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Abstract. Understanding the complex dynamics in the real-world such
as in multi-agent behaviors is a challenge in numerous engineering and
scientific fields. Spectral analysis using Koopman operators has been
attracting attention as a way of obtaining a global modal description of
a nonlinear dynamical system, without requiring explicit prior knowl-
edge. However, when applying this to the comparison or classification of
complex dynamics, it is necessary to incorporate the Koopman spectra of
the dynamics into an appropriate metric. One way of implementing this
is to design a kernel that reflects the dynamics via the spectra. In this
paper, we introduced Koopman spectral kernels to compare the complex
dynamics by generalizing the Binet-Cauchy kernel to nonlinear dynam-
ical systems without specifying an underlying model. We applied this
to strategic multiagent sport plays wherein the dynamics can be classi-
fied, e.g., by the success or failure of the shot. We mapped the latent
dynamic characteristics of multiple attacker-defender distances to the
feature space using our kernels and then evaluated the scorability of the
play by using the features in different classification models.

1 Introduction

Groups of organisms competing and cooperating in nature are assumed to behave
as complex and nonlinear dynamical systems, which currently elude formula-
tion [7,9]. Understanding the complex dynamics of living organisms or artificial
agents (and the component parts) is a challenging research area in biology [5],
physics [7], and machine learning. In the field of physics, decomposition or spec-
tral methods that factorize the dynamics into modes from the data are used such
as proper orthogonal decomposition (POD) [1,25] or dynamic mode decompo-
sition (DMD) [23,24]. The problem of learning dynamical systems in machine
learning has been discussed such as in terms of Bayesian approaches [10] and
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predictive state representation [19]. This topic is closely related to the decompo-
sition technique in physics, aiming to estimate a prediction model by examining
the obtained modes.

In this paper, we consider the following discrete-time nonlinear dynamical
system:

xt+1 = f (xt) (1)

where xi is a state vector on the state space M (i.e., x ∈ M ⊂ R
d) and f is

a state transition function that assumes the dynamical system to be nonlinear.
A recent development is the use of Koopman spectral analysis with reproducing
kernels (called kernel DMD). This defines a mode that can yield direct informa-
tion about the nonlinear latent dynamics [16]. However, to compare or classify
these complex dynamics, it is necessary to incorporate their Koopman spectrum
into a metric appropriate for representing the similarity between the nonlinear
dynamical systems.

Several works have applied approximation with a low-dimensional linear sub-
space to represent this similarity [12,30,33]. One approach has used the Binet-
Cauchy (Riemannian) distance with a variety of kernels on a Grassman man-
ifold [12], such as the kernel principal angle [33], and the trace and determi-
nant kernel [30], which were designed for application in face recognition [33]
and movie clustering [30]. The algorithm essentially calculates the Binet-Cauchy
distance between two subspaces in the feature space, defined by the product
of the canonical correlations. However, the main applications assumed a linear
dynamical model [12,30,33] and thus generalization to nonlinear dynamics with-
out specifying an underlying model remains to be addressed. In this paper, we
map the latent dynamics to the feature space using the kernels, allowing binary
classification to be applied to real-world complex dynamical systems.

Organized human group tasks such as navigation [13] or ballgame teams [8]
provide excellent examples of complex dynamics and pose challenges in machine
learning because of their switching and overlapping hierarchical subsystems [8],
characterized by recursive shared intentionality [28]. Measurement systems have
been developed that capture information regarding the position of a player in a
ballgame, allowing analysis of particular shots [11]; however, plays involving col-
laboration between several teammates have not yet been addressed. In games such
as basketball or football, coaches analyze team formations and players repeatedly
practice moves that increase the probability of scoring (“scorability”). However,
the selection of tactics is an ill-posed problem, and thus basically requires the
implicit experience-based knowledge of the coach. An algorithm is needed that
clarifies scorable moves involving multiple players in the team.

Previous research has classified team moves on a global scale by directly
applying machine learning methods derived mainly from natural language pro-
cessing. These include recursive neural networks (RNN) using optical flow images
of the trajectories of all players [31] or the application of latent Dirichlet
allocation (LDA) to the arrangement of individual trajectories [22]. However,
the contribution of team movement to the success of a play remains unclear.
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Previously, we reported that three maximum attacker-defender distances sep-
arately explained scorability [8], but the study addressed only the outcome of
a play, rather than its time evolution and the interactions that it comprised.
An algorithm is required that uses mapping to feature space to discriminate
between successful and unsuccessful moves while accounting for these complex
factors. In this paper, we map the latent dynamic characteristics of multiple
attacker-defender distances [8] to the feature space using our kernels acquired
by kernel DMD and then evaluated scorability.

