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Abstract. Accurate electricity load forecasting is of crucial importance
for power system operation and smart grid energy management. Differ-
ent factors, such as weather conditions, lagged values, and day types
may affect electricity load consumption. We propose to use multiple ker-
nel learning (MKL) for electricity load forecasting, as it provides more
flexibilities than traditional kernel methods. Computation time is an
important issue for short-term load forecasting, especially for energy
scheduling demand. However, conventional MKL methods usually lead
to complicated optimization problems. Another practical aspect of this
application is that there may be very few data available to train a reli-
able forecasting model for a new building, while at the same time we
may have prior knowledge learned from other buildings. In this paper,
we propose a boosting based framework for MKL regression to deal with
the aforementioned issues for short-term load forecasting. In particular,
we first adopt boosting to learn an ensemble of multiple kernel regres-
sors, and then extend this framework to the context of transfer learning.
Experimental results on residential data sets show the effectiveness of
the proposed algorithms.
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1 Introduction

Electricity load forecasting is very important for the economic operation and
security of a power system. The accuracy of electricity load forecasting directly
influences the control and planning of power system operation. It is estimated
that a 1% increase of forecasting error would bring in a 10 million pounds increase
in operating cost per year (in 1984) for the UK power system [4]. Experts believe
that this effect could become even stronger, due to the emergence of highly uncer-
tain energy sources, such as solar and wind energy generation. Depending on the
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lead time horizon, electricity load forecasting ranges from short-term forecast-
ing (minutes or hours ahead) to long-term forecasting (years ahead) [13]. With
increasingly competitive markets and demand response energy management [15],
short-term load forecasting is becoming more and more important [25]. In this
paper, therefore, we will focus on tackling this problem.

Electricity load forecasting is a very difficult task since the load is influenced
by many uncertain factors. Various methods have been proposed for electricity
load forecasting including statistical methods, time series analysis, and machine
learning algorithms [21]. Some recent work uses multiple kernels to build predic-
tion models for electricity load forecasting. For example, in [1], Gaussian kernels
with different parameters are applied to learn peak power consumption. In [8],
different types of kernels are used for different features and a multi-task learn-
ing algorithm is proposed and applied on low level load consumption data to
improve the aggregated load forecasting accuracy. However, all of the existing
methods rely on a fixed set of coefficients for the kernels (i.e., simply set to 1),
implicitly assuming that all the kernels are equally important for forecasting,
which is suboptimal in real world applications.

Multiple kernel learning (MKL) [2], which learns both the kernels and their
combination weights for different kernels, could be tailored to this problem.
Through MKL, different kernels could have different weights according to their
influence on the outputs. However, learning with multiple kernels usually involves
a complicated convex optimization problem, which limits their application on
large scale problems. Although some progresses have been made in improving
the efficiency of the learning algorithms, most of them only focus on classifica-
tion tasks [23,26]. On the other hand, electricity load forecasting is a regression
problem and the computation time is an important issue.

Another practical issue for load forecasting is the lack of data to build a
reliable forecasting model. For example, consider the case of a set of newly built
houses (target domain) for which we want to predict the load consumption. We
may not have enough data to build a prediction model for these new houses,
while we have a large amount of data or knowledge from other houses (source
domain). The challenge here is to perform transfer learning [18], which relies on
the assumption is that there are some common structures or factors that can be
shared across the domains. The objective of transfer learning for load forecasting
is to improve the forecasting performance by discovering shared knowledge and
leveraging it for electricity load prediction for target buildings.

In this paper, we address both challenges within a novel boosting-based MKL
framework. In particular, we first propose the boosting based multiple kernel
regression (BMKR) algorithm to improve the computational efficiency of MKL.
Furthermore, we extend BMKR to the context of transfer learning, and pro-
pose two variants of BMKR: kernel-level boosting based transfer multiple kernel
regression (K-BTMKR) and model-level gradient boosting based transfer multiple
kernel regression (M-BTMKR). Our contribution, from an algorithmic perspec-
tive, is two-fold: We propose a boosting based learning framework (1) to learn
regression models with multiple kernels efficiently, and (2) to leverage the MKL
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models learned from other domains. On the application side, this work intro-
duces the use of transfer learning for the load forecasting problem, which opens
up potential future work avenues.

