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Abstract. Sparse representation based methods have been increasingly applied
to object tracking. However, complex optimization and a single dictionary limit
their deployment during tracking. In this paper, we propose a tracking method
based on multi-modality dictionary learning in particle filter framework. First,
multi-modality dictionary is formed by background templates and object tem-
plates including short-term templates and long-term templates that are updated
by K-means clustering. Second, coarse tracking results are achieved by com-
puting the coefficients of object with respect to templates from multi-modality
dictionary. Finally, the Local Maximal Occurrence (LOMO) features of coarse
tracking results and multi-modality dictionary are compared through observation
likelihood function, a candidate result with highest observation score is regarded
as the final tracking result. The experimental results demonstrated the effec-
tiveness of our method compared to some state-of-the-art methods.
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1 Introduction

Object tracking plays an important role in computer vision, which has been widely used
in the field of surveillance, intelligent transportation control, medical image and mil-
itary simulation [1] etc. Even though numerous tracking problems have been studied
for decades, and reasonable good results have been achieved, it is still challenging to
track general objects in a dynamic environment accurately due to various factors that
include noise, occlusion, background cluttering, illumination changes, fast motions,
and variations in pose and scale. At present, most of state-of-the-art object tracking
methods can be categorized into two types: generative models and discriminative
models [2].

The generative methods take the candidate having the best compatibility with the
appearance model as the tracked object. For example, Ross et al. proposed an incre-
mental subspace model to adapt object appearance variation [3]. Wang et al. put
forward multi-features fusion object model under the guidance of color-feature, and
tracking object accurately is realized by the principle of spatial consistency [4]. Wang
et al. proposed a probability continuous outlier model to cope with partial occlusion via
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holistic object template [5]. The latter addresses object tracking as a binary classifi-
cation to separate the object from background. For example, Kalal et al. first utilized
structured unlabeled data and used an online semi-supervised learning method [6], then
tracking-learning-detection (TLD) for object tracking in long sequences is proposed
subsequently [7]. Babenkon et al. formulated object tracking as an online multiple
instance learning [8]. Generally speaking, the former can get more accurate charac-
teristic of object but with high computational complexity. The latter can obtain better
tracking accuracy but has to process a large number of training samples. Object needs
to be retrained if its appearance changed, and tracking failure can be easily caused by
inadequate training samples. In addition, there are some combine both generative and
discriminative models [9-11] to get more desirable results.

Recently, sparse representation based methods [9-13] have shown promising
results in various tests. Object is represented as a linear combination of a few templates,
which are helpful to remove the influences from partial occlusion, illumination and
other factors on object based on sparse coding. However, this kind of method is based
on solving ¢; minimization that has large computational load, and sparse code is solved
by complex optimization. Therefore, a multi-modality dictionary is built in this paper to
simplify the sparse coding, and then follow the idea of combination of generative and
discriminative to achieve object tracking.

The remainder of this paper is organized as follows. In Sect. 2, particle filter and
object representation that are related to our work are reviewed. Section 3 introduces the
details of the proposed tracking method. Experimental results and analysis are shown in
Sect. 4, and we conclude this paper in Sect. 5.

2 Preliminary

2.1 Particle Filter

Particle filter as the tracking framework in this paper, the object of the next frame is
estimated by the observation probability of particles at the current frame [14]. Suppose
Y, = [y1,...,y] are observed images at frames 1 to ¢, x; is the state variable that
describing object motion parameters at frame #, and follows the following probability
distribution:

Pl | Y1) o plye | x1) / Pt )P | i)y (1)

where p(x,|x,_1) is state transition distribution, p(y; |x;) estimates the likelihood of
observing y, at state x,. Particles are sampled as Gaussian distribution with the center
position of previous tracking result. As the number of particles will affect the tracking
efficiency, irrelevant particles need to be filtered to reduce the tracking redundancy.

2.2 Object Representation

Liao et al. proposed Local Maximal Occurrence (LOMO) feature [15] for the perfor-
mance of the target in different cameras is inconsistent, which is an effective handmade
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feature that can be compared with the characteristics of deep learning network in recent
years. The LOMO feature analyzes the horizontal occurrence of local features, and
maximizes the occurrence to make a stable representation against viewpoint changes.
Specifically, the Retinex algorithm is firstly applied to produce a color image that is
consistent to human observation of the scene, then HSV color histogram is used to
extract color features of Retinex images, finally, Scale Invariant Local Ternary Pattern
(SILTP) descriptor [16] is applied to achieve invariance to intensity scale changes and
robustness to image noises.

Since the challenging problems in object tracking and person re-identification are
actually the same, in view of the validity of the LOMO feature has been verified, the
LOMO feature as the object feature in this paper.

3 Proposed Method

In this paper, object tracking is regarded as the dictionary learning problem. By con-
structing multi-modality dictionary properly that can describe object precisely, thus the
complex optimization can be simplified. The proposed tracking method is presented in
Algorithm 1.

