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Abstract. Many problems in computer vision area can be formulated
as image set representation and classification. One main challenge is
that image set data usually contains various kinds of noises and outliers
which usually make the recognition/learning tasks of image set more
challengeable. In this paper, we propose a new L; norm optimal Mean
Principal Component Analysis (L1-MPCA) to learn an optimal low-rank
representation for image set. Comparing with original observed image
set, L1-MPCA based low-rank representation is generally noiseless and
thus can encourage more robust learning process. An effective update
algorithm has been proposed to solve the proposed L1-MPCA model.
Experimental results on several datasets demonstrate the effectiveness
and robustness of the proposed L1-MPCA method.

1 Introduction

Object recognition/learning based on visual content information is a fundamen-
tal problem in computer vision area. Recently, image set based object recognition
approaches have been widely studied and attracted more and more interest. For
image set based object recognition, it aims to achieve object recognition/learning
problem by using multiple images (or video) that belong to one object.

One problem for image set based object recognition process is how to effec-
tively represent an image set [5,9,11,22,26]. In recent years, many methods have
been proposed for this problem. One kind of popular methods is to use statisti-
cal models. These methods usually aim to represent an image set by using some
distributions, such as Gaussian, GMM, etc. [24]. Based on these representation,
the similarity measurement between two image sets can be computed by metric
measurement between distributions [1,18,20,22]. Another kind of methods is to
use linear subspace models which aims to represent an image set by using a
linear or affine subspace. Based on these representation, one can compute the
distance between two image sets by measuring the distance between two sub-
spaces [9,10,15,25]. Recent studies also aim to represent an image set using a
nonlinear manifold or several sub-manifolds. Then, they generally use the met-
ric learning method of manifolds to achieve image set recognition/learning tasks
[3,4,7,11,21,23,26]. Some other methods have also been proposed [6].
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Previous works generally focus on developing a method for image set fea-
ture extraction and classification problems. In this paper, we focus on image set
itself and propose a robust low-rank representation for image set. Our method
is motivated by the following observation. Motivated by recent work on low-
rank representation [12,19], we propose a new low-rank representation, called L;
norm based robust optimal Mean Principal Component Analysis (L1-MPCA),
for image set recovery and representation. The aim of L1-MPCA is to integrate
the mean calculation into L1-norm PCA low-rank approximation objective and
thus the optimal mean can be obtained to enhance the low-rank approxima-
tion and representation. An effective optimization algorithm has been derived
to solve the proposed L1-MPCA. Comparing with original observed image sets,
L1-MPCA of image sets are generally noiseless and more regular, which signif-
icantly encourages the robust learning and recognition process. Experimental
results on four datasets demonstrate the effectiveness and robustness of the pro-
posed L1I-MPCA methods.

2 Brief Review of Optimal Mean PCA

In this section, we give a brief introduction of Optimal Mean Principal Com-
ponent Analysis (OMPCA) model [19]. Let X = (x1,X2, - X,) € RP*"™ be
the input data matrix containing the collection of n data column vectors in
p dimension space. In image set representation, each column x; denotes one
linearized array of pixels gray levels. The aim of Optimal Mean Principal Com-
ponent Analysis (OMPCA) [19] is to find the optimal low-dimensional matrices
U = (uj,ug,---ug) € RP¥¥ 'V = (v, va,---vi) € R"™* and mean vector
b € R? by minimizing,
. 2 T T2 T
min ;Hxi—Uvi—bHQ = X-UVT—b1"|3 st UUT=1 (1)

where 1 = (1,1,--- ,1) € R™. Let Z = UVT + b1", then Z provides a kind of
low-rank representation for original input data X. It is known that the squared
loss function used in the above MPCA is very sensitive to outliers. In order to
overcome this problem, Nie et al. [19] also propose a kind of Robust MPCA by
using Lo ; norm and solve the optimization problem as

. L o _ _ T_ T T:
min ;Hxl Uv, — bl =X -UV" =b1" |21 st. UUT =1 (2)

Comparing with Frobenious norm loss function, Ls 1-norm loss function performs
robustly w.r.t outliers because it uses a non-squared loss function.

3 L;-Norm Based Robust MPCA

The above Lo j-norm OMPCA is robustness to outliers. However, it is sensitive
to the corruptions or large errors existing in each image x; because of L2 norm
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loss function for each image data. Our aim in this section is to propose a new
kind of robust OMPCA by using L; norm loss function instead of Ly ; norm loss
function.