2 Background

2.1 Multiple Kernel Regression

Let S = {(xn, yn), n = 1, . . . , N} ∈ R
d × R be the data set with N samples,

K = {km : Rd ×R
d → R,m = 1, . . . , M} be M kernel functions. The objective of

MKL is to learn a prediction model, which is a linear combination of M kernels,
by solving the following optimization problem [11]:

min
η∈Δ

min
F∈HK

1
2
||F ||2K + C

N∑

n=1

�(F (xn), yn), (1)

where Δ = {η ∈ R+|∑M
m=1 ηm = 1} is a set of weights, HK is the

reproducing kernel Hilbert space (RKHS) induced by the kernel K(x, xn) =∑M
m=1 ηmkm(x, xn) and �(F (x), y) is a loss function. In this paper we use the

squared loss �(F (x), y) = 1
2 (F (x) − y)2 for the regression problem. The solution

of Eq. 1 is of the form1

F (x) =
N∑

n=1

αnK(x, xn), (2)

where the coefficients {αn} and {ηm} are learned from samples.
Compared with single kernel approaches, MKL algorithms can provide bet-

ter learning capability and alleviate the burden of designing specific kernels to
handle diverse multivariate data.

2.2 Gradient Boosting and ε-Boosting

Gradient boosting [10,16] is an ensemble learning framework which combines
multiple hypotheses by performing gradient descent in function space. More
specifically, the model learned by gradient boosting can be expressed as:

F (x) =
T∑

t=1

ρtf t(x), (3)

where T is the number of total boosting iterations, and the t-th base learner f t

is selected such that the distance between f t and the negative gradient of the
loss function at F = F t−1 is minimized:

f t = arg min
f

N∑

n=1

(
f(xn) − rt

n

)2
, (4)

1 We ignore the bias term for simplicity of analysis, but in practice, the regression
function can accomodate both the kernel functions and the bias term.
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where rt
n = −

[
∂�(F (xn),yn)

∂F

]

F=F t−1
, and ρt is the step size which can either

be fixed or chosen by line search. Plugging in the squared loss we have rt
n =

yn − F t−1(xn). In other words, gradient boosting with squared loss essentially
fits the residual at each iteration.

Let F = {f1, . . . , fJ} be a set of candidate functions, where J = |F| is the
size of the function space, and f : Rd → R

J , f(x) = [f1(x), . . . , fJ (x)]� be the
mapping defined by F . Gradient boosting with squared loss usually proceeds
in a greedy way: the step size is simply set ρt = 1 for all iterations. On the
other hand, if the step size ρt is set to some small constant ε > 0, it can be
shown that under the monotonicity condition, this example of gradient boosting
algorithm, referred to as ε-boosting in [20], essentially solves an �1-regularized
learning problem [12]:

min
||β||1≤μ

N∑

n=1

1
N

�
(
β�f(xn), yn

)
, (5)

where β ∈ R
J is the coefficient vector, and μ is the regularization parameter, such

that εT ≤ μ. In other words, ε-boosting implicitly controls the regularization via
the number of iterations T rather than μ.

2.3 Transfer Learning from Multiple Sources

Let ST = {(xn, yn), n = 1, . . . , N} be the data set from the target domain,
and {S1, . . . ,SS} be the data sets from S source domains, where Ss =
{(xs

n, ys
n), n = 1, . . . , Ns} are the samples of the s-th source. Let {F1, . . . , FS}

be the prediction models learned from S source domains. In this work, the s-th
model Fs is trained by some MKL algorithm (e.g., BMKR), and is of the form:

Fs =
M∑

m=1

ηs
mhs

m(x) =
M∑

m=1

ηs
m

Ns∑

n=1

αs
nkm(x, xs

n). (6)

The objective of transfer learning is to build a model F that has a good
generalization ability in the target domain using the data set ST (which is typi-
cally small) and knowledge learned from sources {S1, . . . ,SS}. In this work, we
assume that such knowledge has been embedded into {F1, . . . , FS}, and therefore
the problem becomes to explore the model structures that can be transferred to
the target domain from various source domains. This type of learning approach
is also referred to as parameter transfer [18].

