GECKO: Gamer Experience-Centric Bitrate
Control Algorithm for Cloud Gaming

Yihao Ke'2, Guogiao Ye'2, Di Wu'2(®) | Yipeng Zhou'?, Edith Ngai?,
and Han Hu®

! Department of Computer Science, Sun Yat-sen University, Guangzhou, China
wudi27@mail.sysu.edu.cn
2 Guangdong Province Key Laboratory of Big Data Analysis and Processing,
Guangzhou, China
3 Institute for Telecommunications Research, University of South Australia,
Adelaide, Australia
4 Department of Information Technology, Uppsala University, Uppsala, Sweden
5 School of Computer Engineering, Nanyang Technological University,
Singapore, Singapore

Abstract. Cloud gaming considered as the future of computer games
enables users to play high-end games on resource-constrained heteroge-
neous devices. Games are rendered on remote clouds and delivered to
users via the Internet in the form of video streaming, which can dra-
matically reduce the consumption of client-side resources. However, such
service needs high bandwidth connections to make the game streaming
smooth, which is already a major issue to hamper the prevalence of cloud
gaming. In this paper, we propose a gamer experience-centric bitrate con-
trol algorithm called GECKO, to reduce the consumption of bandwidth
resources for cloud gaming while only slightly impairing user quality-of-
experience (QoE). Through measurement studies, we find that user QoE
is mainly determined by the ROI (Region of Interest) size and QP offset.
Hence, in order to save bandwidth consumption without severely impair-
ing user QoE, we can lower the quality of the region outside of ROI. Our
proposed GECKO algorithm is designed to adaptively tune the size of
ROI and the quality of the outside region. We implement the GECKO
algorithm on a real cloud gaming platform. The experiment results show
that over 15.8% bandwidth can be saved compared with state-of-the-art
approaches.

Keywords: Cloud gaming - Region of Interest - H.264 - Video coding
Controller

1 Introduction

Cloud gaming as a fast-growing technology enables users to play high-end games
with resource-constrained devices. Game scenes are rendered by remote clouds

© Springer International Publishing AG 2017
Y. Zhao et al. (Eds.): ICIG 2017, Part II, LNCS 10667, pp. 325-335, 2017.
https://doi.org/10.1007/978-3-319-71589-6_29

326 Y. Ke et al.

and delivered via the Internet in the form of video streaming. Technavio [1] pre-
dicted that the global cloud gaming market to grow exponentially at a compound
annual growth rate (CAGR) of more than 29% during 2016-2020. However, high-
speed bandwidth connections are required for smooth game streaming, which
could severely restrict the prevalence of cloud gaming. Chen et al. [6] indicated
that the bitrate of StreamMyGame varies between 9 Mbps and 18 Mbps, whereas
Akamai [3] stated that the global average connection speed was 6.3 Mbps in the
first quarter of 2016. In particular, the average speed of 65% countries is lower
than 10 Mbps. The situation is worse for mobile users. There are only 18 coun-
tries serving mobile users with an average speed at or exceeding 10 Mbps.

Given the challenge of limited bandwidth, our work aims to propose a rate
control algorithm on top of existing game streaming encoders to reduce band-
width consumption without impairing user QoE. As stated in [11], major cloud
gaming providers, e.g., Gaikai and Onlive, use H.264/AVC to encode gaming
videos. To reduce bandwidth consumption, several rate control algorithms, e.g.,
CRF and ABR [4], have been implemented on H.264 by tuning parameters
with the cost to harm user QoE. Different from the above works, our proposed
GECKO algorithm tries to only lower the bitrate of the region that will not affect
users’ subjective feeling based on the fact that the human visual system (HVS)
receives most of the visual information from the fixation points and around,
regarded as Region-of-Interest (ROI) [15]. On the contrary, HVS’s resolution
falls rapidly from the point of gaze, hence we can propose a rate control algo-
rithm to lower the quality of the region outside of ROI without harming user
QoE much. Specifically, we first decide the size of ROI based on bandwidth con-
ditions before we degrade the quality of the outside region. Intuitively speaking,
the ROI size is enlarged if the bandwidth is not tight, otherwise it is shrunk.

