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Abstract. As a kind of approximate nearest neighbor search method,
hashing is widely used in large scale image retrieval. Compared to tra-
ditional hashing methods, which first encode each image through hand-
crafted features and then learn hash functions, deep hashing methods
have shown superior performance for image retrieval due to its learning
image representations and hash functions simultaneously. However, most
existing deep hashing methods mainly consider the semantic similarities
among images. The information of images’ positions in the ranking list
to the query image has not yet been well explored, which is crucial in
image retrieval. In this paper, we propose a Deep Top Similarity Preserv-
ing Hashing (DTSPH) method to improve the quality of hash codes for
image retrieval. In our approach, when training the convolutional neural
network, a top similarity preserving hashing loss function is designed to
preserve similarities of images at the top of the ranking list. Experiments
on two benchmark datasets show that our proposed method outperforms
several state-of-the-art deep hashing methods and traditional hashing
methods.
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1 Introduction

Image retrieval [17–23] has received increasing attention in computer vision.
With the rapid growth of large-scale image data, hashing has attracted more and
more attention in image retrieval due to its fast search speed and low storage
cost. The purpose of hashing is to learn a set of hash functions that map each
image to binary codes while trying best to preserve the semantic similarities
among images.

Based on whether using deep convolutional neural network to learn hash
codes, hashing methods can be divided into two categories: traditional hashing
and deep hashing. Traditional hashing methods first extract hand-crafted feature
vectors of each image and then learn hash functions based on these feature vec-
tors. Traditional hashing methods can be further categorized into unsupervised
methods and supervised methods. In unsupervised methods, only unlabeled data
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is used during the training procedure. Representative unsupervised methods con-
tain iterative quantization hashing (ITQ) [4] and topology preserving hashing
(TPH) [14]. Supervised methods utilize label information to assist the learning
of hash functions, which can improve the quality of hash codes. Representative
supervised methods include minimal loss hashing (MLH) [10] and supervised
hashing with kernels (KSH) [9].

Compared to traditional hashing methods, deep hashing [8,15,16] methods
show their superior performance for image retrieval. Usually, deep hashing meth-
ods use CNNs [6] to extract discriminative image representations and learn hash
functions simultaneously. For example, Xia et al. [13] proposed CNNH, which is
a two stage learning method that first learns approximate hash codes from the
pairwise similarity matrix and then utilizes CNN to learn image representations
and hash functions. Lai et al. [8] proposed DNNH, in which the deep architecture
used a triplet ranking loss function to preserve relative similarities. Zhang et al.
[15] presented a novel bit-scalable deep hashing approach DRSCH.

Although the existing deep hashing methods have brought substantial
improvements over traditional supervised hashing methods. Most of them mainly
consider similarities among images. The information of images’ positions in the
ranking list to the query image has not yet been well explored. However, users
always pay their most attention to the images ranked in the top. So whether
images ranked in the top are similar to the query image or not is crucial to the
quality of image retrieval.

In this paper, we propose deep top similarity preserving hashing (DTSPH)
to generate high quality of hash codes for image retrieval. As shown in Fig. 1,
we utilize CNN to extract discriminative image representations and learn hash
functions directly from images. At the top of the CNN model, a top similar-
ity preserving hashing loss function is designed to preserve the similarities in
the top of the ranking list. Each time, a group of images are fed into the CNN
model and then the stochastic gradient descent algorithm is used to train model
parameters. Experimental results on two benchmark datasets show that our pro-
posed method has superior performance over several other deep hashing methods
including traditional hashing methods with CNN features. The rest of this paper
is organized as follows. In Sect. 2, we introduce our deep top similarity preserv-
ing hashing method. Then experimental results are shown in Sect. 3. Finally, we
give a conclusion in Sect. 4.

2 Deep Top Similarity Preserving Hashing

In this section, we first introduce our deep top similarity preserving hashing
loss function. Then we give its gradients which are vital to back-propagation
algorithm.