3 Methods

3.1 Boosting Based Multiple Kernel Learning Regression

The idea of BMKR is to learn an ensemble model with multiple kernel regressors
using the gradient boosting framework. The starting point of our method is sim-
ilar to multiple kernel boosting (MKBoost) [23], which adapts AdaBoost [9] for
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Algorithm 1. BMKR: Boosting based Multiple Kernel Regression
Input: Data set S, kernel functions K, number of iterations T

1: Initialize residual: r1n = yi, ∀n ∈ {1, . . . , N}, and F = 0
2: for t = 1, ..., T do
3: for m = 1, ..., M do
4: Sample N ′ data points from S
5: Train a kernel regression model f t

m with km by fitting the residuals of the
selected N ′ samples

6: Compute the loss: et
m = 1

2

∑N
n=1

(
f t

m(xn) − rt
n

)2

7: end for
8: Select the regression model with the smallest fitting error: f t = arg minft

m
et

m

9: Add f t to the ensemble: F ← F + εf t

10: Update residuals: rt+1
n = yn − F (xn), ∀n ∈ {1, 2, ...N}

11: end for

Output: the final multiple kernel function F (x)

multiple kernel classification. We extend this idea to a more general framework
of gradient boosting [10,16], which allows different loss functions for different
types of learning problems. In this paper, we focus on the regression problem
and use the squared loss.

At the t-th boosting iteration, for each kernel km,m = 1, . . . , M , we first train
a kernel regression model such as support vector regression (SVR) by fitting the
current residuals, and obtain a solution of the form:

f t
m(x) =

N∑

n=1

αt,nkm(x, xn). (7)

Then we choose from M candidates, the regression model with the smallest
fitting error

f t = arg min
ft
m,m∈{1,...,M}

et
m, (8)

where et
m = 1

2

∑N
n=1 (f t

m(xn) − rt
n)2, and add it to the ensemble F . The final

hypothesis of BMKR is expressed as in Eq. 3.
The pseudo-code of BMKR is shown in Algorithm 1. For gradient boosting

with squared loss, the step size ρt is not strictly necessary [3], and we can either
simply set it to 1, or a fixed small value ε as suggested by ε-boosting. Note that
at each boosting iteration, instead of fitting all N samples, we can select only N ′

samples for training a SVR model, as suggested in [23], which can substantially
reduce the computational complexity of each iteration as N ′ � N .

3.2 Boosting Based Transfer Regression

As explained in Sect. 1, as we typically have very few data in the target domain,
and therefore the model can easily overfit, especially if we train a complicated
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MKL model, even with the boosting approach. To deal with this issue, we can
implicitly regularize the candidate functions at each boosting iteration by con-
straining the learning process within the function space spanned by the kernel
functions trained on the source domains, rather than training the model in the
function space spanned by arbitrary kernels. On the other hand, however, the
underlying assumption of this approach is that at least one source domain is
closely related to the target domain and therefore the kernel functions learned
from the source domains can be reused. If this assumption does not hold, negative
transfer could hurt the prediction performance. To avoid this situation, we also
keep a MKL model which is trained only on the target domain. Consequently,
the challenge becomes how to balance the knowledge embedded in the model
learned from the source domains and the data fitting in the target domain.

To address this issue in a principled manner, we follow the idea of ε-
boosting [6,20] and propose the BTMKR algorithm, which is aimed towards
transfer learning. There are two levels of transferring the knowledge of mod-
els: kernel-level transfer and model-level transfer, denoted by K-BTMKR and
M-BTMKR respectively. At each iteration, K-BTMKR selects a single kernel
function from S × M candidate kernels, while M-BTMKR selects a multiple
kernel model from S domains. Therefore, K-BTMKR has higher “resolution”
and more flexibility, at the price of higher risk of overfitting, as the dimension
of its search space is M higher than that of M-BTMKR.

Kernel-Level Transfer (K-BTMKR). Let H = {h1
1, . . . , h

1
M , . . . , hS

1 , . . . ,
hS

M} be the set of MS candidate kernel functions learned from S source domains,
and F = {f1, . . . , fJ} be the set of J candidate kernel functions from the target
domain. Note that as the kernel functions from the source domains are fixed,
the size of H is finite, while the size of the function space of the target domain
is infinite, since the weights learned by SVR can be arbitrary (i.e., Eq. 7). For
simplicity of analysis, we assume J is also finite. Given the mapping h : Rd →
R

MS , h(x) = [h1
1(x), . . . , hS

M ]� defined by H and the mapping f defined by F ,
we formulate the transfer learning problem as:

min
βS ,βT

L (βS , βT ) s.t. ||βS ||1 + λ||βT ||1 ≤ μ, (9)

where L(βS , βT ) �
∑N

n=1 �(β�
S h(xn) + β�

T f(xn), yn), βS � [β1
1 , . . . , β

S
M ]� ∈

R
MS , βT � [β1, . . . , βJ ]� ∈ R

J are the coefficient vectors for the source domains
and the target domain respectively, and λ is a parameter that controls how much
we penalize βT against βS . Intuitively, if the data from target domain is limited,
we should set λ ≥ 1 to favor the model learned from the source domains, in
order to avoid overfitting.

