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Abstract. We propose the Orientation Estimation Network (OEN) to
predict the dominant orientation of the outdoor images and rotate the
images to a canonical orientation which is visually comfortable. The OEN
outputs the sine and cosine of the angle which are continuous in con-
trast to the angle. We collect a new dataset called the Outdoor Images
dataset for this task. This dataset contains various kinds of outdoor
images, such as buildings, landscape, persons and boats, and the orien-
tation information has been manually annotated. We choose AlexNet,
MobileNet and VGGNet to extract image features and regress to the
angle of images. In our task, MobileNet achieves high performance while
needing less resource, and can be applied to mobile and embedded vision
applications. We compare our method with the hand-crafted methods on
our dataset. In the evaluation, our learning based method significantly
outperforms the hand-crafted methods in the task of outdoor images
orientation estimation.
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1 Introduction

In recent years, convolutional neural networks have been used in various tasks in
computer vision, such as classification [4–7,26], detection [8–10,25], segmentation
[11], image search [15,16], and have achieved state-of-the-art performance in
these tasks. CNN has got unprecedented success ever since AlexNet [4] won
the ImageNet Challenge in 2012 because of the power of hierarchical abstract
representation, but it also has the limit when dealing with rotation invariance
only by convolution and pooling.

To overcome such limit, the traditional solution is data augmentation. Train-
ing samples are rotated into multi-oriented versions. Although data augmen-
tation improves the performance by extending the training data, the network
tends to be more fitted to the training data and would lose some generalization
capacity, and more training time is required. Another way is rotating the filters.
Usually, one filter in the network can detect one specific pattern in the image, so
we can rotate this filter to detect the same pattern with different orientations. It
can alleviate the network to learn all different orientations and achieve rotation
invariance. The motivation is straight-forward, but it has to change the way of
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forward and backward propagation which is not convenient and the angle of the
filters is discontinuous.

In this paper, we directly predict the image orientation, instead of making a
rotate invariant representation, and then align the images according to the angle
predicted by the OEN to achieve upright configuration of the visual content. This
approach is inspired by hand-crafted features, such as SIFT [1]. SIFT calculates
the domain orientation of the keypoint and aligns the patch by the domain
orientation. After that, SIFT gets the descriptor for this key-point. Unlike SIFT,
we predict the global orientation of images instead of local orientation. Here we
choose the outdoor scene images as our target images because they usually have
a clearly defined principal orientation in human perception.

In this paper, we make orientation estimation by regressing to the human
annotated ground truth. In contrast to our method, Spatial Transformer Network
[12] uses the classification information as ground truth to learn the transform
indirectly. Spatial Transformer Layer learns the way to transform a feature map
or a region of images. And the transform is forwarded to the next layer. But
STN can only handle a limited range of orientation variance. Here we give the
outdoor images a canonical orientation and we learn this orientation directly by
OEN. So we can learn the images with arbitrary orientation and finally rotate
images to the appropriate orientation. Figure 1 shows the different orientations
of the same scene. The contributions of this paper are summarized as follows:

– We propose a new task of predicting the canonical orientation of outdoor
images and present a solution for this task.

– We collect a new dataset called Outdoor Images for our task. The dataset
is composed of outdoor images and the orientation information has been
manually annotated.

– We compare our method with hand-crafted methods and study AlexNet,
MobileNet [19] and VGGNet [5] in our task.

Fig. 1. Different orientations of same scene
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2 Related Work

The related works to achieve rotation invariance: (1) the hand-crafted orientation
estimation, (2) data augmentation and (3) Spatial Transformer Network.

2.1 Hand-Crafted Orientation Estimation

Orientation information is important for hand-crafted feature to align local
patches to achieve rotation invariance. SIFT detector calculates the dominant
orientation of key-point by statistics of local gradient direction of image inten-
sities. ORB detector [2] uses the moment of a patch to find the offset between
the patch’s intensity and its center and then this offset vector is used as the
orientation of key-point. BRISK detector [3] and FREAK detector [13] sample
the neighborhood of the key-point by using a pattern. The long distance point
pairs are used to calculate the orientation of key-point.

In contrast to hand-crafted orientation estimation, our learning-based
method automatically predicts the orientation without hand-crafted feature
detectors. The power of CNN to extract feature is more effective than hand-
crafted method. In recent years, traditional methods have been replaced gradu-
ally and usually are used as baselines.

2.2 Data Augmentation

Deep convolution neural network have the ability of dealing with transitions,
scale changes, and limited rotations. And the capability comes from rich con-
volutional filters, and pooling. Data augmentation is used to achieve local or
global transform invariance with rich convolutional filters [14]. Therefore, data
augmentation can improve performance for many tasks. However, the network
tends to be more fitted to the training data and would loss some generalization
capacity, and more training time is required.

