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Abstract. We review our recent progress in the development of graph
kernels. We discuss the hash graph kernel framework, which makes the
computation of kernels for graphs with vertices and edges annotated with
real-valued information feasible for large data sets. Moreover, we sum-
marize our general investigation of the benefits of explicit graph feature
maps in comparison to using the kernel trick. Our experimental studies
on real-world data sets suggest that explicit feature maps often provide
sufficient classification accuracy while being computed more efficiently.
Finally, we describe how to construct valid kernels from optimal assign-
ments to obtain new expressive graph kernels. These make use of the
kernel trick to establish one-to-one correspondences. We conclude by a
discussion of our results and their implication for the future development
of graph kernels.

1 Introduction

In various domains such as chemo- and bioinformatics, or social network anal-
ysis large amounts of graph structured data is becoming increasingly prevalent.
Classification of these graphs remains a challenge as most graph kernels either
do not scale to large data sets or are not applicable to all types of graphs. In the
following we briefly summarize related work before discussing our recent progress
in the development of efficient and expressive graphs kernels.

1.1 Related Work

In recent years, various graph kernels have been proposed. Gärtner et al. [5]
and Kashima et al. [8] simultaneously developed graph kernels based on random
walks, which count the number of walks two graphs have in common. Since then,
random walk kernels have been studied intensively, see, e.g., [7,10,13,19,21].
Kernels based on shortest paths were introduced by Borgwardt et al. [1] and are
computed by performing 1-step walks on the transformed input graphs, where
edges are annotated with shortest-path lengths. A drawback of the approaches
mentioned above is their high computational cost. Therefore, a different line of
research focuses particularly on scalable graph kernels. These kernels are typi-
cally computed by explicit feature maps, see, e.g., [17,18]. This allows to bypass
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the computation of a gram matrix of quadratic size by applying fast linear clas-
sifiers [2]. Moreover, graph kernels using assignments have been proposed [4],
and were recently applied to geometric embeddings of graphs [6].

2 Recent Progress in the Design of Graph Kernels

We give an overview of our recent progress in the development of scalable and
expressive graph kernels.

2.1 Hash Graph Kernels

In areas such as chemo- or bioinformatics edges and vertices of graphs are often
annotated with real-valued information, e.g., physical measurements. It has been
shown that these attributes can boost classification accuracies [1,3,9]. Previous
graph kernels that can take these attributes into account are relatively slow and
employ the kernel trick [1,3,9,15]. Therefore, these approaches do not scale to
large graphs and data sets. In order to overcome this, we introduced the hash
graph kernel framework in [14]. The idea is to iteratively turn the continuous
attributes of a graph into discrete labels using randomized hash functions. This
allows to apply fast explicit graph feature maps, e.g., [17], which are limited
to discrete annotations. In each iteration we sample new hash functions and
compute the feature map. Finally, the feature maps of all iterations are com-
bined into one feature map. In order to obtain a meaningful similarity between
attributes in R

d, we require that the probability of collision Pr[h1(x) = h2(y)]
of two independently chosen random hash functions h1, h2 : Rd → N equals an
adequate kernel on R

d. Equipped with such a hash function, we derived approx-
imation results for several state-of-the-art kernels which can handle continuous
information. Moreover, we derived a variant of the Weisfeiler-Lehman subtree
kernel which can handle continuous attributes.

Our extensive experimental study showed that instances of the hash graph
kernel framework achieve state-of-the-art classification accuracies while being
orders of magnitudes faster than kernels that were specifically designed to handle
continuous information.

2.2 Explicit Graph Feature Maps

Explicit feature maps of kernels for continuous vectorial data are known for
many popular kernels like the Gaussian kernel [16] and are heavily applied in
practice. These techniques cannot be used to obtain approximation guarantees
in the hash graph kernel framework. Therefore, in a different line of work, we
developed explicit feature maps with the goal to lift the known approximation
results for kernels on continuous data to kernels for graphs annotated with con-
tinuous data [11]. More specifically, we investigated how general convolution
kernels are composed from base kernels and how to construct corresponding fea-
ture maps. We applied our results to widely used graph kernels and analyzed
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for which kernels and graph properties computation by explicit feature maps is
feasible and actually more efficient. We derived approximative, explicit feature
maps for state-of-the-art kernels supporting real-valued attributes. Empirically
we observed that for graph kernels like GraphHopper [3] and Graph Invariant [15]
approximative explicit feature maps achieve a classification accuracy close to the
exact methods based on the kernel trick, but required only a fraction of their
running time. For the shortest-path kernel [1] on the other hand the approach
fails in accordance to our theoretical analysis.

Moreover, we investigated the benefits of employing the kernel trick when the
number of features used by a kernel is very large [10,11]. We derived feature maps
for random walk and subgraph kernels, and applied them to real-world graphs
with discrete labels. Experimentally we observed a phase transition when com-
paring running time with respect to label diversity, walk lengths and subgraph
size, respectively, confirming our theoretical analysis.

2.3 Optimal Assignment Kernels

For non-vectorial data, Fröhlich et al. [4] proposed kernels for graphs derived
from an optimal assignment between their vertices, where vertex attributes are
compared by a base kernel. However, it was shown that the resulting similar-
ity measure is not necessarily a valid kernel [20,21]. Hence, in [12], we studied
optimal assignment kernels in more detail and investigated which base kernels
lead to valid kernels. We characterized a specific class of kernels and showed
that it is equivalent to the kernels obtained from a hierarchical partition of
their domain. When such kernels are used as base kernel the optimal assignment
(i) yields a valid kernel; and (ii) can be computed in linear time by histogram
intersection given the hierarchy. We demonstrated the versatility of our results
by deriving novel graph kernels based on optimal assignments, which are shown
to improve over their convolution-based counterparts. In particular, we proposed
the Weisfeiler-Lehman optimal assignment kernel, which performs favorable com-
pared to state-of-the-art graph kernels on a wide range of data sets.

3 Conclusion

We gave an overview about our recent progress in kernel-based graph classifica-
tion. Our results show that explicit graph feature maps can provide an efficient
computational alternative for many known graph kernels and practical applica-
tions. This is the case for kernels supporting graphs with continuous attributes
and for those limited to discrete labels, even when the number of features is very
large. Assignment kernels, on the other hand, are computed by histogram inter-
section and thereby again employ the kernel trick. This suggests to study the
application of non-linear kernels to explicit graph feature maps in more detail
as future work.
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