Our contribution of this work is summarized as follows. We first conduct
an in-depth measurement study to quantify the impacts of the ROI size and
QP offset on the video bitrate and user QoE. The results indicate that it is
feasible to lower down video bitrate with only slightly impairing user QoE
by dynamically adjusting the ROI size and QP offset. We further propose a
control-theoretic gamer experience-centric bitrate control algorithm for cloud
gaming named GECKO, which can adaptively tune parameters according to
video bitrate requirements. Finally, we implement our algorithm on top of x264,
and use GamingAnywhere [8] for implementation and experiment to verify the
effectiveness our algorithm.

2 Related Work

Different rate control or bit location schemes have been proposed in previ-
ous works. Sun and Wu [13] proposed a bit allocation scheme on macroblock
layer based on Region of Interest (ROI). Their work assumed that the ROI of
every frame is already known and then we can allocate different weights and
bits to each macroblock. After getting the target bit of each MB, the QP of
each MB can be computed by using the R-Q model proposed by JVT-G012.

GECKO: Gamer Experience-Centric Bitrate Control Algorithm 327

Ahmadi et al. [5] introduced a conceptual Game Attention Model which deter-
mines the importance level of different regions of game frames according to user’s
attention. Subjective quality assessment showed that Game Attention Model
helps to decrease the bitrate while maintaining the users’ quality of experience
(QoE). In cloud gaming, Xue et al. [18] found that delay and bandwidth played
the important roles while improving the satisfaction of users. In order to improve
the QoE of users, Some studies focused on which game server to connect [14],
reducing the latency [22], improving the efficiency of transcoding [21] and stream-
ing with minimal cost [17], or reducing the bandwidth consumption [7]. In this
paper, we would explore control scheme associated with the bitrate of the ROI
and reduce the bandwidth overload.

Shen et al. [12] proposed a novel rate control algorithm that takes into
account visual attention. This work spent more efforts on ROI extraction and
allocated bits for each macroblocks by local motion activity, edge strength and
texture activity. Yang et al. [19] proposed a ROI-based rate control algorithm
for video communication systems, in which the subjective quality of ROI can be
adjusted according to users’ requirements. In the proposed scheme, a Structural
Similarity Index Map—quantization parameter (SSIM-QP) model is established.

3 Measurement Analysis of Bitrate Control for Game
Streaming

To visualize how parameters affect streaming bitrate and user QoE and show
the tradeoff between bitrate and QoE, we conduct a series of measurements in
this section to quantitatively study the impacts of ROI size and QP offset.

3.1 Measurement Methodology

The game streaming is delivered to users in a sequence of frames, and each is
composed by multiple macroblocks. The video quality (or bitrate) of the origi-
nal game streaming is determined by quantization parameter (QP) of each mac-
roblock. Larger QP value implies a larger step size in quantization and lower
quality (or bitrate), and vice versa. Thus, by tuning the parameter QP, one
can control the bitrate of the game streaming, which is a prevalent approach
adopted by existing solutions. However, such trivial parameter tuning solution
unavoidably harms user QoE.

In contrast, our control algorithm only adjusts QP for the region out of user
interests to minimize the influence caused by lowering bitrate. We introduce
one more parameter ROI size, which is defined as the ratio of the size of ROI
compared with the size of the whole frame in the range from 0% to 100%. For
simplicity, we assume that the ROI is a rectangular area located at the center of
the frame. To control the bitrate, our algorithm will tune both ROI size and the
QP for region outside ROI. In other words, only QP for the region out of ROI
will be increased if it is necessary to reduce bitrate. For convenience, we define
QP offset as the difference of QPs between macroblocks in and outside the ROI.

328 Y. Ke et al.

Note that QP offset and ROI size are two parameters irrelevant with the
original streaming quality, and can be easily tuned by our proposed GECKO
algorithm. For example, a QP offset of two means that the QP of each macroblock
outside of ROI is increased by two compared with its original value; while the
QP within ROI remains unchanged.

It is worth to mention that our approach is friendly for implementation since
we only need to add a few auxiliary functions to existing streaming encoders,
which will be introduced later.

In our measurements, we use the library x264 to generate the game stream-
ing, which is a widely used software library for video streams encoding. The
standard of the generated game streaming by x264 is H.264/AVC. According to
the previous work [11], H.264/AVC is a de facto standard for cloud gaming.