2.1 Deep Hash Model

We adopt the architecture of AlexNet [6] as our basic framework, which has
five convolutional layers(conv1 − conv5) with optional pooling layers, followed
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Fig. 1. Overview of DTSPH framework. During training stage, the input to the CNN
model is a group of images, i.e., {Iq, Is, {Id

k }n
k=1}, where Iq is the query image, Is is

similar to Iq and {Id
k}n

k=1 are dissimilar to Iq. Through the CNN model, each image
is encoded into a hash code. Then these hash codes are used to calculate the deep
top similarity preserving loss, which aims to optimize the parameters of the model to
preserve the similarities at the top of the ranking list.

by two fully connected layers(fc6 − fc7) and the classification output layer. The
activation function of the first seven layers of AlexNet is the rectified linear units
(ReLUs), which is much faster than these saturating nonlinearities such as the
logistic sigmoid and the hyperbolic tangent in terms of training time with gra-
dient descent [3]. For more details about the configurations of the convolutional
layers, pooling layers and fully connected layers, please refer to [6]. In order to
adopt to learning hash functions, we replace the classification output layer in
original AlexNet with a hash layer as shown in Fig. 1. The goal of hash func-
tions is to encode feature representation into hash codes. As we can see from
Fig. 1, our hash layer is a fully connected layer followed by a sigmoid layer, which
transform the 4096-dimension feature of the layer fc7 into q-dimension output
and the value is restricted to [0, 1]. Then the K-bit hash codes are obtained
by quantifying the K-dimension output. Usually, the performance of deep hash
method is related to two aspects. One is the deep model. Usually, the model is
deeper, the performance is better. The other is the loss function, which is used
to guide training the deep model. Here, we focus on the loss function, not the
deep model. Please note that our DTSPH algorithm also could be easily applied
to other models, such as VGG [2], and we will also test our method on VGG-F
model [2].

2.2 Top Similarity Preserving

For an Information Retrieval, correctly ranking documents on the top of the
result list is crucial [1]. While for an Image Retrieval, user usually pay most
of their attentions to the results on the first few pages [16]. However, most of
deep hash methods mainly consider similarities among images and few of them
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explore the information of images’ positions in the ranking list. Considering it, we
carefully design a top similarity preserving loss function, which mainly preserves
the similarities in the top of ranking list to explore the information of positions.

Let I be the image space and fc7(Ii) ∈ R
d denote the feature vector from

the output of the layer fc7 by feeding the image Ii ∈ I into the CNN model.
Then we can obtain the binary codes b(Ii) ∈ H

K ≡ {0, 1}K as follows:

b(Ii) = sgn(wT fc7(Ii)) (1)

where w ∈ R
d×K denotes the weights of hash layer. Here for the sake of con-

ciseness, bias terms of hash layer and parameters of the first seven layers are
omitted. sgn(x) is a sign function that sgn(x) = 1 if x > 0 and 0 otherwise, and
it performs element-wise operations.

Considering the information of images’ positions in the ranking list, during
training stage, each time, we feed a group of images to the CNN model, among
which the query image is Iq, whose similar image is Is and dissimilar images are
{Idk}nk=1, where n is the number of dissimilar images. Then we get the correspond-
ing hash codes, denoted as b(Iq), b(Is), and {b(Idk )}nk=1 respectively. According
to their Hamming distance to the query image, we can obtain a ranking list for
the query image Iq. Intuitively, we expect that the similar image Is will be in
the top of the ranking list, which means that the Hamming distance between
b(Iq) and b(Is) is smaller than that between b(Ik) and b(Is) for any k ∈ {1, n}.
Then following [12], the “rank” of the similar image Is with respect to the query
image Iq is defined as following:

R(Iq, Is) =
n∑

k=1

I{(‖b(Iq) − b(Is)‖H − ‖b(Iq) − b(Idk )‖H) > 0} (2)

where ‖ · ‖H represents Hamming distance. I(condition) is an indicator function
that I(condition) = 1 if the condition is true and 0 otherwise. The function
R(Iq, Is) counts the number of the dissimilar images Ik, which are closer to
the query image Iq than the similar image Is in terms of Hamming distance.
Obviously, R(Iq, Is) is relative small if the similar image Iq is ranked in the top
of the ranking list and is relative large otherwise.

Usually, whether images ranked in the top of the ranking list are similar to
the query image or not is crucial in image retrieval [16]. Considering that, we
define a top similarity preserving loss function:

L(R(Iq, Is)) = − ψ2

ψ + R(Iq, Is)
(3)

where the parameter ψ controls the decreasing speed of the first order derivative
L′(R) of L(R). With the increase of R, the loss L(R) increases relative quickly
when R is small than that when R is large. The loss function penalizes the
mistakes in the top of the ranking list more than those in the bottom, which
means the similarity in top of the ranking list is more important than that in
the bottom.
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Then, the objective function is defined as following:

L =
1
Z

∑

q

∑

s

− ψ2

ψ + R(Iq,Is)
(4)

where Z is the number of {Iq, Is, {Idk }nk=1}.
Although the ranking loss in Eq. (3) is differentiable, the objective function in