The rest of the paper is organized as follows. Section 2 briefly reviews the
background of Koopman spectral kernels, while Sect. 3 discusses methods for
computing them. We then extended this to empirical example of actual human
locomotion in Sect. 4. For application to multiple sporting agents, Sect. 5 reports
our findings using the data on actual basketball games. Our approach proved
capable of capturing complex team moves. Finally, Sect. 6 presents our discussion
and conclusions.

2 Background

2.1 Koopman Spectral Analysis and Dynamic Mode Decomposition

Spectral analysis (or decomposition) for analyzing dynamical systems is a pop-
ular approach aimed at extracting low-dimensional dynamics from the data.
Common techniques include global eigenmodes for linearized dynamics, discrete
Fourier transforms, and POD for nonlinear dynamics [25], as well as multiple
variants of these techniques. DMD has recently attracted particular attention in
areas of physics such as fluid mechanics [23] and several engineering fields [2,26]
because of its ability to define a mode that can yield direct information even
when applied to time series with nonlinear latent dynamics [23,24]. However,
the original DMD has numerical disadvantages, related to the accuracy of the
approximate expressions of the Koopman eigenfunctions derived from the data.
A number of variants have been proposed to address this shortcoming, including
exact DMD [29], optimized DMD [4], and baysian DMD [27]. Sparsity-promoting
DMD [14] provides a framework for the approximation of the Koopman eigen-
functions with fewer bases. Extended DMD [32], which works on predetermined
kernel basis functions, has also been proposed. These Koopman spectral analy-
ses have been generalized to a reproducing kernel Hilbert space (RKHS) [16], an
approach which is called kernel DMD.

In Koopman spectral analysis, the Koopman operator K [18] is an infinite
dimensional linear operator acting on the scalar function gi : M → C. That is,
it maps gi to the new function Kgi as follows:

(Kgi) (x) = (gi ◦ f) (x) , (2)
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where K denotes the composition of gi with f . We can see that K acts linearly
on the function gi. The dynamics defined by f may be nonlinear. Since K is a
linear operator, it can generally perform eigenvalue decomposition:

Kϕj (x) = λjϕj (x) , (3)

where λj ∈ C is the j th eigenvalue (called the Koopman eigenvalue) and ϕj is the
corresponding eigenfunction (called the Koopman eigenfunction). We denote the
concatenation of gj to g := [g1, . . . , gp]T. If each gj lies within the space spanned
by the eigenfunction ϕj , we can expand the vector-valued g in terms of these
eigenfunctions as g(x) =

∑∞
j=1 ϕj(x)ψj , where ψj is a set of vector coefficients

called Koopman modes. By iterative application of Eqs. (2) and (3), the following
equation is obtained:

(g ◦ f) (x) =
∞∑

j=1

λjϕj (x) ψj . (4)

Therefore, λj characterizes the time evolution of the corresponding Koopman
mode ψj , i.e., the phase of λj determines its frequency and the magnitude deter-
mines the growth rate of its dynamics.

DMD is a popular approach for estimating the approximations of λj and
ψj from a finite length observation data sequence y0, y1, . . . , yτ (∈ R

p), where
yt := g(xt). Let A = [y0, y1, . . . , yτ−1] and B = [y1, y2, . . . , yτ ]. Then, DMD
basically approximates those by calculating the eigendecomposition of the least-
squares solution to

min
P ′∈Rp×p

(1/τ)
∑τ

t=0
‖yt+1 − P ′yt‖2, (5)

i.e., BA†(:= P ) (•† is the pseudo-inverse of •). Let the j -th right and left eigen-
vector of P be ψj and κj , respectively, and assume that these are normalized so
that κ∗

i ψj = δij (δij is the Kronecker’s delta). Then, since any vector b ∈ C
p can

be written as b =
∑p

j=1 (κ∗
i b)ψj , we have g(x) =

∑p
j=1 ϕj(x)ψj by applying it

to g(x). Therefore, by applying K to both sides, we have

(g ◦ f) (x) =
p∑

j=1

λjϕj (x) ψj , (6)

indicating a modal representation corresponding to Eq. (4) for the finite sum.