The pic_in is one of the core data structure of x264 storing the properties
and data of the input frame. In pic_in— prop, there is an array quant_offsets that
controls the QP offsets for each macroblocks to be applied to this frame during
encoding.

We control the streaming bitrate by altering the QP offsets stored in the
array quant_offsets. Intuitively, QP offset value is set as zero for ROI and a
positive value for region outside.

3.2 Metrics

We use game streaming bitrate as the main metric to evaluate bandwidth con-
sumption. We assume that more bandwidth is consumed if the game streaming
with higher bitrate is delivered.

DSSIM (structural dissimilarity index) [10] is used as the metric to evaluate
user QoFE in this study. DSSIM can indicate how much distortion is incurred after
we tune parameters with the rate control algorithm. DSSIM is defined as follows,
DSSIM = ﬁ — 1, where SSIM is the structural similarity index. SSIM is
designed as the metric [16] to measure the similarity between two different images
and DSSIM measures the dissimilarity instead. Thus, DSSIM is just computed
by comparing the frame with altered parameters and the original frame. SSIM
ranges from 0 to 1, thus DSSIM ranges from 0 to infinity. Higher DSSIM means
lower QoE. The DSSIM depends on SSIM and it has been proved that SSIM
is more consistent with human visual perception and significantly outperforms
traditional measures, e.g., peak signal-to-noise ratio (PSNR) and mean squared
error (MSE) [20].

There is a tradeoff between bandwidth consumption and user QoE. In spite
that enlarging ROI size or decrease QP offsets for non-ROI will improve user
QoE, the cost is more bandwidth consumption. In practice, due to limited band-
width resources, we have to consider how to balance the tradeoff continuously.

3.3 Insights from Measurement Analysis

In principles, bandwidth consumption and user QoE can be expressed as func-
tions of the ROI size and QP offset, namely bitrate = f(ROI size, QP of f set)

GECKO: Gamer Experience-Centric Bitrate Control Algorithm 329

Bitrate (Mbps)

2 2
ROl size 0o QP Offset ROl size oo QP Offset

(a) Car racing (b) FPS

Fig. 1. Bitrate of each type of game.

ROl size 0o

2 § 2
QP Offset RO size 0o QP Offset ROl size 0o QP Offset

(a) Car racing (b) FPS (c) TBS

Fig. 2. DSSIM of each type of game.

and QoE = g(ROI size, QP of fset). It is not difficult to accurately tune ROI
size and QP offset, if we have exact expressions of functions f and g. However,
unfortunately it is difficult to derive general expressions for f and g, which are
affected by game type, gaming scene and so on. Specially, for game streaming
with a sequence of frames, it becomes a tedious job because we have to create
functions f and g for each frame in the worst case. Consequently, we turn to
develop a control-theoretic gamer experience-centric bitrate control algorithm
for cloud gaming to automatically tune parameters without the need explicitly
derive f and g.

We select three most representative game types for numerical analysis by
varying parameter values, including car racing game, first-person shooting (FPS)
game and turn-based strategy (TBS) game. We generate a 30-s gaming video
clip encoded by x264 encoder for each type of game. For each video clip, the
ROI size varies from 0 to 100%, with a step of 5%; while the QP offset varies
from 1 to 10, with a step of 1. We calculate the bitrate and DSSIM for each pair
of parameter values.

Figure 1 shows how bitrate changes by varying ROI size and QP offset for
each game video. x and y axes are parameter values, while z axis is the tuned
video bitrate. In general, the trend is that the video bitrate will be lowered if
the ROI size is shrunk or the QP offset is raised. By comparing different video
types, we notice that the car racing game has the largest bitrate, due to the fast
moving scenes with rich content. The TBS game has the lowest bitrate because
the game scene changes slowly. The bitrate of FPS game is just in between that

330 Y. Ke et al.

of car racing game and that of TBS game. When ROI size is set as 50% of the
whole frame and QP offset is set as 5, the bitrates of these game videos will be
reduced by 9.3%-21.9% compared with original videos. If ROI size is 0 and QP
offset is 10, the bitrate will reduced by 51.1%-62.4%.