Algorithm1: Proposed Tracking Method
Input: image at frame t
Output: tracking result x; of image at frame t
Initialization: construct the multi-modality dictionary by using the first frame of a video
Tracking:
for t=2:end of the video
1. Sample particles based on the tracking result of previous frame, and candidates are
filtered by the distance constraint;
2. Solve the coefficients of candidates with respect to multi-modality dictionary using
the LARS method;
3. Get the candidate tracking results R according to the coefficients of each
candidate (Eq. (6));
4.  Compute the observation likelihood score of each candidate result from R by Eq.
(®);
5. Candidate with the highest observation score is regarded as the final tracking
result;
6. Update the multi-modality dictionary through K-means clustering (Sect. 3.1).

end for

3.1 Multi-modality Dictionary Building and Updating

In general, sparse representation based tracking method usually uses over-complete
dictionary to encode the object. Sparse code learning involves two problems: sparse
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coding that is to solve the computation of the coefficients to represent the object with
the learned dictionary, and dictionary learning that is to solve the problem of con-
structing the dictionary [17]. With the sparse assumption, a candidate object x; can be
represented as a linear combination of sparse code o; from dictionary D. The sparse
code o; € R" "™ corresponding to x; is calculated by

1 ~
min > 3 — Do + 2] @

where over-complete dictionary D = [D,,D,] € R*("*™ that is formed by the

foreground dictionary D, € R?*" and background dictionary D, € R?*™. The above
problem is also referred to as dictionary learning, which is actually the Lasso regression
[18] that can be solved by LARS [19], and then get the sparse code «; of x;.
However, the method mentioned above not only requires a large number of tem-
plates for over-complete dictionary, but also makes the tracking process more com-
plicated. Actually, for objects in the ideal state without severe external influences, a
small number of dictionary templates can distinguish objects from background well; for
objects with appearance changed, more dictionary templates will bring many errors. So
if a suitable dictionary for the current object can be obtained in real time, there is no
need to build over-complete dictionary and experience complex optimization process.
In this paper, object dictionary is formed by short-term templates D, and long-term
templates Dy, the templates of background dictionary D, are selected randomly from
non-object area of video image. Therefore, multi-modality dictionary D is built by the
two parts, that is D = [DS, D!], where DS = [D;,D,] € R+ DL — D, D,] €
Rm+m) - and the dictionary template is represented by the observed pixel values.
More specifically, D; is initialized by the transformed object templates of the first
frame, that is the current object moves 1-2 pixels along four directions (up, down, left

L
and right). D is initialized by the clustering center of Dy, thatis D; = ll > Dg’), where [,
Ti=1

represents the number of templates in D;, here let I, = 9. It should be noted that the
observation vector of each template usually constraints its columns to have ¢;-norm
less than or equal to 1.

For multi-modality dictionary, when object appearance changes little, short-term
dictionary can distinguish object from background effectively, and long-term dictionary
can reduce errors accumulation; when object appearance changes greatly, short-term
dictionary can track object continuously, and long-term dictionary can prevent loss of
correct sampled object. Thus, the combination of two modality dictionaries can better
balance the adaptability and robustness of ¢; trackers, and it is crucial for updating
multi-modality dictionary. Dy is trained and updated using the candidates sampled in
the previous frame. D; is trained and updated using accurate result in all previous
frames, and then according to the theory of K-means clustering, the category that the
current object belongs to is identified by calculating the Euclidean distance between the
current object and the clustering centers of long-term dictionary, as shown in Eq. (3).
The long-term dictionary is represented by the cluster center of each category, which
reduces the amount of computation effectively.
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X eDs, d(f(x’), f(Dg")) € [0,d_max + A]

new

,- 3)

¥enf™, d(re) f(pf)) > dmax+A
where Dfi represents the existed category of long-term dictionary, D§"" represents the
new category of long-term dictionary, d(-) denotes Euclidean distance, f(-) indicates
the corresponding LOMO feature, d_max represents the maximum value of Euclidean
distance between templates d(Dy, D,) in initialized short-term dictionary Dy, and A is
variable.

3.2 Tracking Based on Multi-modality Dictionary

The proposed method is based on particle filter framework, and all the sampled par-
ticles are expressed as ¥ = {y1,y2,..., v} € RN Then irrelevant particles are fil-
tered by the distance constraint that is the distance between the center coordinate of the
sampled object p(yﬁ) and the center coordinate of tracking result of previous frame
p(xi—1) should meet |p(y!) — p(xi—1)||, <max(w,h), where w and h represent the
width and height of bounding box of previous tracking result respectively. The can-
didate samples are expressed as X = {x'|i € [1,¢q]} € R?*9(q < N).

Assuming that the multi-modality dictionary can be adapt to the object appearance
changes well, the value of the cost function between the ideal tracking result and the
templates of object dictionary should be minimal. The cost function of short-term
dictionary and long-term dictionary are expressed as Eqs. (4) and (5) respectively.
Then the best coefficients are solved using the LARS method [19].

. 1, . . .

I5(¢, D%) = min [l¥ = D% [+ 2], @
. 1, . . .