Model formulation. Formally, let X = (x1,X2,...,X,) € RP*™ be the image
set data, our L; norm based MPCA (L1-MPCA) is formulated as,

' Uy, — =X -UVT —p1T £ T-1
Jnin, ;sz Uv, —b|; = [X-UVT —b1T|;, st UU (3)

where L; norm loss function is defined as [|A[[x = 3_; >°; [Ay]. It is known that
the L; norm loss function will make the the proposed L1I-MPCA robust to both
corruptions noise/large errors and outliers. Note that the above L1-MPCA can
be regarded as a natural extension of the tractional L1-PCA model [2,13] by
further removing optimal mean automatically from the input data set X.

Optimization. We present an effective updating algorithm to solve L1-MPCA
model. Firstly, Eq. (3) can be rewritten equivalently as

min ~ |E|; st. E=X-UV' b1t UU" =1 (4)
U,V.E,b

We use the Augmented Lagrange Multiplier (ALM) method to solve this prob-

lem. ALM solves a sequences of subproblems

2
min ~ [[E; +Tr QTE-X4+UV' +b1") + Z|E-X+UV? +b17 2%
U,V.E,b 1

st. UUT =1 (5)
where ) is Lagrange multipliers and p is the penalty parameter. There are
two major parts of this algorithm, i.e., solving the sub-problem and updating

parameters (£2, u).
First, we rewrite the objective function of Eq. (5) as

2 Q
min ~ |E; +=|E-(X-UVT —b1" + D)2 st UUT =1 (6)
U,V.Eb W o

Then, we iteratively solve the following sub-problems until convergence.

(1) Solve U, V,b while fixing E. The problem becomes
Q
min (X -E—-=)-b1T —UVT|2 st UUT=1 (7)
U,V,b u

This is standard MPCA [19] and can be solved effectively using a closed-form
solution.
(2) Solve E while fixing U, V, b. The problem becomes

. 2 T LN
min Eli+—-|E-(X-UV" —bl" + — 8
i B+ 2B DI ®)
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It is well known that, this problem has closed-form solution,

1 Q
E;; = sign(K;) (|Ki;| — ;)+, K=X-UV'-b1" + m (9)

(3) At the end of each ALM iteration, €2, u are updated as

Q=Q+u(X-UV' —E)
= pp

where p > 1.

4 Application: Image Set Representation and
Classification

In this section, we apply the proposed L1-MPCA in image set representation
and classification tasks. Our image set representation and classification method
contains two main steps.

First, given an image set X = (X1, X2, - X,), we first use the proposed L1-
MPCA to compute the optimal U*, V* and mean vector b*. We then obtain the
optimal low-rank representation Z as

Z=X-UvT _p*1T

Comparing with the original image set data X, the noises of images and outliers
in image set X can be well suppressed in its low-rank representation Z.

Second, based on low-rank representation Z, we can use some image set feature
extraction and learning methods such as Covariance Discriminative Learning
(CDL) [22], Covariate-relation graph (CRG) [6] and Manifold-Manifold Distance
(MMD) [23] to conduct image set classification tasks.

5 Experiments

To evaluate the effectiveness of the proposed L1-MPCA method, we apply it in
image set representation and classification tasks. For image set learning methods,
we use some recent methods: Covariance Discriminative Learning (CDL) [22],
Covariate-relation graph (CRG) [6], Manifold-Manifold Distance (MMD) [23],
Set to Set Distance Metric Learning (SSDML) [27] and Canonical Correlations
(DCCQ) [15]. According to [23], MMD method does the subspaces learning with
95% data energy based on PCA. For the discriminative learning method of CDL,
we choose PLS to do the learning task. For SSDML method, we set v = 1, \; =
0.001 and Ay = 0.1.
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5.1 Datasets and Settings

In our experiments, we test our L1-MPCA on four datasets including YouTube
Celebrities (YTC) [14], ETH-80 [17], Honda/UCSD [16] and CMU MoBo [8]. In
each image set data, we resize all the images into 20 x 20 intensity images. The
datasets are described as following.

— ETH-80 [17] dataset has image sets of 8 categories and each category con-
tains 10 objects with 41 views per object, spaced equally over the viewing
hemisphere, for a total of 3280 images. For each subject of this dataset, we
randomly choose 5 sets for training and the rest 5 object for testing.

— YouTube-Celebrities (YTC) [14] dataset contains 1910 video clips of 47
celebrities (actors and politicians), most of the videos are low resolution and
highly compression, which leads to noisy, low-quality image frames. Each clip
contains hundreds of frames. For this dataset, we randomly chose 3 sets for
training and 6 sets for testing.