Figure 2 shows how DSSIM changes by varying ROI size and QP offset. The
general trend is that DSSIM will be increased if we reduce ROI size or increase
QP offset implying the worse user QoE. By comparing three videos, we find
that car racing game has the largest DSSIM, which implies the worst QoE. The
reason is that the fast moving scenes are very sensitive to parameter values. User
QoE will drop sharply even if the bitrate is lowered a little bit. In contrast, the
DSSIM of TBS game is the lowest implying the best user QoE because of slowly
changing game scenes. The DSSIM will be increased by 25.1%-37% if the ROI
size is 50% and QP offset is 5 compared to the original video. If we set ROI size
to 0 and QP offset to 10, the DSSIM will be raised by 106%-156.5%.

Discussion: The tradeoff between bandwidth consumption and user QoE can
be clearly observed by comparing Figs. 1 and 2. How to tune parameters to meet
bandwidth constraints depends on the curve shapes plotted in Figs.1 and 2,
which are different for all three videos. This inspires us to propose a control-
theoretic bitrate control algorithm in the next section.

4 GECKO—A Gamer Experience-Centric Bitrate
Control Algorithm for Cloud Gaming

In this section, we turn to use control-theoretic algorithm that will automatically
tune parameters by taking into account the feedback from the last time slot so
that the long term average bandwidth constraints can be satisfied.

4.1 Problem Formulation

We assume that the Internet access services purchased by users will give them a
certain bandwidth for streaming, which will not change in a short term. Then,
our problem is how to control the video bitrate to meet the average downloading
rate constraint as much as possible.

Define b* as the target bitrate, i.e., the maximum tolerable bandwidth cost
of cloud gaming. In this study, we can focus on the case of single gamer.

Consider a time-slotted system with time slot length of 7s. Define D(k) and
R(k) as the QP offset and ROI size for time slot k respectively. Let by be the
average bitrate in time slot k. We use DSSIM to represent the user QoE. Let gy,
be the average DSSIM in time slot k.

By taking the tradeoff between the bandwidth (bitrate) cost and the QoE
into account, we can define a generic utility function @(-) to capture the impact
of user preferences on the cloud gaming video bitrate. In this paper, we define
the utility function @(-) as a concave function of bg. In general, the value of
the utility function increases concavely with the increase of bg. This property
captures the fact that the marginal utility will decrease more significantly when
b, becomes larger.

GECKO: Gamer Experience-Centric Bitrate Control Algorithm 331

4.2 Algorithm Design

Control theory [9] is an efficient methodology to solve our problem without the
need to know the exact functions of f and g. The bitrate in the previous time
slot can be used as a feedback signal for adjusting ROI size and QP offset. The
value of by and gx can be obtained at the end of each time slot k. Consequently,
we can design an gamer experience-centric bitrate control algorithm for cloud
gaming based on control theory [9] to optimize bandwidth cost. In this work,
this proposed algorithm is named as GECKO. By controlling the update of ROI
size and QP offset, we can approach the target control objective b* gradually.

Although proportional-integral-derivative (PID) controller may have a bet-
ter controlling performance, it relies heavily on the tuning of K,, K; and K,
which are the coefficients for the proportional, integral, and derivative terms
respectively. However, tuning these coefficients is not so easy. The coefficient of
proportional controller has an intuitive interpretation—if the current bitrate is
larger than the target bitrate, the coefficient of controlling ROI size should be
a fraction to reduce the ROI size and vice versa. Thus, we adopt a proportional
controller to solve the ROI size and QP offset allocation problem.

Let Ay(k) be the marginal utility incurred by the difference between the
current state and the target state, which is defined as below:

Ay (k) = D(br) — P(b7). (1)

We define two separate proportional control factors Gg(k) and Gp(k), where
¥ and 1y are two positive constants which determine the smoothness of two
control factors.

1 + e¥r-As(k) 9e¥a-Au(k)

Gr(k) = e A Gp(k) = T F eva el (2)

If by > b*, we should decrease the ROI size or increase the QP offset and
vice versa. From the above definitions, the Ay(k) is positive value at this time,
and ¥~ 2+(F) ig a value larger than 1, consequently G r(k) is a fraction between
0 and 1, which satisfies our requirements. The Gp(k) works in a similar manner.
The properties of exponent function and the above control factor definitions
also ensure the amplitude of adjustment will not be too large when by has a
large difference with b*, because the large amplitude of ROI size or QP offset
adjustment may deteriorate user QoE.