(D) = min 2 [1¢ — D]+ o] ©)

Generally, an image observation of a “good” object candidate is effectively repre-
sented by the object templates and not the background templates, thereby, leading to a
sparse representation. Likewise, an image observation of a “bad” object candidate can be
more sparsely represented by a dictionary of background templates. Therefore, for ideal
sampled object, the difference between the ¢; — norm of coefficients of object templates
and background templates should be larger. Then the candidate tracking results R are
formed by the first p samples satisfying the condition, as shown in Egs. (6) and (7).

R=[Rs,Re) = [15],,71],] (i€ [1,q)) (6)

15 = ma (o |, =l )

1 = max (o |, ~|l || )

(7)
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where of, and of  represent the coefficients of object templates and background
templates in short-term dictionary, of. and ol represent the coefficients of object
templates and background templates in long-term dictionary.

Eventually,the observation likelihood function is built for each candidate tracking
result, then the candidate tracking result with the highest similarity is regarded as the
final tracking result X, as shown in Egs. (8-9).

X = argmax(w; - s;+ ;- 8;) 51 = sim(f(Ri),f(DL)) (8)

s, = sim(f (R!), f(Ds))

: : Jelp] ©)

s, = sim(f(R}]), f(Dy))
where sim(-) represent the similarity that is calculated by Bhattacharyya distance, f(-)
is the LOMO feature of the corresponding image area. w; = s;/(s;+s;) and w; =
ss/(ss + ;) are the weights.

(b)

(©)
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Fig. 1. Some representative results of test sequences. (a) FaceOccl; (b) Walking; (c) Fish.
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4 Experiments and Analysis

The test video sequences (FaceOccl, Walking and Fish) are selected from object
tracking benchmark [1]. We test four state-of-the-art methods on the same video
sequences for comparison. They are IVT [3], L1APG [13], TLD [7] and SP [5]. The
code of all those trackers are public available, and we keep the parameter settings
provided by authors for all the test sequences. In this paper, we use the error rate
(error) and overlap rate (overlap) to evaluate the tracking performance of each
tracking method. error is the Euclidean distance between the center coordinate
obtained from tracking method and tracking ground truth, which means the smaller the
value, the more accurate position the method tracks. overlap is the overlap ratio
between the tracking window of the method and the ideal tracking window, which
means the larger the value, the more suitable window the method has. Figure 1 shows
some representative results of test sequences.

Tracking error plots and tracking overlap plots for all the test sequences are shown
in Figs. 2 and 3. The main tracking problem in FaceOccl is that the object is occluded
in large area for a long time. TLD fails to track when object is occluded in large area,
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Fig. 2. Tracking error plots for all test sequences. (a) FaceOccl; (b) Walking; (c) Fish.
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Fig. 3. Tracking overlap plots for all test sequences. (a) FaceOccl; (b) Walking; (c) Fish.

but it can back to track object well when object remains in the normal state. The
performance of IVT, L1APG, SP and our method can maintain low tracking error and
high overlap rate, in which, our method performs the best. The main tracking problem
in Walking is partially occlusion and object scales variation. When object scale
becomes small, object cannot be distinguished from background clearly, so TLD and
SP lose object. IVT, LIAPG and our method can track object continuously, but the
tracking bounding box of IVT is too large to fit the object size. Our method performs
the best and L1APG performs the second best. The main tracking problem in Fish is
the illumination changes. As the object is affected by the illumination and camera
shake, IVT and L1APG start to drift. TLD can track object roughly, but the tracking
bounding box is small. SP and our method show the promising performance, in which
SP is the best tracker, and there is a slightly difference between SP and our method.

Table 1 shows the mean of tracking error and tracking overlap rate, in which bold
fonts indicate the best performance while the Italic underlined fonts indicate the second
best ones. From these data, we can conclude that the proposed method has good
performance on occlusions, illumination and object scale variation, etc.
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Table 1. The mean of tracking error and tracking overlap rate.

Method | FaceOccl Walking Fish

error (pixel) | overlap (%) | error (pixel) | overlap (%) | error (pixel) | overlap (%)
IvT 17.92 74.92 7.62 56.57 24.42 47.38
L1APG | 16.99 71.57 2.92 65.34 40.70 21.43
SP 14.61 75.13 19.32 48.88 2.48 88.38
TLD 27.38 59.69 95.89 29.06 13.22 49.54
Ours 13.73 80.46 2.23 75.29 4.08 82.62

5 Conclusions

In this paper, object tracking method based on multi-modality dictionary is proposed,
which addresses object tracking as a problem of learning a dictionary that can represent
object accurately. Under the particle filter framework, a multi-modality dictionary is
built and updated by clustering, which makes the candidate tracking result can be
obtained easily by comparing the coefficients difference with respect to multi-modality
dictionary. And then the final tracking result is determined by calculating observation
function precisely through employing LOMO feature. By applying some benchmark
videos, the experimental results show that the proposed method is more robust against
occlusions, illumination changes and background interference.
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