Following the idea of ε-boosting [12,20], Eq. 9 can be solved by slowly increas-
ing the value of μ by ε, from 0 to a desired value. More specifically, let g(x) =
[h(x)�, f(x)�]�, and β =

[
Δβ�

S ,Δβ�
T

]�. At the t-th boosting iteration, the
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coefficient vector β is updated to β + Δβ by solving the following optimization
problem:

min
Δβ

L (β + Δβ) s.t. ||ΔβS ||1 + λ||ΔβT ||1 ≤ ε (10)

As ε is very small, the objective function of Eq. 10 can be expanded by first-order
Taylor expansion, which gives

L (β + Δβ) ≈ L (β) + ∇L (β)�
Δβ, (11)

where

∂L
∂βj

=
N∑

n=1

−rt
ngj(xn), ∀j ∈ {1, . . . , MS + J}. (12)

By changing the coefficients β̃T ← λβT , it can be shown that minimizing Eq. 10
can be (approximately) solved by

Δβj =

{
ε, if j = arg maxj

∑N
n=1 rt

ngj(xn)

λj

0, otherwise
, (13)

where λj = 1,∀j ∈ {1, . . . , MS}, and λj = λ, otherwise. In practice, as the
size of function space of target domain is infinite, the candidate functions are
actually computed by fitting the current residuals, as shown in Algorithm 2.

Model-Level Transfer (M-BTMKR). The derivation of M-BTMKR is sim-
ilar to that of K-BTMKR, and therefore is omitted here.

3.3 Computational Complexity

The computational complexity of BMKR, as analyzed in [23], is O(TMξ(N)),
where ξ(N) is the computational complexity of training a single SVR with N
samples. Standard learning approaches formulate SVR as a quadratic program-
ming (QP) problem and therefore ξ(N) is O(N3). Lower complexity (e.g., about
O(N2)) can be achieved by using other solvers (e.g., LIBSVM [5]). More impor-
tant, BMKR can adopt stochastic learning approach, as suggested in [23], which
only selects N ′ samples for training a SVR at each boosting iteration. This app-
roach yields a complexity of O(TM(N + ξ(N ′))), which makes the algorithm
tractable for large-scale problems by choosing N ′ � N . The computational
complexity of the BTMKR algorithms is O(TM(SN + ξ(N))). Note that in the
context of transfer learning, we use all the samples from the target domain, as
the size of data set is usually small.
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4 Experiments and Simulation Results

In this section, we evaluate the proposed algorithms on the problem of short-term
electricity load forecasting for residential houses. Several factors including day
types, weather conditions, and the lagged load consumption itself may affect the
load profile of a given house. In this paper, we use three kinds of features for load
forecasting: lagged load consumption, i.e., electricity consumed in the last three
hours, temperature in the last three hours, and weekday/weekend information.
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Fig. 1. Load data for four winter days
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Fig. 2. Load data for three houses

4.1 Data Description

The historical temperature data are obtained from [14], and the residential house
load consumption data are provided by the US Energy department [17]. The data
set includes hourly residential house load consumption data for 24 locations in
New York state in 2012. For each location, it provides data for three types
of houses, based on the house size: low, base, and high. Figure 1 shows load
consumption for a base type house for four consecutive winter days. We can
see that the load consumption starts to decrease from 8 am and increases very
quickly from 4 pm. Figure 2 shows the load consumption for three high load
consumption houses in nearby cities for the same winter day. It can be observed
that the load consumption for house 1 is similar to house 2 and both are different
from house 3.

4.2 BMKR for Electricity Load Forecasting

To test the performance of BMKR, we use the data of a high energy consumption
house in New York City in 2012. We test the performance of BMKR separately
for different seasons, and compare it with single kernel SVR and linear regression.
We set the number of boosting iterations for the proposed algorithms to 100, the
step-size of ε to 0.05, and the sampling ratio to 0.9. In order to accelerate the
learning process, we initialize the model with linear regression. The candidate
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kernels for BMKR are: Gaussian kernels with 10 different widths (2−4, 2−3, ..., 25)
and a linear kernel. We repeat the simulation for 10 times, and each time we
randomly choose 50% of the data in the season as training data and 50% of the
data as testing data.