The update of ROI size and QP offset can be governed by the following
controllers:

R(k+1)=Ggr(k)-R(K) , D(k+1)=Gp(k)-D(K). (3)

The detailed description of our proposed algorithm is given in Algorithm 1.

5 Implementation and Performance Evaluation

In this section, we describe how to implement our proposed GECKO algorithm
on x264 and GamingAnywhere [8] and conduct a set of experiments to evaluate
the effectiveness of GECKO algorithm.

332 Y. Ke et al.

Algorithm 1. GECKO algorithm
Input:

Target bitrate b*;

Time slot length 7;

User utility function @(-);

1: Initialize: k = 0, R(0) and D(0) as the default values in cloud gaming server;

2: repeat

3: Obtain the value of by from the H.264 encoder.

4: Use by as the feedback signal to calculate control factors Gr(k) and Gp (k).

5: Calculate ROI size and QP offset according to R(k + 1) = Ggr(k) - R(K) and
D(k+1) =Gp(k) - D(K).

6: Update ROI size and QP offset of the next time slot.

7: Wait for a time slot 7.

8: Increase the slot index: k =k + 1.

9: until Quit playing cloud gaming.

5.1 Implementation on x264 and GamingAnywhere

The key point on the implementation of GECKO algorithm is how to obtain the
bitrate and DSSIM for each frame. Obtaining the bitrate can be transformed into
obtaining the frame size and then we can calculate the bitrate by the frame size
and the number of frame-per-second (fps). Correspondingly, the return value
of the core encoding function x26/_encoder_encode is the encoded frame size.
DSSIM is calculated by SSIM and we can obtain SSIM of each frame in x264. To
enable SSIM computation, we set param.analyse.b_ssim = 1 when creating the
encoder. After that, the SSIM of each frame is retrieved by pic_out.prop.f_ssim
after encoding. After getting the bitrate and SSIM, we derive the average bitrate
and DSSIM. Then we apply the GECKO algorithm to obtain the control factors
Gr(k) and Gp(k) and update the R(k + 1) and D(k + 1). Finally, the new
quant_offset array is produced and used in the encoding phase.

GamingAnywhere [8] is the first open source cloud gaming platform. From
the version of 0.8.0, it divides different functions into modules. Each module has
several interfaces, such as init, start and stop. In this paper, we modified the
encoder_z264 module to implement our ROI rate control algorithm.

The modifications are listed as below:

— Add several variables in global states, including b*, ¥.., ¥4, Gr(k), Gp(k),
R(k), D(k) and quant_offset array.

— Add a controller function, which performs computation of Gr(k) and Gp (k)
and update of R(k), D(k) and quant_offset array.

— Modify the init interface. In the initialization phase, we set R(0) and D(0) as
the default values and retrieve the corresponding quant_offset. We also enable
the flag of SSIM computation.

— Modify the reconfigure interface. The modified reconfigure interface calls the
controller function to update the ROI size, QP offset and quant_offset.

GECKO: Gamer Experience-Centric Bitrate Control Algorithm 333

M

. T ol
+ . H
» N o Ea oo}
i
. | ol
S 3 " : 4+] Zw
7 i
H JTL i =015 ‘ T | i’“m
E = — — o4 E | Tef
: | = T | i i wb i
| | :
T T T3 L 11 e
0 -+ UU 5 10 15 20 25 30 35 40 45 50
GECKO ABR CRF GECKO(in ROI) GECKO(overall) ABR CRF Time slot index
Fig. 3. Distribution of Fig. 4. Distribution of Fig. 5. Bitrate of first
bitrate. DSSIM. 50 time slots.

— Modify the threadproc interface, which calls the x264’s encoding function. We
assign quant_offset array to the pic_in struct before encoding and retrieve the
frame size and SSIM.

— Add a reconfigure thread in ga-server-periodic core module which generates a
GA_IOCTL_RECONFIGURE event every time slot and calls the ioctl inter-
face of encoder module. The doctl interface will later call the reconfigure inter-
face.