In contrast to data augmentation, our method based on network predict the
canonical orientation directly. Then the learned orientation can been used to
other tasks to achieve higher performance.

2.3 Spatial Transformer Network

The Spatial Transformer Layer is proposed by Jaderberg et al. [12], and learns the
way to transform a feature map or a region of images. The transform is forwarded
to the next layer. A general framework for spatial transform comes out by STN,
but the problem about how the complex transform parameters use CNN to
precisely estimate has not been well solved. Most recent work [17,18,20,21,23,24]
have tried rotating conventional filters to achieve rotation invariance. But they
have to change the way of forward and backward propagation.

In contract to STN, our method learns the orientation directly using the
ground truth of the explicit orientation. And STN learns the orientation implic-
itly using the ground truth of the task, such as classification information. STN
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has the limit to significant change of orientation. So we solve this problem by
learning orientation directly in our method.

3 Orientation Estimation Network

In this work we focus on predicting the canonical orientation for outdoor images
and making images visually comfortable. The Orientation Estimation Network
takes outdoor images as input, and outputs the angle of images which is consis-
tent with human perception. Then we take the predicted angle outputs to rotate
the images to a canonical orientation.

In the following, we introduce the detail of Orientation Estimation Network
by three parts: (1) Learning stage, (2) Fine-tuning stage and (3) Predicting
stage.

Fig. 2. The framework of our method based on AlexNet

3.1 Learning Stage

In this stage, we take the images as the input, through a classic network, such
as AlexNet, the champion of ImageNet 2012. Then we get the CNN features
extracted from images. We combine the features and output two values which
are defined as sine and cosine of the angle. We choose sine and cosine of angle,
because sine and cosine are continuous with respect to the angle. So it is easy
to optimizes and train. Besides, we add a normalization layer which normalizes
the output vector to unit-norm to ensure the validity of sine and cosine. We
use L2 loss between the predicted values and the ground truth in training. We
calculate the angle by the arctangent function. Figure 2 shows the framework of
our method.
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3.2 Fine-Tuning Stage

It is not enough robust only based on learning stage, where the network learns
one image at one time. And the orientation can be transformed by rotating the
image. So two images at same scene with different orientations can help network
to learn the orientations of them by each other. In this stage, we learn the rotated
angle between two images at same scene to help improve the performance of
orientation estimation.

In the fine-tuning stage, we extend our framework to a Siamese architecture.
The input images are the same scene with two different orientations. The ground
truth is the difference between the orientations of input images. The predicted
angle is the difference between the orientations which are outputted by the two
sub-networks for input images. The loss is the difference between the ground
truth angle and the predicted angle. After the single network learning stage,
we have got a good performance for prediction. Based on that, we improve the
performance by fine-tuning. We fine-tune the fully-connected layers for AlexNet
and VGGNet, and last convlutional layer for MobileNet. Figure 3 shows the
framework of the fine-tuning stage.

Fig. 3. The framework of the fine-tuning stage based on AlexNet. Two input images
are same scene with different orientations, which are θ1 and θ2. Two output orientations
are Θ1 and Θ2. And the loss is ||θ1 − θ2| − |Θ1 − Θ2||2.

3.3 Predicting Stage

In the predicting stage, we take the image as the input and output the orienta-
tion. We use a sub-network from the Siamese architecture to predict the angle.
Then we rotate the image using the predicted orientation. Table 1 reports the
detail of OEN architecture based on AlexNet.
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Table 1. The architecture of the orientation estimation network based on AlexNet

Type Size

Input 227 * 227 * 3

Conv1+Pool1 27 * 27 * 96

Conv2+Pool2 13 * 13 * 256

Conv3 13 * 13 * 384

Conv4 13 * 13 * 384

Conv5+Pool5 6 * 6 * 256

FC6 1 * 1 * 4096

FC7 1 * 1 * 4096

FC8 1 * 1 * 2

L2 normalization 1 * 1 * 2

Output 1 * 1 * 1

4 Experiment

We introduce the experiments by three parts. First, we introduce our new
dataset, Outdoor Images dataset. Second, we compare the performance of three
classic networks which are applied to Oriented Estimation Network and we com-
pare our method with the hand-crafted methods. Third, we analyze the result
of the experiments.

4.1 Dataset

In our experiment, we test our method in the Outdoor Images dataset collected
by ourselves, where the orientations of images have been manually annotated.
The dataset is composed of several kinds outdoor scene, such as buildings, land-
scape, persons, boats, and has been divided into the training set and test set.
The images in our dataset are selected from the Flickr1M dataset [22]. Figure 4
shows some images in our Outdoor Images dataset.

