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Abstract. In this paper, we study the trade-offs of different inference
approaches for Bayesian matrix factorisation methods, which are com-
monly used for predicting missing values, and for finding patterns in the
data. In particular, we consider Bayesian nonnegative variants of matrix
factorisation and tri-factorisation, and compare non-probabilistic infer-
ence, Gibbs sampling, variational Bayesian inference, and a maximum-
a-posteriori approach. The variational approach is new for the Bayesian
nonnegative models. We compare their convergence, and robustness to
noise and sparsity of the data, on both synthetic and real-world datasets.
Furthermore, we extend the models with the Bayesian automatic rel-
evance determination prior, allowing the models to perform automatic
model selection, and demonstrate its efficiency. Code and data related
to this chapter are availabe at: https://github.com/ThomasBrouwer/
BNMTF ARD.

1 Introduction

Matrix factorisation methods have been used extensively in recent years to
decompose matrices into latent factors, helping us reveal hidden structure and
predict missing values. In particular we decompose a given matrix into two
smaller matrices so that their product approximates the original one (see Fig. 1).
Nonnegative matrix factorisation models [9] have been particularly popular, as
the nonnegativity constraint makes the resulting matrices easier to interpret, and
is often inherent to the problem—such as in image processing or bioinformat-
ics [9,20]. A related problem is that of matrix tri-factorisation, first introduced
by Ding et al. [6], where the observed dataset is decomposed into three smaller
matrices, which again are constrained to be non-negative.

Both matrix factorisation and tri-factorisation methods have found many
applications in recent years, such as for collaborative filtering [5,13], sentiment
classification [11], predicting drug-target interaction [8] and gene functions [12],
and image analysis [23]. Methods can be categorised as either non-probabilistic
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Fig. 1. Overview of matrix factorisation and matrix tri-factorisation methods, with
missing values (?-entries).

or Bayesian. For the former, finding the factorisation (inference) is commonly
done using multiplicative updates, whereas for the latter we use approximate
Bayesian inference methods. Non-probabilistic or maximum a posteriori (MAP)
solutions give a single point estimate, which can lead to overfitting more easily
and neglects uncertainty. Bayesian approaches address this issue, by instead find-
ing a full distribution over the matrices, where we define prior distributions over
the matrices and then compute their posterior after observing the actual data.
This can greatly reduce overfitting. A key question that arises is: what exactly
are the trade-offs between different matrix factorisation inference approaches?
In particular, which perform better in terms of speed of convergence, predictive
performance, and robustness to noise and sparsity?

In this paper we answer these questions by performing a thorough empir-
ical study to explore these trade-offs between non-probabilistic and Bayesian
inference approaches, which to our knowledge had not been done before. We
consider the popular non-probabilistic matrix factorisation model from Lee and
Seung [10], and a Bayesian nonnegative matrix factorisation and tri-factorisation
model from Schmidt et al. [15] and Brouwer and Lió [4], respectively. These mod-
els use exponential priors to enforce nonnegativity, giving Gibbs sampling algo-
rithms for inference. The former paper also introduced a MAP algorithm, called
iterated conditional modes (ICM). Both of these approaches rely on a sampling
procedure to eventually converge to draws of the desired distribution—in this
case the posterior of the matrices. This means that we need to inspect the values
of the draws to determine when our method has converged (burn-in), and then
take additional draws to estimate the posteriors.

We introduce a fourth inference technique for the Bayesian nonnegative mod-
els, based on variational Bayesian inference (VB), where instead of relying on
random draws we obtain deterministic convergence to a solution. We do this by
introducing a new distribution that is easier to compute, and optimise it to be
as similar to the true posterior as possible. Some papers (for instance [14]) assert
that variational inference gives faster but less accurate inference than sampling
methods like Gibbs. One study investigating this for latent dirichlet allocation
can be found in [1], but ours is the first paper giving a thorough empirical study
of the trade-offs for matrix factorisation. We furthermore extend the Bayesian
models with automatic relevance determination (ARD), to eliminate the need
for model selection.
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We perform extensive experiments on both artificial and real-world data to
explore the trade-offs between speed of inference, and robustness to sparsity and
noise for predicting missing values. We show that Gibbs sampling is the most
robust, while VB and ICM give significant run-time speedups but sacrifice some
robustness, and that non-probabilistic inference tends to be fast but not robust.
Finally, we show that ARD is an effective way of performing automatic model
selection, and increases the robustness of matrix factorisation models if they are
given the wrong dimensionality.

Although we study a specific Bayesian nonnegative matrix factorisation and
tri-factorisation model, we believe that many of our findings and insights apply
to the broad range of other matrix factorisation and tri-factorisation methods,
as well as tensor and Tucker decomposition methods—their three-dimensional
extensions.

2 Models

2.1 Nonnegative Matrix Factorisation

We follow the notation used by Schmidt et al. [15] for nonnegative matrix factori-
sation (NMF), which can be formulated as decomposing a matrix R ∈ R

I×J into
two latent (unobserved) matrices U ∈ R

I×K
+ and V ∈ R

J×K
+ , whose values are

constrained to be positive. In other words, solving R = UV T +E, where noise is
captured by matrix E ∈ R

I×J . The dataset R need not be complete—the indices
of observed entries can be represented by the set Ω = {(i, j)|Rij is observed}.
These entries can then be predicted by UV T .