— Honda/UCSD [16] dataset consists of 59 video sequences belonging to 20
different persons. Each sequence contains about 400 frames covering large
variations. Each individual in our database has at least two videos. For this
dataset, we randomly select one sequence for training set and the rest for
testing.

— CMU MoBo [8] dataset has 96 sequences of 24 persons and the sequences
are captured from different walking situations inclined walk, and slow walk
holding a ball (to inhibit arm swing). Each video further divided into four
illumination sets, the first set for training and the rest sets for testing.

5.2 Results Analysis

To evaluate the benefit of the proposed L1-MPCA low-rank representation
method, we compare our method with original data and L1-PCA method [2,13].
Figure 1 summarizes the average classification results on four datasets, respec-
tively. (1) Comparing with original image set X, the proposed L1-MPCA method
can significantly improve the image set classification results, which clearly
demonstrates the desired benefit and effectiveness of the proposed L1-MPCA
method on conducting image set representation problem and thus leads to bet-
ter classification result. (2) The proposed L1-MPCA methods generally performs
better than L1-PCA method [2]. This clearly demonstrates the benefit of the
proposed L1-MPCA by further considering the optimal mean vector value in
low-rank representation.

5.3 Robust to Noise

To evaluate the robustness of L1-MPCA method to the noise possibly appearing
in the testing image set data, we randomly add some noise to the image set
datasets. Here, we add two kinds of noises including salt & pepper and block



124 Y. Cao et al.

ETH-80 YouTube-Celebrities
1.05
I Original [ ]L1PCA I Our I Original [ JL1PCA (M Our
1 09
09 0.85
0.9
08
o) o)
@ 085 ®
5 5 075
8 o8 8
< < o7
0.75
07 065
0.65 06
06 055
CRG coL SSDML MMD DCC CRG coL SSDML MMD DCC
Performance Evaluation of All Different Methods Performance Evaluation of All Different Methods
Honda/UCSD CMU MoBo
1.05
I Original [ JL1PCA  [HEEEE Our I Original [ JL1PCA [ Our
1 09
0.85
0.95
> S, 08
8 0.9 8
E] 5 075
8 0.85 8
< < o7
08
065
0.75 06

°
o
o
a

CRG coL SSDML MMD DCC ’ CRG coL SSDML MMD
Performance Evaluation of All Different Methods Performance Evaluation of All Different Methods

Fig. 1. Average accuracies of different methods on four datasets.

Table 1. Classification accuracies on ETH80 dataset with different noises.

Methods | Noisead Salt & Pepper Block noise
0.1 0.2 0.3 0.4 0.5 5 15 25 35 45
CDL Original 0.800 | 0.700 | 0.625 |0.583 |0.425 | 0.833 |0.750 | 0.708 | 0.637 | 0.405

L1-PCA 0.875 | 0.739 | 0.667 |0.617 |0.458 | 0.901 |0.843 |0.763 | 0.665 | 0.567
L1-MPCA | 0.917 | 0.845 | 0.738 | 0.708 | 0.667 | 0.922 | 0.861 | 0.783 | 0.696 | 0.607

CRG Original 0.875 | 0.800 |0.775 |0.653 | 0.550 | 0.875 |0.833 |0.747 | 0.675 |0.475
L1-PCA 0.901 |0.833 | 0.797 |0.732 | 0.625 | 0.911 | 0.866 |0.774 | 0.697 | 0.583
L1-MPCA | 0.916  0.875 | 0.811 | 0.767 | 0.673 | 0.937 | 0.875 | 0.801 | 0.721 | 0.595

MMD Original 0.712 | 0.625 | 0.550 | 0.525 | 0.475 | 0.666 | 0.583 | 0.500 | 0.466 | 0.431
L1-PCA 0.750 | 0.667 |0.625 |0.542 |0.491 |0.776 |0.673 | 0.575 | 0.533 | 0.461
L1-MPCA | 0.811 | 0.708 | 0.650 | 0.593 | 0.500 | 0.807 | 0.767 | 0.702 | 0.647 | 0.573

SSDML | Original 0.700 | 0.650 |0.575 |0.473 |0.438 |0.708 |0.671 |0.583 |0.501 |0.467
L1-PCA 0.733 | 0.666 | 0.583 |0.483 |0.443 | 0.750 | 0.683 |0.596 | 0.511 | 0.475
L1-MPCA | 0.767 | 0.708 | 0.611 | 0.573 | 0.542 | 0.783 | 0.713 | 0.633 | 0.575 | 0.511