2.2 Kernels for Comparing Nonlinear Dynamical Systems

Selection of an appropriate representation of the data is a fundamental issue in
pattern recognition. The important point is to design the features (i.e., kernels)
that reflect structure of the data. Time series data is challenging to design the
features because of the difficulty in reflecting the data structure (including time
length). Researchers have developed alternative kernel methods, including the
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use of graphs [15,17], subspaces [12,33] or trajectories [30]. In this paper, a
kernel design applicable to dynamical systems was required. Several methods
were proposed, based on the subspace angle with kernel methods such as for
an auto-regressive moving average (ARMA) model [30]. These methodologies
were previously reviewed [12], from the viewpoint of the Riemannian distance
(or metric) on the Grassman manifold.

The Grassmann manifold G (m,D) is the set of m-dimensional linear sub-
spaces of R

D. Formally, the Riemannian distance between two subspaces is
the geodesic distance on the Grassmann manifold. However, a more intuitive
and computationally efficient way of defining the distances uses the principal
angles [20]. A previous review [12] categorized the various Riemannian distances
into the projection and Binet-Cauchy distance. The former has been used in
applications such as face recognition [3,12], and the latter has been applied
in video clustering [30] and face recognition [33], and has been generalized to
(specific nonlinear) dynamical systems [30]. We then adopted the Binet-Cauchy
distance when comparing complex systems.

The Binet-Cauchy distances were basically obtained with the product of
canonical correlations using a variety of kernels [30]. However, the main applica-
tions assumed linear dynamical model [12,30,33] such as ARMA model. Thus,
it is necessary to generalize to nonlinear dynamics without any specific underly-
ing model, into which the Koopman spectrum of dynamics is incorporated. We
called the kernels Koopman spectral kernels.

3 Design of Koopman Spectral Kernels

3.1 DMD with Reproducing Kernel

Conceptually, DMD can be considered as producing a local approximation of
the Koopman eigenfunctions using a set of linear monomials of the observables
as the basis functions. In practice, however, this is certainly not applicable to all
systems (in particular, beyond the region of validity for local linearization). Then,
DMD with reproducing kernels [16] approximates the Koopman eigenfunctions
with richer basis functions.

Let H be the RKHS embedded with the dot product determined by a positive
definite kernel k. Additionally, let φ : M → H be a feature map, and an instance
of φ with respect to x is denoted by φx (i.e., φx := φ(x)). Then, we define the
Koopman operator KH : H → H in the RKHS by

KHφx = φx ◦ f . (7)

Note that almost of the theoretical claims in this study do not necessarily require
φ to be in the RKHS (it is sufficient to consider that φ stays within a Hilbert
space), but this assumption should perform the calculation in practice.

In this paper, we robustify the kernel DMD by projecting data onto the
direction of POD [4,16,29]. First, a centered Gram matrix is defined by Ḡ =
HGH, where G is a Gram matrix, H = I − 1τ , I is a unit matrix, and 1τ is
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a τ -by-τ matrix, for which each element takes the value 1/τ . The Gram matrix
Gxx of the kernel k(yi,yj) is defined at yi and yj (i and j dimensions) of the
observation data matrix A. Similarly, the Gram matrix Gxy of the kernel between
A and B can be calculated. At this time, Gxx = M∗

τMτ and Gxy = M∗
τM+,

where M∗
τ indicates the Hermitian transpose of Mτ . Also, Mτ := [φx0 , .., φxτ−1 ]

and M+ := [φx1 , .., φxτ
], where φxi

is considered as a feature map of xi from
the state space M to the RKHS H.

Here, suppose that the eigenvalues and eigenvectors can be truncated based on
eigenvalue magnitude. In other words, Ḡ ≈ B̄ḠB̄∗ where p (≤ τ) eigenvalues are
adopted. Then, a principal orthogonal direction in the feature space is given by

νj = MτHS̄−1/2
jj βj , (8)

where βj is the j th row of B̄. Let U = [ν1, . . . , νj ] = MτHB̄ S̄−1/2. Since M+ =
KHMτ , the projection of KH onto the space spanned by νj is given as follows:

F̂ = UKHU = S̄−1/2B̄∗H(MτM+)HB̄ S̄−1/2. (9)

Note that Gxy = M∗
τM+. Then, if we let F̂ = T̂−1Λ̂T̂ be the eigendecomposition

of F̂ , we obtain the centered DMD mode ϕ̄j = Ubj = MτHB̄ S̄−1/2bj , where
bj is the j th row of T̂−1. The diagonal matrix Λ̂ comprising the eigenvalues
represents the temporal evolution of the mode.

