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Abstract. Error correcting output codes kernel machines (ECOC kernel
machines) are ensemble of kernel machines based on ECOC decomposition
methods. How to improve the generalization capability of this framework is an
open problem. In this paper, we discussed the condition for generalization in
terms of the stability property of ECOC kernel machines. Here we provide a
proof for the result that an ECOC kernel machine has the pointwise hypothesis
stability. This stability property can be calculated by training on the training
dataset once and has clear and meaningful formulation. It can be applied to tune
the kernel parameters in model selection and design good matrixes for ECOC
kernel machines.

Keywords: Error correcting output codes (ECOC) � Kernel machines
Pointwise hypothesis stability � Generalization error bound

1 Introduction

Many real-world pattern recognition applications are aim to map the instances into a set
of classes. To deal with such problems, the efficient way is to decompose the multiclass
problems into a set of binary classification problems [1]. In this case, many techniques
addressing the binary classification task can be used to solve the complex multiclass
problems. There are many different approaches for recasting the multiclass problem
into a series of smaller binary classification tasks, such as one-versus-all (OVA),
one-versus-one (OVO) [2, 3], and error correcting output codes (ECOC) [4, 5].
One-versus-all which is the simplest approach considers the comparison between each
class and the others, and takes the maximum output as the final classification decision.
One-versus-one approach addresses the comparison of all possible pairs of classes, and
obtains the final classification result by means of a voting procedure. Error correcting
output codes (ECOC) is a general framework to achieve this decomposition, which was
presented by Dietterich and Bakiri [4]. Due to the error correcting capability [6–8],
ECOC has been successfully applied to a wide range of applications [9–12].

When the ECOC framework is applied in practice, we expect that this framework
will have an accuracy classification result. Generally speaking, training the learning
algorithms on the empirical datasets to predict the unlabeled samples precisely is one of
the key points for machine learning. The ECOC framework can be seen as a special
learning algorithm, which is an ensemble of some binary classifiers. How to improve
and evaluate the generalization capability of this framework is an open problem and
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some works have been done. Masulli and Valentini [13] attempted to analyze the main
factors affecting the effectiveness of ECOC methods experimentally, and their analysis
showed that all these factors concurred to the effectiveness of ECOC methods in a not
straightforward way and interacted between them. Garcia-Pedrajas and Fyfe [14]
proposed an evolutionary approach to the design of output codes, which took five
different aspects into account, but it was difficult to define an apparent relationship
between these aspects and the generalization ability of ECOC methods. These results
underscore the difficulty of this problem.

On the other hand, some works focused on just one or two aspects that were related
to generalization performance of ECOC methods. Pujol and Radeva [15] focused on
obtaining the partitions which had the maximum class discrimination. Escalera and Tax
[16] used the subclass information to guarantee that the base classifier can split each
subgroup of classes. Ali-Bagheri [17, 18] aimed to improve independency among base
classifiers using different feature subsets for each base classifiers. Angel-Bautista and
Escalera [19] presented a novel genetic strategy to obtain the better dichotomizers.
These works provide us some new ways to the ECOC framework research. However, it
is a pity that there is little formal justification to support these improvements. The
previous works show that it is difficult to determine what is the intrinsic factors
affecting the effectiveness of ECOC methods.

To improve the generalization capability of ECOC framework, what we need to do
is to go back to the nature of ECOC framework. The nature is it is just a special
learning algorithm. Note that in this case, we do not discuss the decoding strategy.
A central question for machine learning is to determine conditions under which a
learning algorithm will generalize from its finite training set to novel samples [20].
A milestone in learning theory was empirical risk minimization (ERM) based on
minimizing the training error. Furthermore, Valentini [21] proposed the upper bounds
on the training error of ECOC kernel machines. In this case, the problem is changed to
how to minimize the difference between the training error and the generalization error.
Fortunately, Poggio and Rifkin [20] discussed the conditions for generalization in
terms of a precise stability property of the learning process. Bousquet and Elisseeff [22]
showed how to use the stability to derive bounds on the generalization error based on
the training error. The stability of a learning algorithm can be a bridge between the
training error and the generalization error, and as a powerful tool in ECOC framework
research.

