression,
auditory signals, text, body language, peripheral physiological signals and elec-
troencephalogram (EEG) [5,6]. The last two, especially EEG, can provide more
objective and comprehensive information for emotion recognition in comparison
with other sensory data, because they can detect the body dynamics in response
to emotional states directly.

Existing EEG based emotion recognition methods can be roughly grouped
into two main categories: hand-crafted features based methods with well-
designed classifiers [7,8] and recurrent neural network (RNN) [9]. Inspired by
[10,11], where deep CNN is successfully in some fields of identification, we trans-
form processed EEG data into images based on different frequency bands which
contains time and frequency domain information, and then the generated images
and hand-crafted features extracted from peripheral physiological signals were
fed into CNN models to perform fine-tuning and emotion recognition. Experi-
ments were conducted for cross-subject evaluation on the DEAP dataset [12] to
validate the effectiveness of our proposed method. Our purpose was to affirm
if the classification results of our method could obtain better average accuracy
and F1 score on valence and arousal classification compares with several studies
on the same database before.

The rest of this paper is organized as follows. Section 2 presents the descrip-
tions of DEAP database. Section 3 presents the proposed method. The results
are discussed in Sect. 4 and we conclude the paper in Sect. 5.

2 DEAP Database

DEAP dataset, which we conduct our experiment is a multimodal dataset for
emotion analysis, contains both electroencephalogram (EEG) (recorded over the
scalp using 32 electrodes and the positions of the electrodes are according to
10–20 International System: Fp1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1,
P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6,
CP2, P4, P8, PO4, and O2) and peripheral physiological signals (8 channels,
include electromyogram (EMG) collected from zygomaticus major and trapez-
ius muscles, horizontal and vertical electrooculograms (EOGs), skin temperature
(TMP), galvanic skin response (GSR), blood volume pulse (BVP), and respira-
tion (RSP)) of 32 subjects (aged between 19 and 37), as each subject watched
40 one-minute music video clips, which were carefully selected to evoke different
emotional states according to the dimensional valence-arousal emotion model of
subjects, and played in a random order.

After watching each music video, participants were required to report their
emotion using Self-Assessment Manikins (SAM) questionnaire, rating their
tastes level of five dimensions (valence, arousal, dominance, liking, and famil-
iarity), the first four scales range from 1 to 9 and the fifth dimension range
between 1 and 5. In this paper, identifications the dimensions of valence (rang-
ing from negative to positive) and arousal (ranging from calm to active) are
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addressed as two independent tasks according to valence-arousal emotion model
proposed by Russell [4]. Both two tasks posed as binary classification problems.

3 Proposed Method

Figure 1 shows the overall architecture of our proposed method. We first per-
form data preprocessing to normalize all the physiological signals. Secondly,
every sample of electroencephalogram (EEG) signals is transformed into six
gray images according to different frequency bands. Thirdly, we extract the
81-dimensional hand-crafted features of other peripheral physiological signals.
Finally, the generated images and hand-crafted features are fed into four pre-
trained AlexNet models [15] to perform fine-tuning and emotion recognition.

Fig. 1. An illustration of the proposed emotion recognition process. (C: convolution,
P: max-pooling.)

3.1 Data Preprocessing

For all 40 channels of physiological signals in DEAP dataset, the preprocessing
included down sampling the data from 512 Hz to 128 Hz. Especially for EEG
data, a band-pass filter with cutoff frequencies of 4.0 and 45.0 Hz is first used to
remove the unwanted noises and averaged to the common reference, as in [13,14].
The data was segmented into 60 s trials and a 3 s pre-trial baseline removed, then
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we divide the 60 s data of each trial into 10 clips to perform emotion recognition
as in Sect. 3. Additionally, we perform data normalization for each channel of
physiological signals as follows:

Ii,j = (Ii,j − mini)/(maxi − mini) (1)

where Ii,j is the value of channel i at time j, maxi and mini are, respectively,
the maximum value and the minimum value of the channel i during T = 60s.

3.2 Electroencephalogram Signals Based Image Generation

After data preprocessing, the size of original EEG data for one sample is 32 ×
6 × 128, where 32 stands for the channels, 6 stands for the time of one clip,
and 128 stands for the sampling rate and we rearrange the EEG data into a
fixed size (192 × 128) gray image. On the other hand, according to five different
frequency bands (theta (4∼8 Hz), slow-alpha (8∼10 Hz), alpha (8∼12 Hz), beta
(12∼30 Hz), and gamma (30∼45 Hz)), another five gray images are generated.
Finally, for each sample of EEG data, we obtain 6 images. Figure 1(a) shows the
details.