5.2 Experimental Settings

We record a user’s input of car racing game for 5 min. The input is then re-played
into the GamingAnywhere to ensure the same input. The bitrate and DSSIM
are retrieved during video encoding in GamingAnywhere. We adopt different
rate control algorithms in the encoder module, including our proposed GECKO
algorithm, ABR and CRF [4]. The ABR (Average Bit Rate) algorithm is a rate
control algorithm targeting a specific bitrate on average. CRF (Constant Rate
Factor) is the default rate control algorithm of x264, which aims to get the
bitrate it needs to keep the requested quality level. The range of the factor is
0-51 and a lower value is a higher quality.

We define the utility function as a concave function like @(by) = In(by + 1).
With the increase of by, the utility of a user will be increased but the marginal
utility gain will decrease when b becomes larger. Note that other concave func-
tions that have the similar properties can also be adopted. The time slot length
7 is 0.1s in following experiments. We set b* = 8 Mbps. As for CRF algorithm,
it is difficult to know the exact bitrate when we set the CRF factor. Thus, we
experiment with several CRF factors and choose the best result whose bitrate is
mostly closed to b*. For GECKO algorithm, we set 1, = 1 and ¢4 = 1.

5.3 Experiment Results

In Fig. 3, it shows the ABR algorithm has the largest average bitrate. When
setting the same bitrate target, GECKO algorithm can save about 15.8% of
bandwidth compared with ABR. The result of CRF algorithm with a factor of
25 is the best one among all settings. The CRF algorithm and GECKO algorithm

334 Y. Ke et al.

have better performance on controlling bitrate. And GECKO algorithm has a
smaller deviation compared to CRF. What is more, it is not easy to adopt CRF
algorithm in reality because the relationship between bitrate and CRF factor is
not clear. Since CRF factor must be an integer, even tuning CRF factor with a
smallest step (increase or decrease by one) will produce a relatively large bitrate
variation.

Figure 4 shows the distribution of DSSIM of different rate control algorithms.
Since the ABR algorithm produces a relatively large bitrate, it is not surprising
to see its DSSIM is smaller than CRF and GECKO algorithms. The overall
DSSIM of GECKO algorithm is worse than ABR and CRF, but the GECKO
algorithm produces a lower DSSIM in the ROI, which confirms well with our
assumption about lowering down video bitrate with only slightly impairing user
QoE by dynamically adjusting the ROI size and QP offset.

Figure 5 shows the bitrate of each rate control algorithm in the first 50 time
slots. The result indicates that our proposed GECKO algorithm converges to
the target bitrate quickly while the other two algorithms converge slowly and
have a large deviation from the target bitrate.

6 Conclusion

In this paper, we first conduct an in-depth measurement study to quantify the
impacts of the ROI size and QP offset on the video bitrate and user QoE.
The results indicate that it is feasible to lower down video bitrate with only
slightly impairing user QoE by dynamically adjusting the ROI size and QP
offset. We further propose a control-theoretic gamer experience-centric bitrate
control algorithm for cloud gaming named GECKQO, which can adaptively tune
parameters according to video bitrate requirements. Finally, we implement our
algorithm on GamingAnywhere and conduct a series of experiments to verify
the effectiveness of our algorithm. The experiment results show that over 15.8%
bandwidth can be saved compared with state-of-the-art approaches. In the future
work, we will utilize low-cost gaze tracking devices, such as Intel RealSense [2]
camera, to extract users’ ROI and build a complete ROI-enabled cloud gaming
platform.

Acknowledgement. This work was supported by the National Key Research and
Development Program of China under Grant 2016 YFB0201900, the National Science
Foundation of China under Grant 61572538, the Fundamental Research Funds for the
Central Universities under Grant 17LGJC23.

References

1. Global Cloud Gaming Market 2016-2020 (2016). http://www.technavio.com/
report/global-gaming-cloud-market

2. Intel RealSense Technology (2016). http://www.intel.com/content/www/us/en/
architecture-and-technology /realsense-overview.html

http://www.technavio.com/report/global-gaming-cloud-market
http://www.technavio.com/report/global-gaming-cloud-market
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
http://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html

=~

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

GECKO: Gamer Experience-Centric Bitrate Control Algorithm 335

Q1 2016 State of the Internet Report (2016). https://goo.gl/wS6wl2

Rate control definition in x264 (2016). https://goo.gl/rn80ct

Ahmadi, H., Zad Tootaghaj, S., Hashemi, M.R., Shirmohammadi, S.: A game
attention model for efficient bit rate allocation in cloud gaming. Multimed. Syst.
20(5), 485-501 (2014)