In other word, if the learning algorithm has minimization training error and is more
stable, the learning algorithm can have better generalization capability. It is our purpose
in this paper to discuss the stability of ECOC framework with kernel machines. The
most contribution of our work is that we obtain the result that ECOC kernel machines
have pointwise hypothesis stability. This stability can be calculated by training on the
training dataset once, and has clear and meaningful formulation. It can be applied to
tune the kernel parameters in model selection and design good matrixes for ECOC
kernel machines.

The rest of this paper is organized as follows: Sect. 2 provides a brief introduction
to the ECOC decomposition methods and background on kernel machines. The
pointwise hypothesis stability of ECOC kernel machines is explained in detail in
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Sect. 3. In Sect. 4, some applications of pointwise hypothesis stability are presented.
Finally, Sect. 5 draws the main conclusions of the paper.

2 ECOC Kernel Machines

2.1 ECOC

The ECOC framework consists of two stages: encoding and decoding. At the coding
stage, the main task is to construct a coding matrix. Each column of the coding matrix
is the bipartition (groups of classes), which indicates one binary problem. Each row of
the coding matrix is the codeword for each class, where the bit implies the label of the
class for a binary problem [23]. The base classifier is obtained by training the binary
problem. Binary ECOC is the original framework. It has two symbols þ 1;�1f g in the
coding matrix, which represent the negative class and the positive class in one binary
problem. When the coding step attracted special attention, Allwen et al. [5] introduced
zero as the third symbol, which indicated that the corresponding class would be ignored
for a binary problem. The classical ECOCs are shown in Fig. 1.

In Fig. 1, the white, black and gray regions of the coding matrix stand for the
symbol “1”, “−1” and “0” respectively. For example, in Fig. 1(c) when classifier f1 is

Fig. 1. Four classical ECOCs, binary ECOC: (a) one-versus-all; (c) dense random; ternary
ECOC: (b) one-versus-one; (d) sparse random
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trained, classes C1 and C4 are seen as the positive class and classes C2 and C3 as the
negative class. In the same way, finally, we obtain a classifier vector f1; f2; f3; f4f g.

Given a test sample, the base classifiers output a codeword. Note that the obtained
codeword cannot take the value zero since the output of the base classifier is “+1” or
“−1”. At the decoding stage, this codeword is compared with the codewords defined in
the coding matrix, and the test sample is assigned to the class corresponding to the
closest codeword. Usually, this comparison is implemented by the Hamming and the
Euclidean decoding distance. Specially, Allwen et al. [5] showed the advantage of
using a loss-based function of the margin of the output of the base classifier. For
example, in Fig. 1(c) given the test sample X, the classifier vector output a codeword
x1; x2; x3; x4f g. Then, the final classification result is obtained by a given decoding

strategy.

2.2 Kernel Machines

We assume that the training set is Zm ¼ xi; yið Þmi¼12 X � �1; 1f gf gm� �
and ‘ : R ! R

is a loss function. Kernel machines are the minimizers of functionals of the form

F f ; Zm½ � ¼ 1
m

Xm
i¼1

‘ yif xið Þð Þþ k fk k2K ð1Þ

where k is a positive constant named regularization parameter. The minimization of
functional in (1) is done in a Reproducing Kernel Hilbert Space (RKHS) H defined by
a symmetric and positive definite kernel K : X � X ! R, and fk k2K is the norm of a
function f : X ! R belonging to H.

If ‘ is convex, the minimizer of functional in (1) is unique and has the form

f xð Þ ¼
Xm
i¼1

aiyiK xi; xð Þ ð2Þ

The coefficients ai are computed by solving an optimization problem whose form is
determined by the loss function ‘. For example, in SVMs, the soft-margin loss is
‘ yf xð Þð Þ ¼ 1� yf xð Þj jþ , where xj jþ¼ x if x[ 0 and zero otherwise. In this case, the
ai is the solution of a quadratic programming problem with constraints ai 2 0; 1=2mk½ �.
A peculiar property of an SVM is that, usually, only few data points have nonzero
coefficients ai. These points are named support vectors.