3.2 Koopman Spectral Kernels

For calculating the similarity between the dynamical systems DSi and DSj , we
compute Koopman spectral kernels based on the idea of Binet-Cauchy kernels.
The Binet-Cauchy kernels are basically calculated from the traces of compound
matrices [30] defined as follows. Let M be a matrix in R

m×n. For q ≤ min(m,n),
define In

q = {i = i1, · · · , iq : 1 ≤ i1 < ... < iq ≤ n, ii ∈ N}, and likewise Im
q . We

denote by Cq(M) the qth compound matrix, that is, the
(

m
q

)

×
(

n
q

)

matrix

whose elements are the minors det((Mk,l)k �=i,l�=j ), where i ∈ I nq and j ∈ Imq are
assumed to be arranged in lexicographical order. In the unifying viewpoint [30],
Binet-Cauchy kernels is a general representation including various kernels [6,15,
17,21], divided into two strategies. One is the trace kernel obtained by setting
q = 1 (i.e., C1(M) = M), which directly reflects the property of temporal
evolution of the dynamical systems, including diffusion kernel [17] and graph
kernel [15]. Second is the determinant kernel obtained by setting order q to be
equal to the order of the dynamical systems n (i.e., Cn(M) = det(M)), which
extracts coefficients of dynamical systems, including the Martin distance [21]
and the distance based on the subspace angle [6].

We expand the kernels to applying Koopman spectral analysis, which are
called the Koopman trace kernel and Koopman determinant kernel, respectively.
Both kernels reflect the Koopman eigenvalue, the eigenfunction, and the mode
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(i.e., system trajectory including the initial condition). However, richer infor-
mation of system trajectory does not necessarily increase expressiveness such as
in classification with real-world data. Therefore, we also expanded the kernel
of principal angle [33] to applying Koopman spectral analysis, which is called
Koopman kernel of principal angle. The kernel principal angle is theoretically
a simple case of the trace kernel [30], which is defined as the inner product of
linear subspaces in this feature space. In this paper, for a simple comparison, we
compute the kernel with the inner product of the Koopman modes (i.e. not the
trajectory and independent of initial condition).

Koopman Trace Kernel and Determinant Kernel. First, for the trace
kernel, we generalize the kernel assmuing the ARMA model [30], to nonlinear
dynamical systems without specifying an underlying model. The trace kernel of
DSi and DSj can be theoretically defined as follows:

k (DSi,DSj) :=
∞∑

t=0

(
e−κtgi (xi,t)

T
Wgj (xj ,t)

)
, (10)

where gi and gj is the observation function and W is an arbitrary semidefinite
matrix (here, W = 1). Moreover, for converging the above equation, we suppose
the exponential discount μ(t) = e−κt(κ > 0). In this paper, noises in observation
and latent dynamics are not considered. Koopman trace kernel can be computed
using the modal representation given by the kernel DMD as follows:

k (DSi,DSj) = ϕi (xi,0)
T

∞∑

t=0

(
e−κtΛt

i

(
Ψi

TWΨj

)
Λt

j

)
ϕj (xj,0) , (11)

where, Λi is a diagonal matrix consisting of Koopman eigenvalues, Ψi is the
Koopman mode, and ϕi is the Koopman eigenfunction (also for j). Although
the equation includes an infinite sum, we can efficiently compute the matrix
M :=

∑∞
t=0 (e−κtΛt

i (Ψ
T
i WΨj )Λt

j ) using the following Sylvester equation M =
e−κΛT

i MΛj + ΨT
i WΨj , where the Koopman mode Ψ = U∗HMτHU T̂−1 for i

and j. For creating a trace kernel independent of the initial conditions [30], we
take expectation over xi,0 and xj,0 in the trace kernel, yielding

k (DSi,DSj) = tr
(
Σϕi(xi,0),ϕj(xj,0)M

)
, (12)

where the initial Koopman eigenvalue ϕ(x0) = a∗(MτHU)∗Mτ,0 for i and
j [16]. Here, a is the left eigenvector of F̂ and Mτ,0 is a vector indicating the
first single column of Mτ . Σϕi(xi,0),ϕj(xj,0) ∈ C

p×p is the covariance of all initial
values ϕn (x0) ∈ C

p×n of DSi for each index 1, ... p of eigenvalues (p was fixed
for all i). Similarly, the determinant kernel using the representation given by
kernel DMD can be computed:

k (DSi,DSj) = det
(
ΨiMΨj

T
)

, (13)

where M = e−κΛT
i MΛj +ϕi(xi,0)ϕj(xj,0)T. Determinant kernels independent

of the initial condition can only be computed for a single output system [30].