DCC Original 0.733 | 0.613 | 0.553 |0.437 |0.339 | 0.700 |0.627 | 0.566 | 0.483 | 0.408
L1-PCA 0.803 | 0.722 | 0.637 |0.583 |0.524 | 0.788 |0.718 | 0.643 | 0.522 | 0.466
L1-MPCA | 0.833 | 0.797 | 0.703 | 0.627 | 0.573 | 0.800 | 0.758 | 0.650 | 0.567 | 0.511
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Table 2. Classification accuracies on YTC dataset with different noises.
Methods | Noisead Salt & Pepper Block noise
0.1 0.2 0.3 0.4 0.5 5 15 25 35 45

CDL Original 0.651 | 0.573 | 0.432 | 0.358 | 0.238 | 0.650 |0.510 | 0.413 | 0.366 | 0.227

L1-PCA 0.703 | 0.654 | 0.587 | 0.422 |0.317 | 0.713 | 0.654 | 0.583 | 0.471 | 0.328

L1-MPCA | 0.709 | 0.666 | 0.595 | 0.433 | 0.344 | 0.733 | 0.682 | 0.573 | 0.453 | 0.393

CRG Original 0.742 | 0.666 | 0.521 |0.453 |0.373 | 0.707 |0.611 | 0.532 | 0.444 | 0.309

L1-PCA 0.771 | 0.683 | 0.511 | 0.475|0.383 | 0.783 | 0.627 | 0.575 | 0.467 | 0.350

L1-MPCA | 0.783 | 0.683 | 0.537 | 0.465 | 0.377 | 0.802 | 0.741 | 0.666 | 0.583 | 0.405

MMD Original 0.701 | 0.621 | 0.575 |0.466 |0.393 |0.696 | 0.605 | 0.528 | 0.499 | 0.336

L1-PCA 0.766 | 0.666 | 0.611 | 0.505 | 0.423 | 0.750 |0.653 | 0.583 | 0.511 | 0.471

L1-MPCA | 0.783 | 0.683 | 0.601 | 0.542 | 0.447 | 0.778 | 0.683 | 0.566 | 0.533 | 0.505

SSDML | Original 0.701 | 0.621 | 0.531 |0.401 |0.389 | 0.711 |0.627 | 0.550 | 0.448 | 0.342

L1-PCA 0.773 | 0.646 | 0.562 |0.473 | 0.382 | 0.766 | 0.631 | 0.575 | 0.499 | 0.377

L1-MPCA | 0.792 | 0.696 | 0.583 | 0.481 | 0.393 | 0.773 | 0.674 | 0.586 | 0.473 | 0.383

DCC Original 0.656 | 0.567 | 0.441 |0.397 |0.217 | 0.683 |0.578 | 0.450 | 0.349 | 0.207

L1-PCA 0.697 | 0.577 | 0.465 | 0.453 | 0.311 | 0.721 |0.649 | 0.557 | 0.467 | 0.350

L1-MPCA | 0.703 | 0.650 | 0.583 | 0.437 | 0.343 | 0.727 | 0.673 | 0.579 | 0.483 | 0.366

Table 3. Classification accuracies on Honda dataset with different noises.
Methods | Noisead Salt & Pepper Block noise
0.1 0.2 0.3 0.4 0.5 5 15 25 35 45

CDL Original 0.871 | 0.799 | 0.730 | 0.666 |0.432 | 0.883 |0.777 | 0.653 | 0.577 | 0.450

L1-PCA 0.875 | 0.783 | 0.741 | 0.696 | 0.601 |0.911 |0.833 | 0.713 | 0.641 | 0.522

L1-MPCA | 0.916 | 0.833 | 0.731 | 0.700 | 0.626 | 0.921 | 0.850 | 0.743 | 0.650 | 0.583

CRG Original 0.910 | 0.811 | 0.696 |0.633 |0.473 | 0.899 |0.751 | 0.583 | 0.434 | 0.405

L1-PCA 0.948 |0.833 | 0.701 | 0.650 |0.515 | 0.911 |0.811 | 0.637 | 0.557 | 0.466

L1-MPCA | 0.950 | 0.844 | 0.733 | 0.666 | 0.533 | 0.937 | 0.823 | 0.710 | 0.595 | 0.511

MMD Original 0.871 |0.734 | 0.590 | 0.550 |0.433 | 0.846 |0.711 | 0.573 | 0.466 | 0.437

L1-PCA 0.866 | 0.750 | 0.611 | 0.576 |0.433 | 0.897 |0.801 | 0.695 | 0.505 | 0.444

L1-MPCA | 0.883 | 0.786 | 0.650 | 0.592 | 0.498 | 0.901 | 0.811 | 0.722 | 0.583 | 0.466

SSDML | Original 0.743 | 0.666 | 0.511 |0.433 |0.399 | 0.718 |0.635 | 0.544 | 0.473 | 0.366