3 Pointwise Hypothesis Stability of ECOC Kernel Machines

3.1 Pointwise Hypothesis Stability

The stability of one learning algorithm can be used to get bounds on the generalization
error [22]. Here we focus on the stability with respect to changes in the training set.
Firstly, we introduce some notations.
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A training dataset is given as follows

S ¼ z1 ¼ x1; y1ð Þ; . . .; zm ¼ xm; ymð Þf g ð3Þ

By removing the ith element, the changed training dataset is given as:

Sni ¼ z1; . . .; zi�1; ziþ 1; . . .; zmf g ð4Þ

Then, we denote by f the function trained on the set S, and f ni the function trained
on the set Sni. The definition of pointwise hypothesis stability is given in Definition 1.

Definition 1 (Pointwise Hypothesis Stability). An algorithm A has pointwise
hypothesis stability d with respect to the loss function ‘ if the following holds

8S 2 Zm; 8i 2 1; � � � ;mf g; ES ‘ f ; zið Þ � ‘ f ni; zi
� ���� ���h i

� d ð5Þ

3.2 Multiclass Loss Function

Based on Definition 1, the loss function of ECOC kernel machines is needed. Let the
coding matrix be M 2 �1; 0; 1f gk�l, where k is the number of class and l is the number
of binary classifier. mps is the code bit which indicates the label of class p in the s th
binary classifier. The vector function formed by the binary classifiers is
f xð Þ ¼ f1 xð Þ; � � � ; fl xð Þf g.

The multiclass margin of a sample xi; yið Þ 2 X � 1; � � � ; kf g can be written as [24]

g xi; yið Þ ¼ dL mp; f xið Þ� �� dL myi ; f xið Þ� � ð6Þ

where dL mp; f xið Þ� � ¼ Pl
s¼1

L mpsfs xið Þ� �
is the linear loss-based decoding function with

L mpsfs xið Þ� � ¼ �mpsfs xið Þ, and p ¼ argmin
q6¼yi

dL mq; f xið Þ� �
.

Note that the multiclass margin is positive when sample xi is classified correctly.
Considering a loss function is typically a nondecreasing function of the margin, the
linear-margin loss function can be defined as ‘ f ; zð Þ ¼ �g x; yð Þ.

3.3 Pointwise Hypothesis Stability of ECOC Kernel Machines

In this section, we present the proof of pointwise hypothesis stability of ECOC kernel
machines. To this end, we first need the following lemma [24].

Lemma 1. Let f be the kernel machine as defined in (2) obtained by solving (1). Let
f ni be the solution of (1) found when the data point xi; yið Þ is removed from the training
set. We have
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yif xið Þ � aiGii � yif
ni xið Þ� yif xið Þ ð7Þ

where Gij ¼ K xi; xj
� �

.
By applying Lemma 1 simultaneously to each kernel machine used in the ECOC

procedure, Inequality (7) can be rewritten as

f nis xið Þ ¼ fs xið Þ � ksmyis; s 2 1; � � � ; lf g ð8Þ

where ks is a parameter in 0; asiG
s
ii

	 

.

Theorem 1. Let M 2 �1; 1f gk�l be the code matrix and fs xð Þ ¼ Pm
i¼1 a

s
imyisK

s xi; xð Þ
be the s th binary classifier, where ai 2 0;C½ � with C ¼ 1= 2mkð Þ. The multiclass loss
function is ‘ f ; zð Þ ¼ �g x; yð Þ. Let j ¼ maxs maxi Gs

ii ¼ maxs maxi Ks xi; xið Þ. f is the
vector function derived by the ECOC kernel machines based on the coding matrix M.
Decoding strategy is set as linear loss-based decoding function. h �ð Þ is the Heavyside
function: h xð Þ ¼ 1 if x[ 0 and zero otherwise. Thus, ECOC kernel machines have
pointwise hypothesis stability with