Eq. (4) is still not differentiable due to Eqs. (1) and (2). For ease of optimization,
Eq.(1) is relaxed as:

fh(Ii) = sigmoid(wT fc7(Ii)) (5)

where sigmoid(·) function is used to approximate sgn(·) function and fh(Ii)
denotes the output of the hash layer for image Ii. Please note, as shown in Fig. 1,
the hash layer of our model is a fully connected layer followed by a sigmoid layer
essentially. Then we can get the hash codes with respect to the image Ii as
following:

b(Ii) = sgn(fh(Ii) − 0.5) (6)

Next, in Eq. (2), the Hamming norm is replaced with the l1 norm and the
indicator function I(·) is approximated by the sigmoid(·) function. Accordingly,
Eq. (2) can be written as:

R̂(Iq, Is) =
n∑

k=1

sigmoid(‖fh(Iq) − fh(Is)‖1−

‖fh(Iq) − fh(Idk )‖1)
(7)

Finally, the overall objective function is formulated as following:

L =
1
Z

∑

q

∑

s

− ψ2

ψ + R̂(Iq,Is)
+

α

2

∑

i

‖b(Ii) − fh(Ii)‖2

+
β

2
‖mean

i
(fh(Ii) − 0.5)‖2 +

λ

2
‖W‖2

(8)

The second term is used to minimize the quantization error between the output
of the hash layer and the corresponding hash codes, which could minimize the
loss of information. The third term is used to make each bit averaged over the
training data [11], which in some sense is to maximize the entropy of binary
codes. So the binary codes would be compact and discriminative. The fourth
term is regularizer term to control the scales of the weights so as to reduce the
effect of the over-fitting. α, β and λ are three parameters to control the effect of
above three terms.

2.3 Learning Algorithm

Stochastic gradient descent method is used to train the network parameters.
Each time, we randomly select Z (during training stage, Z is the mini-batch)
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group of images from training set. Each group consists of n+2 images. One image
as the query image Iq, one as the similar image Is, and n images as dissimilar
images {Idk}nk=1. We feed the network with these Z groups of images to get the
corresponding output. The gradients of the objective function L with respect to
fh(Iq), fh(Is), {fh(Idk )}nk=1 are as following:1

∂L
∂fh(Iq)

=
1
Z

ψ2

(ψ + R̂(Iq,Is))2
∂R̂(Iq,Is)
∂fh(Iq)

+ α(fh(Iq) − b(Iq)) +
β

n + 2
(mean

i
(fh(Ii) − 0.5))

(9)

∂L
∂fh(Is)

=
1
Z

ψ2

(ψ + R̂(Iq,Is))2
∂R̂(Iq,Is)
∂fh(Is)

+ α(fh(Is) − b(Is)) +
β

n + 2
(mean

i
(fh(Ii) − 0.5))

(10)

∂L
∂fh(Idk )

=
1
Z

ψ2

(ψ + R̂(Iq,Is))2
∂R̂(Iq,Is)
∂fh(Idk )

+ α(fh(Idk ) − b(Idk )) +
β

n + 2
(mean

i
(fh(Ii) − 0.5))

(11)

where the mean operation is performed on Z groups of images. Then these
gradient values would be fed into the network via back-propagation algorithm
to update the parameters of each layer.

3 Experiments

3.1 Datasets and Settings

We validate our algorithm on two benchmark datasets: (1) The CIFAR10 dataset
contains 60,000 32× 32 color images of 10 classes; (2) The NUS-WIDE dataset
consists of 269,648 images. Following [24], we use the subset of images annotated
with the 21 most frequently happened classes. For CIFAR10, we use 10,000
images as the query samples, and the rest as the training samples. For NUS-
WIDE, we randomly select 100 images from each of the 21 class labels as the
query samples, and the rest as the training samples. Whether two images are
similar or not depends on whether they share at least one common label.

We compare our method with five state-of-the-art hashing methods, including
three traditional hashing methods KSH [9], MLH [10] and BRE [7], and two deep
hashing methods, DSRH [16] and DRSCH [15].