134 K. Fujii et al.

Koopman Kernel of Principal Angle. The kernel of principal angle can be
computed using the Koopman modes given by kernel DMD. With respect to
DSi, we define the kernel of principal angles as the inner product of the Koop-
man modes in the feature space: A∗A = T̂−1

i U∗
i HGxxiHUiT̂i. If the rank of F̂

is ri, A∗A is a ri-order square matrix. Also for DSj , we create a similar matrix
B∗B. Furthermore, we define the inner product of the linear subspaces between
DSi and DSj as A∗B = T̂−1

i U∗
i HGxxijHUj T̂j . Gxxij is a ni×nj matrix obtained

by picking up the upper-right part of the centered Gram matrix obtained by con-
necting Ai and Aj in series (ni and nj are the lengths of the time series). Then,
using these matrices, we solve the following generalized eigenvalue problem:

(
0 (A∗B)∗

A∗B 0

)

V = λij

(
B∗B 0

0 A∗A

)

V , (14)

where the size of λij is finally adjusted to rij = min(ri, rj) in descending order,
and V is a generalized eigenvector. The eigenvalue λij is the kernel of principal
angle.

4 Embedding and Classification of Dynamics

A direct but important application of this analysis is the embedding and classifi-
cation of dynamics using extracted features. A set of Koopman spectra estimated
from the analysis can be used as the basis for a low-dimensional subspace rep-
resenting the dynamics. The classification of dynamics can be performed using
feature vectors determined by the Koopman spectral kernels. We used the Gaus-
sian kernel, with the kernel width set as the median of the distances from a data
matrix.

Before applying our approach to multiagent sports data, an experiment was
conducted using open-source real-world data. In this case, human locomotion
data were taken from the CMU Graphics Lab Motion Capture Database (avail-
able at http://mocap.cs.cmu.edu). To verify the classification performance, we
computed the trace kernel of an auto-regressive (AR) model, representing a con-
ventional linear dynamical model. For embedding of the distance matrix with our
kernels, components of the distance matrix between DSi and DSj in the feature
space were obtained using dist(DSi,DSj) = k(Ai ,Ai)+ k(Aj ,Aj )− 2k(Ai ,Aj ).
Figure 1a–c shows the embedding of the sequences using multidimensional scal-
ing (MDS) with the distance matrix, computed with the Koopman kernel prin-
cipal angle, Koopman determinant kernel, and trace kernel of the AR model,
respectively. Classification of performances into jumping, running, and walking
was computed using the k-nearest neighbor algorithm. Error rates of the test
data were small in this order: the Koopman kernel of principal angle (0.261),
Koopman determinant kernel (0.348), trace kernel of the AR model (0.522), and
Koopman trace kernel (0.601). Two Koopman spectral kernels performed better
in classification than the kernel of the linear dynamical model.

http://mocap.cs.cmu.edu
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Fig. 1. MDS embedding of (a) Koopman kernel of principal angle, (b) Koopman deter-
minant kernel, and (c) trace kernel of AR model. Blue, red, and green indicate jump,
run, and walk, respectively (x and triangle show the movements with turn and stop,
respectively). (Color figure online)

5 Application to Multiagent Sport Plays

We used player-tracking data from two international basketball games in 2015
collected by the STATS SportVU system. The total playing time was 80 min,
and the total score of the two teams was 276. Positional data comprised the xy
position of every player and the ball on the court, recorded at 25 frames per
second. We eliminated transitions in attack to automatically extract the time
periods to be analyzed (called an attack-segment). We defined an attack-segment
as the period from all players on the attacking side court entry to 1 s before a
shot was made. We analyzed a total of 192 attack-segments, 77 of which ended
in a successful shot.

Next, we calculated effective attacker-defender distances to predict the suc-
cess or failure of the shot (details were given by [8]), which were temporally and
spatially corrected (Fig. 2a). Although all of the distances were 25 dimensions
(five attackers and defenders), we previously reduced to four dimensions [8]:
(1) ball-mark distance, (2) ball-help distance, (3) pass-mark distance, and (4)
pass-help distance (Fig. 2b–c). These distances were used to create seven input
vector series: (i) a one-dimensional distance (1), (ii) a two-dimensional dis-
tance comprising (1) and (2), and (iii–iv) three- and four-dimensional (1–3, 1–4)
important distances, respectively. For verification, (v) total 25 distances and
(vi) 25-dimensional Euclidean distances without spatiotemporal correction were
calculated. We also used (vii) the xy position (total 20 dimensions) of all the ten
players.