ES ‘ f ; zið Þ � ‘ f ni; zi
� ���� ���h i

� 2jC
m

Xm
i¼1

Xl

s¼1

h asi
� � ð9Þ

Proof. In order to prove that ECOC kernel machines has pointwise hypothesis sta-
bility, we have to find the bound for ES ‘ f ; zið Þ � ‘ f ni; zi

� ��� ��	 

. Firstly, for

8S 2 Zm; 8zi ¼ xi; yið Þ 2 S, we have

ES ‘ f ; zið Þ � ‘ f ni; zi
� ���� ���h i

¼ 1
m

Xm
i¼1

‘ f ; zið Þ � ‘ f ni; zi
� ���� ��� ¼ 1

m

Xm
i¼1

g xi; yið Þ � gni xi; yið Þ�� ��

So, if we want to bound ES ‘ f ; zið Þ � ‘ f ni; zi
� ��� ��	 


, firstly we can bound

g xi; yið Þ � gni xi; yið Þ�� ��.
The above problem can be divided into two parts. On one hand, from the definition

of g x; yð Þ and linear loss-based decoding function, we have

gni xi; yið Þ ¼ myi f
ni xið Þ � mpni f

ni xið Þ ð10Þ

where pni ¼ argmax
q 6¼yi

mqf ni xið Þ.

g xi; yið Þ ¼ myi f xið Þ � mpf xið Þ ð11Þ

where p ¼ argmax
q 6¼yi

mqf xið Þ.
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Moreover, from the definition of p, we can get

mpf xið Þ�mpni f xið Þ ð12Þ

(11) minus (10), there is

g xi; yið Þ � gni xi; yið Þ ¼
Xl

s¼1

myisfs xið Þ � mpsfs xið Þ � myisf
ni
s xið Þþmpnisf

ni
s xið Þ

h i
ð13Þ

Now, applying (8), we can get

g xi; yið Þ � gni xi; yið Þ ¼
Xl

s¼1

myisfs xið Þ � mpsfs xið Þ � myis fs xið Þ � ksmyis
� �þmpnis fs xið Þ � ksmyis

� �	 


¼
Xl

s¼1

mpnis � mps
� �

fs xið Þþ myis � mpnis
� �

ksmyis
	 


ð14Þ

Considering (12), we can write the following inequality

g xi; yið Þ � gni xi; yið Þ�
Xl

s¼1

myis � mpnis
� �

ksmyis �
Xl

s¼1

2ks �
Xl

s¼1

2asiG
s
ii � 2j

Xl

s¼1

asi

ð15Þ

Note that the second inequality is just because of myis 2 �1; 1f g, and then

0� myis � mpnis
� �

myis � 2 ð16Þ

Considering asi 2 0;C½ �, and asi [ 0 indicates zi is a support vector, for 8 xi; yið Þ 2 S,

g xi; yið Þ � gni xi; yið Þ� 2j
Xl

s¼1

asi � 2jC
Xl

s¼1

h asi
� � ð17Þ

On the other hand, due to (16) and ks � 0, we have

Xl

s¼1

myis � mpnis
� �

ksmyis � 0 ð18Þ

From (14), we can get
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g xi; yið Þ � gni xi; yið Þ�
Xl

s¼1

mpnis � mps
� �

fs xið Þ

¼
Xl

s¼1

mpnisfs xið Þ � mpnisf
ni
s xið Þ

h i
þ

Xl

s¼1

mpnisf
ni
s xið Þ � mpsfs xið Þ

h i

�
Xl

s¼1

mpnisfs xið Þ � mpnisf
ni
s xið Þ

h i
þ

Xl

s¼1

mps f nis xið Þ � fs xið Þ
� �h i

¼
Xl

s¼1

mpnis fs xið Þ � f nis xið Þ
� �h i

�
Xl

s¼1

mps fs xið Þ � f nis xið Þ
� �h i

¼
Xl

s¼1

mpnis � mps
� �

ksmyis

ð19Þ

Moreover, ks � 0 and mpnis � mps
� �

myis � � 2, the following inequalities are given

g xi; yið Þ � gni xi; yið Þ�
Xl

s¼1

mpnis � mps
� �

ksmyis � � 2
Xl

s¼1

ks � � 2j
Xl

s¼1

asi ð20Þ

So, for 8 xi; yið Þ 2 S,

g xi; yið Þ � gni xi; yið Þ� � 2j
Xl

s¼1

asi � � 2jC
Xl

s¼1

h asi
� � ð21Þ

And then, we get the bound

8i 2 1; � � � ;mf g; g xi; yið Þ � gni xi; yið Þ�� ��� 2jC
Xl

s¼1

h asi
� � ð22Þ

Finally, we prove that ECOC kernel machines has pointwise hypothesis stability
with