Table 1 shows the mean and standard deviation (std dev) of the Mean Aver-
age Percentage Error (MAPE) measurement for BMKR and the other two base-
lines. We can see that BMKR achieves the best forecasting performance for
all seasons, obtaining 3.3% and 3.8% average MAPE improvements over linear
regression and single kernel SVR respectively.

Table 1. MAPE (%) performance (mean ± std dev) for high load consumption houses

Method Spring Summer Fall Winter Average

Linear 10.42 ± 0.10 7.78 ± 0.13 9.21 ± 0.22 5.81 ± 0.13 8.30 ± 0.15

SVR 10.95 ± 0.21 7.73 ± 0.11 8.82 ± 0.21 5.88 ± 0.12 8.34 ± 0.16

BMKR 10.31± 0.17 7.64± 0.02 8.42 ± 0.11 5.73± 0.07 8.02± 0.10

4.3 Transfer Regression for Electricity Load Forecasting

We evaluate the proposed transfer regression algorithms: M-BTMKR and
K-BTMKR on high load consumption houses. We randomly pick 6 high load
consumption houses as target house and use the remaining 18 high consumption
houses as source houses. We repeat the simulation 10 times for each house, and
each time we randomly choose 36 samples as the training data, and 100 samples
as the testing data for the target house. For source houses, we randomly chose
600 data samples as the training data in each simulation. For K-BTMKR and
M-BTMKR, λ is chosen by cross validation to balance the model leaned from
source house data and the model learned from target house data.

Performance of M-BTMKR and K-BTMKR are compared with linear regres-
sion, single kernel SVR and BMKR. The candidate kernels and boosting set-
ting are the same as in Sect. 4.2. For the baselines, the forecasting models are
trained only with data from target houses, and the results are shown in Table 22,
from which it can be observed that the proposed transfer algorithms signifi-
cantly improve the forecasting performance. For each individual location, the
best results are achieved by either K-BTMKR or M-BTMKR, and M-BTMKR
shows the best performance on average. The forecasting accuracies of M-BTMKR
and K-BTMKR are very close to each other and both are much better than the
baseline algorithms without transfer. In other words, with the proposed transfer
algorithms, the knowledge learned from the source houses is properly transferred
to the target house.

2 Due to the space limitation, we only report the results for high load consumption
houses. The results for low and base load consumption houses are similar to the high
load consumption houses.
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Table 2. Transfer learning MAPE (%) performance for high load consumption houses

Method Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 Average

Linear 8.02± 0.05 9.11± 0.70 17.39± 1.62 6.05± 0.02 11.43± 0.15 9.42± 0.65 10.24± 0.53

SVR 11.53± 0.34 6.82± 0.39 25.90± 0.72 8.24± 0.08 26.31± 1.97 14.00± 0.65 15.47± 0.69

BMKR 8.06± 0.03 6.64± 0.54 17.85± 1.31 5.29± 0.01 12.82± 0.21 9.05± 0.57 9.95± 0.45

M-BTMKR 5.35± 0.01 5.99± 0.02 5.63± 0.19 5.01± 0.01 9.13± 0.01 5.69± 0.01 6.13± 0.04

K-BTMKR 5.38± 0.02 5.46± 0.30 6.97± 0.26 5.55± 0.09 8.96± 0.14 7.31± 0.21 6.60± 0.17

4.4 Negative Transfer Analysis

Sometimes the consumption pattern for source houses and target houses can be
quite different. We would prefer that the transfer algorithms prevent potential
negative transfer for such scenarios. Here we present a case study to show the
importance of balancing the knowledge learned from source domains and data
fitting in the target domain. We use the same high load target houses as described
in Sect. 4.3, but for the source houses, we randomly chose eighteen houses from
the low type houses. We repeat the simulation for 10 times and the results are
shown in Table 3.

The proposed algorithms are compared with linear regression, single kernel
SVR, BMKR, M-BTMKRwoT , and K-BTMKRwoT , where M-BTMKRwoT and
K-BTMKRwoT denote the BTMKR algorithms that we do not keep a MKL
model trained on the target domain when we learn BTMKR models (i.e., we
do not train f∗ in Algorithm 2). Simulation results show that, if we do not
keep a MKL model trained on the target domain, we would encounter severe
negative transfer problem, and the forecasting accuracy would be even much
worse than the models learned without transfer. Meanwhile, we can see that
the proposed M-BTMKR and K-BTMKR could successfully avoid such negative
transfer. In this case, M-BTMKR and K-BTMKR still show better performance
than other algorithms, though the forecasting accuracy of K-BTMKR is very
close to BMKR. M-BTMKR achieves the best average forecasting performance
and provides 14.37% average forecasting accuracy improvements over BMKR.
In summary, the BTMKR algorithms can avoid the negative transfer when the
data distributions of source domain and target domain are quite different.