1 ∂R̂(Iq ,Is)
∂fh(Iq)

, ∂R̂(Iq ,Is)
∂fh(Is)

, and ∂R̂(Iq ,Is)

∂fh(Id
k
)

are easy to compute. Due to space limitations, we

don’t give the specific expressions of above terms here.
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We implement our method by the open-source Caffe [5] framework. In all
the experiments, the weights of layers F1−7 of our network are initialized by the
weights of AlexNet [6] which has been trained on the ImageNet dataset, while
the weights of other layers are initialized randomly. The mini-batch is set to 64.
The parameter ψ, α and β are empirically set as 20, 0.01 and 0.1 respectively.

3.2 Results

We use four evaluation metrics for the performance comparison, which are mean
average precision (mAP), precision within Hamming distance 2, precision at top
500 samples of different code lengths and precision curves with 64 bits with
respect to different numbers of top returned samples.

Performance on CIFAR10. For CIFAR10, we follow [15] that the query image
is searched within the query set itself. Table 1 shows the mAP values of CIFAR10
with different code lengths. From Table 1, we can find that DTSPH achieves bet-
ter performance than other traditional hashing and deep hashing methods. Spe-
cially, DTSPH improves the mAP values of 48 bits to 0.805 from 0.631 achieved
by DRSCH [15]. In addition, DTSPH shows an improvement of 34.7% com-
pared to KSH [9] with CNN features. Figure 2 shows the comparison results of
other three evaluation metrics on CIFAR10. As we can see, DTSPH has better
performance gains over the other five methods.

Table 1. Accuracy in terms of mAP w.r.t. different number of bits on two datasets. For
NUS-WIDE, the mAP value is calculated within the top 50,000 returned neighbors.

Method CIFAR10(mAP) NUS-WIDE(mAP)

16bits 24bits 32bits 48bits 16bits 24bits 32bits 48bits

DTSPH 0.783 0.800 0.803 0.805 0.773 0.787 0.788 0.789

DRSCH [15] 0.615 0.622 0.629 0.631 0.618 0.622 0.623 0.628

DSRH [16] 0.608 0.611 0.617 0.618 0.609 0.618 0.621 0.631

KSH-CNN [9] 0.401 0.430 0.444 0.458 0.607 0.619 0.625 0.626

MLH-CNN [10] 0.250 0.289 0.313 0.319 0.525 0.559 0.568 0.581

BRE-CNN [7] 0.198 0.206 0.206 0.216 0.538 0.558 0.566 0.576

KSH [9] 0.322 0.352 0.365 0.383 0.546 0.556 0.562 0.567

MLH [10] 0.133 0.158 0.163 0.180 0.487 0.507 0.511 0.524

BRE [7] 0.122 0.156 0.161 0.172 0.486 0.515 0.518 0.528

Performance on NUS -WIDE. Due to that NUS-WIDE is a relative big
dataset, so we calculate mAP values within the top 50,000 returned samples.
At the right of Table 1, the mAP values of different methods with different code
lengths are shown. DTSPH shows superiority over other five methods again.
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Fig. 2. The results on CIFAR10: (a) Precision curves within Hamming distance 2;
(b) Precision curves within top 500 returned; (c) Precision curves with 64 bits w.r.t.
different numbers of top returned samples.

Specially, DTSPH obtains a mAP of 0.789 with 48bits while the mAP value of
DRSCH is 0.628 and the mAP value of KSH-CNN is 0.626. Figure 3(a) reports
the precision curves within Hamming radius 2. Figure 3(b) shows the precision
curves within top 500 returned. Figure 3(c) shows the precision curves of top
1000 returned samples with 64 bits. Our approach DTSPH shows better search
accuracies than other five methods.
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Fig. 3. The results on NUS-WIDE: (a) Precision curves within Hamming distance 2;
(b) Precision curves within top 500 returned; (c) Precision curves with 64 bits w.r.t.
different numbers of top returned samples.

Note that DRSCH and DSRH are deep hashing methods and they mainly
consider the similarities among images. Experimental results on two benchmark
datasets show that DTSPH is superior to DRSCH [15] and DSRH [16]. It demon-
strates the effectiveness of DTSPH, which tries to preserve similarities of images
in the top of the ranking list.
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4 Conclusions

In this paper, we propose a deep top similarity preserving hashing (DTSPH)
method to improve the quality of hash codes for image retrieval. We use CNN
to extract discriminative image representations and learn hash functions simul-
taneously. At the top the CNN model, a deep top similarity preserving hashing
loss function is designed to preserve the similarities at the top of the ranking list.
The bigger dissimilarities at the top of the ranking list, the larger penalties are.
Experimental results on two benchmark datasets show that DTSPH has supe-
rior performance against several state-of-the-art deep hashing and traditional
hashing methods.
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