When predicting the outcome of a team-attack movement, it is preferable
to compute the posterior probability rather than the outcome identification of
the shot accuracy itself. We used a naive Bayes classifier and a related vector
machine (RVM) for classification. Figure 3a shows the result of applying the
naive Bayes classifier. The horizontal axis shows the seven input vector series and
the vertical axis the classification error. The Koopman kernel principal angles
derived by inputting four important distances demonstrated minimum error of
35.9%. The result of applying the RVM is shown in Fig. 3b, using the same axes.
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Fig. 2. Diagrams and examples of attacker-defender distance. (a) Diagram of attacker-
defender distance with spatiotemporal correction. (b) Examples of four important dis-
tances. Orange, black, pink and light blue indicate the ball-mark, ball-help, pass-mark,
and pass-help distance, respectively. (c) Example of time series in the same four impor-
tant attacker-defender distances. (Color figure online)
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Fig. 3. Results from applying (a) the naive Bayes classifier and (b) the relevant vector
machine. Kpa, Kdet, Ktr, and trAR are Koopman kernel of principal angle, Koopman
determinant kernel and trace kernel, and trace kernel with AR model, respectively.

The performance of the naive Bayes classifier was superior to that of the RVM.
In both cases, the Koopman spectral kernels produced better classification than
the kernel of the linear dynamical model.

Figure 4a–c show embedding via MDS with the distance matrix of the
Koopman kernel of principal angle countered by frequencies of success and failure
of the shot. For example, the best case of the four important attacker-defender
distances (Fig. 4a) showed the expressiveness in scorability due to wide distri-
bution across the plot. In contrast, they were less widely distributed when only
single distance (Fig. 4b) or the xy coordinates of all players (Fig. 4c) were used.
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Fig. 4. MDS embedding of Koopman kernel of principal angle with three input vector
series. The series consisted of (a) four important distances, (b) single important dis-
tance, and (c) xy coordinates of all players. Red and blue indicates success and failure
of the shot, respectively. (Color figure online)

6 Discussion and Conclusion

The results of the two empirical examples showed that the best performances of
the Koopman spectral kernels (Koopman determinant kernel and kernel of prin-
cipal angle) are superior to that of the AR model assuming a linear dynamical
model. Our proposed kernels can be computed in a closed form; but practically,
the values of the Koopman determinant kernel were too large and the perfor-
mance of the Koopman trace kernel was no better than that of the others. In
contrast, the Koopman kernel of principal angle showed effective expressiveness
only using Koopman modes.

When applied to multiagent sports data, the highest performance was pro-
vided by the classifier using the four important distances. This vector series
reflects four characteristics: the scorability of a player in the current and future
(i) shot, (ii) dribble, and (iii) pass, and (iv) the scorability of a dribbler after the
pass. The proposed kernel reflected the time series of all interactions between
players and was more effective for the classification than the kernel based on
the information only on the shot itself. Well-trained teams aim to create scor-
ing opportunities by continuously selecting tactical passes and dribbles or by
improvising when no shooting opportunity is available.

However, even the best classification was not high (64.1% accuracy) when
applied to real multiagent sports data. Two factors may have been neglected by
our framework. The first is the existence of local interactions between players,
such as local competitive and cooperative play by the attackers and defenders [8]
when seen in higher spatial resolution than was available in this study. The
approach needs to reflect the hierarchical characteristics of global dynamics and
local dynamics. The second is the limitation of the input vector series to the
attacker-defender distances. To achieve more accurate classifiers, not only the
most important factor (i.e., distance) but also further hand-made time-series
input vector series (e.g., Cartesian coordinates or specific movement parameters)
should be used.
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Overall, we developed Koopman spectral kernels that can be computed in
closed form and used to compare multiple nonlinear dynamical systems. In com-
petitive sports, coaches spend considerable amounts of time analyzing videos of
their own team and the opposing team. Application of a system such as the one
presented here may save time and create tactical plans that can currently be
generated only by experienced coaches. More generally, the algorithm can be
applied to the analysis of the complex dynamics of groups of living organisms
or artificial agents, which currently elude formulation.
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