Table 3. Transfer learning MAPE (%) performance for high load consumption target
houses with low load consumption source houses
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Algorithm 2. BTMKR: Boosting based Transfer Multiple Kernel Regression
Input: Data set ST from the target domain, number of iterations T , regularization
parameter λ, multiple kernel functions {F1, . . . , FS} learned from S source domains,
where each Fs is given by Eq. 6.

1: Initialize residual: r1n = yn, ∀n ∈ {1, . . . , N}, and F = 0
2: for t = 1, ..., T do
3: Compute the regression model f∗ and h∗ (line 8 – 21)

4: Select the base learner: f t =

{
f∗, if

∑N
n=1 rt

nf∗(xn)

λ
>

∑N
n=1 rt

nh∗(xn)

h∗, otherwise.

5: Add f t to the ensemble: F ← F + εf t

6: Update residuals: rt+1
n = yn − F (xn), ∀n ∈ {1, 2, ...N}

7: end for
Output: the final multiple kernel function F (x)

K-BTMKR
8: for s = 1, ..., S do
9: for m = 1, ..., M do

10: Fit the current residuals: γt
s,m =

∑N
n=1 rt

nhs
m(xn)

∑N
n=1 hs

m(xn)2

11: Compute the loss of hs
m: et

s,m = 1
2

∑N
n=1

(
γt

s,mhs
m(xn) − rt

n

)2

12: end for
13: end for
14: Fit the residuals by training a kernel regressor:

f∗ = arg minf∈F 1
2

∑N
n=1

(
f(xn) − rt

n

)

15: Return the regression models: f∗ and h∗ = arg min{hs
m} et

s,m

M-BTMKR
16: for s = 1, ..., S do

17: Fit the current residuals: γt
s =

∑N
n=1 rt

nFs(xn)
∑N

n=1 Fs(xn)2

18: Compute the loss of Fs: et
s = 1

2

∑N
n=1

(
γt

sFs(xn) − rt
n

)2

19: end for
20: Fit the residuals by training a kernel regressor:

f∗ = arg minf∈F 1
2

∑N
n=1

(
f(xn) − rt

n

)

21: Return the regression models: f∗ and h∗ = arg min{Fs} et
s

5 Related Work

Various techniques have been proposed to efficiently learn MKL models [11],
and our BMKR algorithm is originally inspired by [23], which applies the idea
of AdaBoost to train a multiple kernel based classifier. BMKR is a more general
framework which can adopt different loss functions for different learning tasks.
Furthermore, the boosting approach provides a natural approach to solve small
sample size problems by leveraging transfer learning techniques. The original
work on boosting based transfer learning proposed in [7] introduces a sample-
reweighting mechanism based on AdaBoost for classification problem. Later, this
approach is generalized to the cases of regression [19], and transferring knowledge
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from multiple sources [24]. In [6], a gradient boosting based algorithm is proposed
for multitask learning, where the assumption is that the model parameters of
all the tasks share a common factor. In [22], the transfer boosting and multitask
boosting algorithms are generalized to the context of online learning. While both
multiple kernel learning and transfer learning have been studied extensively,
the effort in simultaneously dealing with these two issues is very limited. Our
BTMKR algorithm distinguishes itself from these methods because it deals with
these two learning problems in a unified and principled approach. To our best
knowledge, this is the first attempt to transfer MKL for regression problem.

6 Conclusion

In this paper, we first propose BMKR, a gradient boosting based multiple ker-
nel learning framework for regression, which is suitable for short-term electricity
load forecasting problems. Different from the traditional methods for MKL, the
proposed BMKR algorithm learns the combination weights for each kernel using
a boosting-style algorithm. Simulation results on residential data show that the
short-term electricity load forecasting could be improved with BMKR. We fur-
ther extend the proposed boosting framework to the context of transfer learning
and propose two boosting based transfer multiple kernel regression algorithms:
K-BTMKR and M-BTMKR. Empirical results suggest that both algorithms
can efficiently transfer the knowledge learned from source houses to the tar-
get houses and significantly improve the forecasting performance when the tar-
get houses and source houses have similar electricity load consumption pattern.
We also investigate the effects of negative transfer and show that the proposed
algorithms could prevent potential negative transfer when the source houses are
quite different from the target houses.
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