ES ‘ f ; zið Þ � ‘ f ni; zi
� ���� ���h i

� 2jC
m

Xm
i¼1

Xl

s¼1

h asi
� �

■

Remark. The parameters asi indicate if point xi is a support vector for the sth kernel
machine, which depend on the solution of the machines trained on the full dataset (so
training the machines once will suffice). Our result indicates that pointwise hypothesis
stability d is related with all samples in the training set. For binary ECOC the number
of training samples of every dichotomy is the same, thus, there exists parameter ai for
every zi. But, for ternary ECOC the number of training samples of every dichotomy is
different, thus, many training samples are not considered in the training phase of a
kernel machine. Considering the parameters ai indicate if point xi is a support vector,
so, the parameters ai for these ignored points can be seen as zero just as that these
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points are not support vectors for kernel machines. This hypothesis is an open problem
and will be discussed in our future work.

4 Application of Pointwise Hypothesis Stability

In this section, we introduce two aspects of application of pointwise hypothesis sta-
bility: model selection and good coding matrixes design for ECOC kernel machines.

4.1 Model Selection

When a coding matrix M is given, in order to have a better generalization performance
we should tune the kernel parameters to find the better binary classifiers. Importantly,
we need to evaluate the generalization error to check if the tuned kernel parameter is
the best one. However, it is difficult to calculate the generalization error, due to the
unknown distribution of the data. We have to estimate the generalization error from the
available dataset. This available dataset is often defined as the training dataset. On the
training dataset we can only obtain the training error or the empirical error. Previously,
the better classifier is selected by empirical error minimization, which is known as
empirical risk minimization (ERM). But this always leads to an overfitting problem,
which means that although the classifier has the minimum empirical error, it has a bad
generalization performance. There must be a gap between the empirical error and the
generalization error. Fortunately, Bousquet and Elisseeff [22] have given the relation
between stability and generalization. They give the generalization error bound in
Theorem 2. That is to say the difference between the empirical error and the gener-
alization error can be measured by the stability of a learning algorithm.

Theorem 2. For any learning algorithm A with pointwise hypothesis stability d with
respect to a loss function ‘ such that 0� ‘ f ; zð Þ�B, we have

R A; Sð Þ�Remp A; Sð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ 12Bmd

2m

r
ð23Þ

where R A; Sð Þ is the generalization error and Remp A; Sð Þ is the empirical error.
Note that for a loss function we can always find a suitable upper bound, for

example, a large enough bound. Considering we tune the kernel parameters with the
same loss function, the upper bound can be seen as a constant argument. In this case,
the generalization error bound is just affected by the empirical error on the training
dataset and the pointwise hypothesis stability of the learning algorithm.

In order to present the application of pointwise hypothesis stability in model
selection, we carry out the experiments on the UCI datasets [25]. Table 1 shows a
summary of the datasets used in the experiments. We take the experiment on the vowel
dataset as an instance. To reduce the computational complexity, we use 10-fold cross
validation to split the whole dataset into 10 parts, and select one part as the training
dataset and another part as the test dataset. Moreover, we do not discuss the parameter
C which is related to the regularization parameter k, and treat it as a constant argument.

Stability Analysis of ECOC Kernel Machines 377



SVMs are trained on a Gaussian kernel K x; xið Þ ¼ exp � x� xij j2
.
r2

n o
. So, we have

j ¼ maxs maxi Gs
ii ¼ maxs maxi Ks xi; xið Þ ¼ 1. In this case, computing the pointwise

hypothesis stability means computing the average number of support vectors for each
sample on all binary classifiers. Note that we focus on searching for the best value of
the kernel parameter r of the Gaussian kernel. Finally, the parameters are set as C ¼ 10
and r 2 0:1; 4½ � sampled with step 0.1. The used coding strategy is one-versus-all.
Figure 2 shows the experimental result.