Chen, K.T., Chang, Y.C., Hsu, H.J., Chen, D.Y., Huang, C.Y., Hsu, C.H.: On the
quality of service of cloud gaming systems. IEEE Trans. Multimed. 16(2), 480-495
(2014)

He, J., Wu, D., Xie, X., Chen, M., Li, Y., Zhang, G.: Efficient upstream bandwidth
multiplexing for cloud video recording services. IEEE Trans. Circuits Syst. Video
Technol. 26(10), 1893-1906 (2016)

Huang, C.Y., Hsu, C.H., Chang, Y.C., Chen, K.T.: Gaminganywhere: an open
cloud gaming system. In: Proceedings of the 4th ACM Multimedia Systems Con-
ference, MMSys 2013, pp. 36-47. ACM (2013)

Lee, E.B., Markus, L.: Foundations of optimal control theory. Technical report,
DTIC Document (1967)

Loza, A., Mihaylova, L., Canagarajah, N., Bull, D.: Structural similarity-based
object tracking in video sequences. In: 2006 9th International Conference on Infor-
mation Fusion, pp. 1-6. IEEE (2006)

Shea, R., Liu, J., Ngai, E.C.H., Cui, Y.: Cloud gaming: architecture and perfor-
mance. IEEE Netw. 27(4), 16-21 (2013)

Shen, L., Liu, Z., Zhang, Z.: A novel H.264 rate control algorithm with considera-
tion of visual attention. Multimed. Tools App. 63(3), 709-727 (2013)

Sun, K., Wu, D.: Video rate control strategies for cloud gaming. J. Vis. Commun.
Image Represent. 30, 234-241 (2015)

Tian, H., Wu, D., He, J., Xu, Y., Chen, M.: On achieving cost-effective adaptive
cloud gaming in geo-distributed data centers. IEEE Trans. Circuits Syst. Video
Technol. 25(12), 2064-2077 (2015)

Wandell, B.A.: Foundations of Vision. Sinauer Associates, Sunderland (1995)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600-612 (2004)

Wu, D., Xue, Z., He, J.: iCloudAccess: cost-effective streaming of video games
from the cloud with low latency. IEEE Trans. Circuits Syst. Video Technol. 24(8),
1405-1416 (2014)

Xue, Z., Wu, D., He, J., Hei, X., Liu, Y.: Playing high-end video games in the
cloud: a measurement study. IEEE Trans. Circuits Syst. Video Technol. 25(12),
2013-2025 (2015)

Yang, L., Zhang, L., Ma, S., Zhao, D.: A ROI quality adjustable rate control scheme
for low bitrate video coding. In: 2009 Picture Coding Symposium, pp. 1-4. May
2009

Zhang, L., Zhang, L., Mou, X., Zhang, D.: A comprehensive evaluation of full
reference image quality assessment algorithms. In: 2012 19th IEEE International
Conference on Image Processing, pp. 1477-1480. September 2012

Zheng, Y., Wu, D., Ke, Y., Yang, C., Chen, M., Zhang, G.: Online cloud transcod-
ing and distribution for crowdsourced live game video streaming. IEEE Trans.
Circuits Syst. Video Technol. (IEEE TCSVT) 27(8), 1777-1789 (2017)

Zhou, L.: QoE-driven delay announcement for cloud mobile media. IEEE Trans.
Circuits Syst. Video Technol. 27(1), 84-94 (2017)

https://goo.gl/wS6wl2
https://goo.gl/rn80ct

	GECKO: Gamer Experience-Centric Bitrate Control Algorithm for Cloud Gaming
	1 Introduction
	2 Related Work
	3 Measurement Analysis of Bitrate Control for Game Streaming
	3.1 Measurement Methodology
	3.2 Metrics
	3.3 Insights from Measurement Analysis

	4 GECKO—A Gamer Experience-Centric Bitrate Control Algorithm for Cloud Gaming
	4.1 Problem Formulation
	4.2 Algorithm Design

	5 Implementation and Performance Evaluation
	5.1 Implementation on x264 and GamingAnywhere
	5.2 Experimental Settings
	5.3 Experiment Results

	6 Conclusion
	References