L1-PCA 0.769 | 0.683 | 0.573 | 0.450 |0.409 | 0.766 |0.677 |0.595 | 0.500 |0.415

L1-MPCA | 0.794 | 0.693 | 0.610 | 0.493 | 0.433 | 0.808 | 0.731 | 0.606 | 0.593 | 0.511

DCC Original 0.950 | 0.883 | 0.766 |0.613 |0.526 |0.943 | 0.837 |0.727 | 0.579 | 0.433

L1-PCA 0.967 | 0.922 | 0.776 | 0.696 | 0.633 | 0.950 |0.871 |0.733 | 0.652 | 0.566

L1-MPCA | 0.983 | 0.911 | 0.797 | 0.701 | 0.650 | 0.974 | 0.883 | 0.766 | 0.666 | 0.583

noise. For each kind of noise, we add various levels of the noises and test our
method on these noise image set data. Tables1, 2, 3 and 4 show the accura-
cies of all the traditional methods across different noise level. From the results,
we can note that: (1) As the level of noise increasing. Our L1-MPCA method
still maintains better performance comparing with the original image set data.
This obviously indicates the noise removing ability of the proposed L1-MPCA
method. (2) L1-MPCA performs better than L1-PCA method [2], indicating the
more robustness of the L1-MPCA method on noise data reconstruction.
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Table 4. Classification accuracies on CMU dataset with different noises.

Methods | Noisead Salt & Pepper Block noise
0.1 0.2 0.3 0.4 0.5 5 15 25 35 45
CDL Original 0.797 | 0.691 | 0.618 | 0.543 | 0.344 | 0.808 | 0.750 | 0.666 | 0.487 |0.301

L1-PCA 0.833 | 0.766 | 0.650 | 0.575 | 0.483 | 0.827 | 0.775 | 0.683 | 0.506 | 0.466
L1-MPCA | 0.850 | 0.799 | 0.723 | 0.644 | 0.490 | 0.866 | 0.818 | 0.750 | 0.566 | 0.482
CRG Original 0.825 | 0.766 | 0.671 |0.543 | 0.321 | 0.803 | 0.733 | 0.683 | 0.450 | 0.320
L1-PCA 0.873 | 0.800 | 0.743 | 0.628 | 0.495 | 0.850 |0.766 | 0.679 |0.637 | 0.449
L1-MPCA | 0.875 | 0.810 | 0.723 | 0.683 | 0.506 | 0.866 | 0.797 | 0.683 | 0.650 | 0.455
MMD Original 0.711 | 0.622 | 0.533 | 0.505 | 0.341 | 0.666 |0.550 |0.471 |0.416 | 0.283
L1-PCA 0.750 | 0.683 | 0.621 |0.575 | 0.483 | 0.776 | 0.707 |0.650 | 0.571 | 0.361
L1-MPCA | 0.811 | 0.755 | 0.643 | 0.591 | 0.513 | 0.807 | 0.732 | 0.666 | 0.583 | 0.421
SSDML | Original 0.696 | 0.611 | 0.550 |0.466 |0.377 |0.700 |0.650 |0.541 |0.483 |0.322
L1-PCA 0.703 | 0.647 | 0.595 |0.517 |0.466 |0.717 | 0.666 | 0.606 | 0.533 | 0.450
L1-MPCA | 0.731 | 0.650 | 0.601 | 0.543 | 0.483 | 0.733 | 0.650 | 0.622 | 0.571 | 0.500
DCC Original 0.783 | 0.711 | 0.637 | 0.550 | 0.366 |0.803 | 0.733 |0.677 |0.543 | 0.391
L1-PCA 0.791 | 0.710 | 0.672 | 0.606 | 0.450 | 0.845 |0.750 |0.683 |0.577 |0.411
L1-MPCA | 0.810 | 0.737 | 0.666 | 0.611 | 0.473 | 0.850 | 0.758 | 0.683 | 0.601 | 0.483

6 Conclusion

In this paper, we propose a new method, called L; norm Mean PCA (L1-MPCA)
model for image set representation and learning problems. L1-MPCA is robust
to both noises and outliers, which encourages robust image set learning tasks. An
effective update algorithm has been proposed to solve the proposed L1-MPCA
model. Experimental results on several datasets show the benefit and robustness
of the proposed L1-MPCA method. In our future, we will further consider the
manifold structure of data in our L1I-MPCA model.
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