Table 1. Summary of the used datasets.

Dataset #Instances #Features #Classes

glass 214 9 6
vehicle 846 18 4
zoo 101 18 7
ecoli 336 8 8
vowel 990 13 11
letter 1214 16 26
iris 150 4 3

(a) Pointwise hypothesis stability        (b) Test error      

(c) Training error       (d) Generalization error estimation

Fig. 2. Experimental result on the vowel dataset
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Figure 2(c) plots the training error against different kernel parameter r. We can
observe that when the kernel parameter r is smaller than 1.3, the training error is the
minimum value, equal to zero. However, in Fig. 2(b) the test error is not at the least
level, although there is a downward trend. This is just the overfitting problem. In other
word, the minimum training error not always leads to the minimum test error. Intu-
itively, if we combine two figures together [Fig. 2(a) and (c)], the combination will
have the same trend with the test error, which is just a validation to Theorem 2. To
finish this combination, we calculate the proportion that the number of support vectors
for each sample takes on the number of binary classifiers, which can be seen as the
possibility of being a support vector for each sample, and regard it as the pointwise
hypothesis stability. Refer to Theorem 2, Fig. 2(d) shows the estimation of general-
ization error against different kernel parameter r. We can observe that the minimum of
the generalization error estimate is very close to the minimum of the test error, although
there is a slight deviation. Moreover, Fig. 3 shows the comparison between the gen-
eralization error and the test error on several UCI datasets. The comparison result
shows that the generalization error estimated by pointwise hypothesis stability can be
used to select the better value of kernel parameter in the model selection.

4.2 Good Coding Matrixes Design

On the other hand, the coding matrix design problem is that given a set of binary
classifiers, finding a matrix which has better generalization performance. Crammer and
Singer [26] have proven that this problem is NP-complete. As an alternative way, many
works have focused on the problem dependent design for coding matrixes, such as,
Discriminant ECOC [15] and Subclass ECOC [16], which can be a promising approach
in the future. For the moment, these problem dependent designs are implemented to
achieve a specific criterion. For example, Discriminant ECOC is designed to maximize
a discriminative criterion, and Subclass ECOC is designed to guarantee that the base
classifier is capable of splitting each subgroup of classes. In this case, the key point for
problem dependent design is to find a criterion, which will lead to a better general-
ization performance. However, there is less formal justification to find it. The difficulty
for the problem dependent design is that there is no an apparent relationship between
the generalization performance and the property of coding matrix. That is to say if we
know which property of coding matrix will lead to a better generalization performance,
we can take this property as the criterion in the problem dependent design, such as, the
discriminative criterion.

Fortunately, we think that pointwise hypothesis stability will make a certain process
for the problem dependent design. Theorem 2 shows the difference between the gen-
eralization error and the empirical error. It is sure that if we reduce this difference, we
will obtain the better generalization performance. Note that in this paper we do not
discuss how to get minimum empirical error, because this problem needs a more
detailed work. Just as in Sect. 4.1, we also take the upper bound for the loss function as
the constant argument. So, the difference is just affected by pointwise hypothesis
stability of the learning algorithm. In this case, the minimization for this difference is
equal to the minimization for pointwise hypothesis stability.
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Refer to Theorem 1, pointwise hypothesis stability for ECOC kernel machines can
be written as follows:

d ¼ 2jC
m

Xm
i¼1

Xl

s¼1

h asi
� � ð24Þ

Considering that we just take care the coding matrix design, parameters, such as,
j;C;m, can be seen as the constant arguments. So, pointwise hypothesis stability is
determined by

Pl
s¼1 h asi

� �
.