3.3 Peripheral Physiological Signals Based Feature Extraction

81-dimensional hand-crafted features are extracted from other eight channels
of peripheral physiological signals: GSR, electrooculogram (EOG), respiration
amplitude, electrocardiogram, skin temperature, blood volume by plethysmo-
graph and electromyograms of Zygomaticus and Trapezius muscles as shown in
Table 1. Before feature extraction, all the peripheral physiological signals are
separately normalized to mean = 0 and s.d. = 1.

3.4 Multimodal Deep Convolutional Neural Network for Emotion
Recognition

Network Structure. In this paper, the partial structure of famous deep convo-
lutional model (AlexNet) [15] which consists of 8 parameterized layers (5 convo-
lutional layers, 1 fully connected layer and 1 softmax layer) is adopted. We make
some changes with AlexNet: (1) we encode the 81-dimensional hand-crafted fea-
ture into our CNN model by concatenating it with the hidden fully connected
layer. (2) The number of hidden units in the fully connected layer is 500 and
the output layer has only two neurons, which represents the two classes of the
problem. Figure 1(d) shows our model’s structure.

End-to-End Fine-Tuning. In order to fine-tune the pre-trained AlexNet
model, the size of input skeleton sequence based image must be compatible with
AlexNet’s input size which is known as 227×227 pixel size. We first rescale each
image to 256×256 pixel size and then randomly cropping and mean-subtracting
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Table 1. Description for the hand-crafted features of peripheral physiological signals

Feature name Feature index Feature details

EOG & EMG
frequency-domain
features

1∼5 Eye blink rate
Average PSD of vertical
Horizontal EOG
Trapezius EMG
Zygomaticus EMG

EOG and EMG
time-domain features

6∼21 Mean, Variance
Zero-crossing rate
The approximate entropy of 4 EOG and
EMG channels

Skin temperature
features

22∼27 Average PSD in the frequency bands
(0∼0.1 Hz) and (0.1∼0.2 Hz)
Mean, Variance
Approximate entropy
Mean of derivative

GSR features 28∼52 Mean
Mean of derivative
Mean of negative derivative values
Proportion of negative values in all
Derivative values
Number of local minima
Mean of rising time
15 PSD values in frequency band (0∼2.4 Hz)
Zero-crossing rates and means for the bands
of (0∼0.2 Hz) and (0∼0.8 Hz)

Blood volume pressure
features

53∼59 Power ratio between the frequency bands of
(0.04∼0.15 Hz) and (0.15∼0.5 Hz)
Average PSD in the frequency bands of
(0.1∼0.2 Hz), (0.2∼0.3 Hz),
(0.3∼0.4 Hz),(0.01∼0.08 Hz), (0.08∼0.15 Hz)
and (0.15∼0.5 Hz)

Respiration features 60∼81 Power ratio between frequency bands of
(0.05∼0.25 Hz) and (0.25∼0.5 Hz)
Mean
Mean of derivative
Centroid of PSD
Respiration rate 15 values of PSD in
frequency band (0∼2.4 Hz) peak-to-peak
time

are adopted. For the last softmax layer (i.e., the output layer), the number
of the unit is the same as the number of the emotion classes. Each sample of
EEG signals is transformed into 6 images, which are separately fed into the
proposed multimodal CNN with the same label for fine-tuning. Regarding the
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hyper-parameter setting, we empirically selected the size of mini-batches for the
SGD as 200. Moreover, we set the initial learning rate to 0.001, which is decreased
by multiplying it by 0.1 at every 500th iteration. The fine-tuning is stopped after
50 epochs.

Emotion Recognition. In this study, we separately focus on valence and
arousal scales because Koelstra et al. [12] finds that there is a significant differ-
ence between low and high among these two emotions. For each trial, two labels
were generated. The affective level in valence space described HV (high valence)
or LV (low valence), and the affective level in valence space described HA (high
arousal) or LA (low arousal). The label 1 indicates high valence/arousal and
the label 0 indicates low valence/arousal. Considering subject-specificity of the
subjective ratings, the binary emotional classes could be much proper generated
based on personal threshold, which determine the target classes by clustering
subjective rating data for each subject using classical k-means clustering algo-
rithm [14]. The threshold is computed by the midpoint of two cluster centers as
examples shown in Fig. 2 of subject 1, and all threshold values for 32 subjects
summarized in Table 2. The classification performances based on them.