The images have been preprocessed to keep the information in the circle of
center while dropping outside. The pixels out of circle will go to the outside
of images when we rotate the images, so these pixels are abandoned. They are
colored as black in case of influencing the experiment result.

4.2 Experiment Setup

In our experiment, we first compare the performance of AlexNet, MobileNet and
VGGNet for predicting the orientation of images. AlexNet contains five convolu-
tional layers and three fully-connected layers. The fully-connected layers almost
take up 90% parameters of AlexNet, and MobileNet drops the fully-connected
layers to compress model. MobileNet takes many 3 × 3 depthwise convolutional
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Fig. 4. Sample images in the outdoor images dataset

filters and 1×1 pointwise convolutional filters to reduce a large number of param-
eters. MobileNet only has 4.2 million parameters while 60 million for AlexNet.
And VGGNet has 16 layers and 138 million parameters. So MobileNet has the
advantage to be applied to mobile and embedded vision applications.

We also compare our CNN method with the hand-crafted methods. In our
experiment, SIFT calculates the dominant orientation of the whole image by
statistics of global gradient direction of image intensities, instead of local gradient
information. ORB uses the moment of the whole image to find the offset between
the image’s intensity and its center and then this offset vector is used as the
orientation of image. BRISK and FREAK sample the neighborhood of the whole
image by using a pattern. The long distance point pairs are used to calculate the
orientation of the image. We use the average error of orientation as the criteria
for evaluation.

4.3 Results

In our experiment, we use L2 loss for training. And we set initial learning rate as
0.0001 and every epoch drops to 0.96 of the last learning rate. We set the batch
size as 128 and the size of input image as 227 × 227.

Table 2 shows the average error of AlexNet, MobileNet and VGGNet in our
task for predicting the orientation of images. We set the same learning rate and
other experiment parameters for them. The results show that MobileNet has bet-
ter performance than AlexNet and has comparable performance with VGGNet.
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But MobileNet needs few resources. So it is suitable to choose MobileNet in our
task to predict the orientation.

Table 2. Average error of AlexNet, MobileNet and VGGNet for predicting the orien-
tation of images

Network AlexNet MobileNet VGGNet

Average error (degree) 25.85 23.63 23.61

Table 3 shows the average error of the OEN and the hand-crafted methods for
predicting the global orientation of images. The results show that our method
significantly outperforms the hand-crafted methods. Because SIFT and ORB
which use the information of intensities to decide the orientation have no rela-
tionship with the global orientation which is visually comfortable. BRISK and
FREAK which use the long distance point pairs have the same reason with SIFT
and they are easy to change orientation after moving a few pixels.

Table 3. Average error of our method and the hand-crafted methods for predicting
the global orientation of images

Method Our method SIFT ORB BRISK FREAK

Average error (degree) 25.85 40.08 52.76 70.98 68.47

Figure 5 shows the angle error histogram of our method. The error of the angle
is mostly below 20◦. Therefore, our method is stable to predict the orientation
of images. It is reliable to rotate the images by the predicted orientation through
our method.

Fig. 5. The angle error histogram of our method

Figure 6 shows examples of predicting the orientation of images with little
error. The left column is the ground truth images, the middle column is the
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Fig. 6. Examples of predicting the orientation of images with little error. The left
column is the ground truth images, the middle column is the input images for prediction
and the right column is the results of the images rotated by the predicted orientation.
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Fig. 7. Examples of predicting the orientation of images with large error. The left
column is the ground truth images, the middle column is the input images for prediction
and the right column is the results of the images rotated by the predicted orientation.
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input images for predicting and the right column is the results of the images
rotated according to the predicted orientation.

The results show the examples with little error and they catch the information
of background for outdoor images. These images are typical ones mostly occupied
by background. So it can be predicted well.

Figure 7 shows examples with larger error than examples in Fig. 6. In the
images which contain buildings, the height of buildings are not same. So the
line for top of buildings is not parallel with the ground. It is confusing for the
network to predict the orientation of images and it causes error. In the images
which contain persons, it has large error for predicting orientation. The reason
we thought is that persons occupy too much space and have a little background
while other kinds images have more background information. So the images
contain persons are not predicted well. A solution to address this problem is to
train for the images contain persons alone, if the task is predicting an orientation
only for images with persons.

5 Conclusion

We have presented a new task of calculating the holistic dominant angle for
outdoor images, and aligning the images to be visually comfortable. We compare
CNN method with hand-crafted methods and show the advantage of convlutional
neural network. Experiment on AlexNet, MobileNet and VGGNet demonstrates
the performance for predicting the canonical orientation of outdoor images. And
it turns out that MobileNet is more suitable for this work with less average error
and less resource.
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