(a) letter (b) ecoli      

(c) glass                                                               (d) iris

(e) vehicle                                                              (f) zoo            

Fig. 3. Comparison between the generalization error and the test error
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Note that l is the codeword length or the number of binary classifiers. Now we
discuss that when the codeword length is given, what we should do to minimize the
pointwise hypothesis stability. In this case,

Pl
s¼1 h asi

� �
can be seen as the possibility

for one sample xi; yið Þ to be support vectors among all binary classifiers. Reducing the
pointwise hypothesis stability means to reduce the possibility for all samples in the
training dataset. On the other hand, the support vectors are the samples on the sepa-
rating surface. In other word, the separating surface is represented by the support
vectors. Complex separating surface needs more support vectors, which often means
that the two class groups are difficult to be split. If two class groups have maximum
class discrimination, the separating surface will be simple and the possibility for one
sample to be a support vector will be reduced. That is to say if we want to reduce the
pointwise hypothesis stability and have a better generalization performance for ECOC
kernel machines, we should design the coding matrix which has high discrimination
power. This also validates that the Discriminant ECOC has the advantage to have better
generalization performance.

In order to validate the relationship between the discriminative criterion in problem
dependent design of coding matrix and the pointwise hypothesis stability, we carry out
a simple experiment on the synthetic dataset. The synthetic dataset generated randomly
has four classes. There are 100 samples for each class. The feature vector of each class
has two dimensions: Feature1 and Feature2. The probability density function for each
class is defined as follows:

p xjclassið Þ ¼ 1

2p Rij j1=2
exp � 1

2
x� lið ÞTR�1

i x� lið Þ
� 


i ¼ 1; 2; � � � 4 ð25Þ

where the parameters are shown in Table 2. Figure 4 shows the distribution of four
classes.

Simply, we take the design of one column of the coding matrix into consideration.
In this experiment, we compare two columns with different discrimination power.
Intuitively, in Fig. 4 we can observe that the class groups Class1;Class2f g;f
Class3;Class4f gg can be split more easily than the class groups Class1;Class3f g;f

Table 2. Parameters for synthetic dataset

Class Mean vectors Covariance matrices

C1 l1 ¼ 2; 2ð ÞT R1 ¼ 2 0
0 2

� �

C2 l2 ¼ 2; 4ð ÞT R2 ¼ 2 0
0 2

� �

C3 l3 ¼ 8; 2ð ÞT R3 ¼ 2 0
0 2

� �

C4 l4 ¼ 8; 4ð ÞT R4 ¼ 2 0
0 2

� �
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Class2;Class4f gg. So, one column is set as P1 ¼ 1;�1; 1;�1½ �T and the other column
is set as P2 ¼ 1; 1;�1;�1½ �T , with more class discrimination. The pointwise hypoth-
esis stability for each column is calculated by the proportion that the support vectors
take up all the samples in the synthetic dataset, which is proportional to the possibility
of one sample to be a support vector. Figure 5 shows the fluctuation curves of
pointwise hypothesis stability of two columns against different experiment times. We
can see that the pointwise hypothesis stability of P2 is smaller than that of P1. This
experiment proves that the maximization of discriminative criterion can lead to have
smaller pointwise hypothesis stability, which may lead to a better generalization per-
formance finally.

However, the design of good coding matrix is a complex problem, which is
determined by many different factors, such as, the codeword length and the minimum
hamming distance. Furthermore, these factors may work in an intersectant way. For
example, if we only achieve the minimum pointwise hypothesis stability, maybe we
will get a bad training error rate. So, the design of good coding matrix needs a tradeoff
among several factors or criterions.

Fig. 4. The synthetic dataset with four classes

Fig. 5. Pointwise hypothesis stability of two columns
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5 Conclusion

We provide a proof for the result that an ECOC kernel machines has the pointwise
hypothesis stability. In our proof, the stability is determined by the coefficients which
can be calculated by training the machines once on the training dataset, and it is easy to
be applied in practice. Note that the stability can be seen as the difference between the
training error and the generalization error. Minimizing this gap can help to reduce the
generalization error. Finally, the applications of this stability in model selection and
good coding matrixes design for ECOC kernel machines are presented. How to take
both the training error and pointwise hypothesis stability into consideration in good
coding matrixes design will be a meaningful direction to get better generalization
capability, which will be discussed in our future research works.
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