Fig. 2. The target emotion classes generated based on personal threshold. (A) Ratings
of all 40 one-minute music videos by subject 1. (B) Two cluster centers based on
results of k-means clustering. (C) Midpoint of two cluster centers. (D) The low and
high valence states discretized by the threshold. (E) The low and high arousal states
discretized by the threshold.
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Table 2. All threshold values for 32 subjects.

Subject Arousal Valence Subject Arousal Valence

1 5.6803 5.2342 17 5.1932 5.0815

2 5.6126 6.0166 18 5.5781 5.5596

3 3.7776 5.5513 19 5.4990 5.3685

4 4.5916 4.6503 20 5.6172 5.8185

5 5.1736 4.9791 21 6.0432 5.6618

6 4.6612 5.7579 22 5.3251 4.2624

7 5.0705 4.8358 23 3.6487 6.1354

8 5.6286 5.8466 24 5.8675 4.9634

9 5.6759 5.4592 25 5.9870 5.3552

10 5.6759 5.0015 26 3.8795 4.8234

11 5.1886 4.0322 27 4.6934 5.8161

12 6.3644 4.9731 28 4.7856 5.3817

13 6.6635 4.8578 29 4.3479 4.5732

14 5.4360 4.9597 30 5.1283 5.5714

15 4.7245 5.8538 31 5.6703 4.6661

16 4.7233 4.2413 32 5.6419 5.1586

Because each sample of EEG signals is transformed into 6 images, during
testing, the class scores of all images are averaged to form the final prediction of
the action class i as follows:

P = (
6∑

i=1

Ok)/6 (2)

and
i = arg max

i∈[0,1]
Pi (3)

where O represents the output vector of our proposed CNN model and P is the
final probability of high/low emotion.

3.5 Evaluation Criteria

As our analysis of emotion is a binary classification, we adopt mean classification
accuracy and F1-score as the final evaluation criteria. The mean classification
accuracy is calculated as follows:

Mean Acc = (nTP + nTN )/(nTP + nTN + nFP + nFN ) (4)

where nTP , nTN , nFP and nFN denote the numbers of correct classified label : 1
instance, the numbers of correctively classified label : 1 instance, the numbers
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of correctly classified label : 0 instance, the numbers of incorrectly classified
label : 1 instance and the numbers of incorrectly classified label : 0 instance,
respectively.

The precision for recognizing the high-class (1) instances is defined as p1,

p1 = (nTP )/(nTP + nFP ) (5)

The precision for recognizing the low-class (0) instances is defined as p0,

p0 = (nTN )/(nTN + nFN ) (6)

Finally, the F1-score is calculated:

pf = 2p0p1/(p0 + p1) (7)

4 Results

Experiments of valence and arousal classification were conducted. We divide the
last 60 s data of each trial into 10 clips to perform emotion recognition and the
10-fold cross validation technique was carried out to evaluate the performance.
Which partitioned samples into 10 disjoint subsets. One of the subsets was used
as test sample at each fold, rest subsets were used as training samples and
repeated 10 times till all the subsets were used as test sample ones. The average
classification accuracy and F1-score values for all subjects were computed at
each fold and were averaged at the end of the experiment. The classification
results of the method we proposed was further compared with results obtained
by other methods in Table 3.

Table 3. Experimental results on DEAP Dataset

Methods Arousal Valence

Accuracy [%] F1-score [%] Accuracy [%] F1-score [%]

Koelstra et al. [12] 62.00 63.10 62.70 65.20

Liu and Sourina [16] 76.51 – 50.80 –

Naser and Saha [17] 66.20 – 64.30 –

Yoon and Chung [18] 70.10 – 70.90 –

Wang and Shang [19] 51.20 – 60.90 –

Chen et al. [20] 69.09 68.96 67.89 67.83

Li et al. [21] 64.20 – 58.40 –

Atkinson and Campos [22] 73.06 – 73.14 –

Yin et al. [13] 84.18 77.98 83.04 79.50

Our proposed method 87.30 78.24 85.50 80.06
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It shows our proposed method could obtain better average accuracy and F1
score on valence and arousal classification compares with several studies on the
same database before. More specifically, separately with respect to arousal and
valence, the performance is improved by 3.12% and 2.46%, and F1 score also
enhanced 0.26% and 0.56%.

5 Conclusion

In this paper, we proposed to transform different frequency band of EEG signals
into six gray images which contains time and frequency domain information,
and extracted hand-crafted features of other peripheral physiological signals.
These images and features were then fed into a AlexNet model to perform end-
to-end fine-tuning. To achieve better performances, data preprocessing of the
original signal was also adopted. The provided experimental results prove the
effectiveness and validate the proposed contributions of our method by achieving
superior performance over the existing methods on DEAP Dataset.
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