We take a probabilistic approach to this problem. We express a likelihood
function for the observed data, and treat the latent matrices as random variables.
As the likelihood we assume each value of R comes from the product of U and
V , with some Gaussian noise added,

Rij ∼ N (Rij |U i · V j , τ
−1)

where U i,V j denote the ith and jth rows of U and V , and N (x|μ, τ) =
τ

1
2 (2π)− 1

2 exp
{− τ

2 (x − μ)2
}

is the density of the Gaussian distribution with
precision τ . The set of parameters for our model is denoted θ = {U ,V , τ}.
In the Bayesian approach to inference, we want to find the distributions over
parameters θ after observing the data D = {Rij}i,j∈Ω . We can use Bayes’ the-
orem,

p(θ|D) ∝ p(D|θ)p(θ).

We need priors over the parameters, allowing us to express beliefs for their
values—such as constraining U ,V to be nonnegative. We can normally not
compute the posterior p(θ|D) exactly, but some choices of priors allow us to
obtain a good approximation. Schmidt et al. choose an exponential prior over
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U and V , so that each element in U and V is assumed to be independently
exponentially distributed with rate parameters λU

ik, λV
jk > 0.

Uik ∼ E(Uik|λU
ik) Vjk ∼ E(Vjk|λV

jk)

where E(x|λ) = λ exp {−λx} u(x) is the density of the exponential distribution,
and u(x) is the unit step function. For the precision τ we use a Gamma distri-
bution with shape ατ > 0 and rate βτ > 0,

p(τ) ∼ G(τ |ατ , βτ ) =
βτ

ατ

Γ (ατ )
xατ −1e−βτ x

where Γ (x) =
∫ ∞
0

xt−1e−xdt is the gamma function.

RijUik

λk

Vjk

τατ βτ

α0 β0

i=1..I j=1..J

k=1..K

RijFik

λF
k

Skl

Gjl

λG
l

τ
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kl
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β0

α0
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Fig. 2. Graphical model representation of Bayesian nonnegative matrix factorisation
(left) and tri-factorisation (right), with ARD.

2.2 Nonnegative Matrix Tri-Factorisation

The problem of nonnegative matrix tri-factorisation (NMTF) can be formulated
similarly to that of nonnegative matrix factorisation, and was introduced by
Brouwer and Lió [4]. We now decompose R into three matrices F ∈ R

I×K
+ ,

S ∈ R
K×L
+ , G ∈ R

J×L
+ , so that R = FSGT + E. This decomposition has the

advantage of extracting row and column factor values separately (through F
and G), allowing us to identify both row and column clusters. We again use a
Gaussian likelihood and Exponential priors for the latent matrices.

Rij ∼ N (Rij |F i · S · Gj , τ
−1) τ ∼ G(τ |ατ , βτ )

Fik ∼ E(Fik|λF
ik) Skl ∼ E(Skl|λS

kl) Gjl ∼ E(Gjl|λG
jl)

2.3 Automatic Relevance Determination

Automatic relevance determination (ARD) is a Bayesian prior which helps per-
form automatic model selection. It works by replacing the individual λ parame-
ters in the factor matrix priors by one that is shared by all entries in the same
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column (in other words, shared for each factor). We then place a further Gamma
prior over all these λk parameters. For the NMF model, the priors become

Uik ∼ E(Uik|λk) Vjk ∼ E(Vjk|λk) λk ∼ G(λk|α0, β0).

Since this parameter is shared by all entries in the same column, the entire
factor k is either activated (if λt

k has a low value) or “turned off” (if λt
k has a

high value), pushing factors that are active for only a few entities further to zero.
This prior has been used for both real-valued [18,19] and nonnegative matrix
factorisation [17]. Instead of having to choose the correct K, we give an upper
bound and the model will automatically determine the number of factors to use.
A similar approach can be found in [7], which incorporates the elimination of
unused factors into their expectation-maximisation inference algorithm. ARD is
implemented on a model level, and therefore works with all inference approaches.

For NMTF we use two ARD’s, one for F (λF
k ) and another for G(λG

l ),

Fik ∼ E(Fik|λF
k )λF

k ∼ G(λF
k |α0, β0) Gjl ∼ E(Gjl|λG

l ) λG
l ∼ G(λG

l |α0, β0).

The graphical models for Bayesian NMF and NMTF are given in Fig. 2.

3 Inference

In this section we give details for four different types of inference for nonneg-
ative matrix factorisation (NMF) and tri-factorisation (NMTF) models. Non-
probabilistic inference gives a point estimate solution. Gibbs sampling and vari-
ational Bayesian inference both give a full posterior estimate, whereas iterated
conditional modes gives a maximum a posteriori (MAP) point estimate.

3.1 Non-probabilistic Inference

A non-probabilistic (NP) approach for NMF can be found in Lee and Seung
[10]. Their algorithm relies on multiplicative updates, where at each iteration
the values in the U and V matrices are updated using the following values:

Uik = Uik

∑
j∈Ωi

RijVjk/(U iV j)
∑

j∈Ωi
Vjk

Vjk = Vjk

∑
i∈Ωj

RijUik/(U iV j)
∑

i∈Ωj
Uik

where Ωi = {j|(i, j) ∈ Ω} and Ωj = {i|(i, j) ∈ Ω}. These updates can be shown
to minimise the I-divergence (generalised KL-divergence),

D(R||UV T ) =
∑

(i,j)∈Ω

(

Rij log
Rij

(UV T )ij

− Rij + (UV T )ij

)

.
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Yoo and Choi [22] extended this approach to NMTF, giving the following
multiplicative updates, with S·l denoting the lth column of S:

Fik = Fik

∑
j∈Ωi

Rij(SkGj)/(F iSGj)
∑

j∈Ωi
(SkGj)

Gjl = Gjl

∑
i∈Ωj

Rij(F iS·l)/(F iSGj)
∑

i∈Ωj
(F iS·l)

Skl = Skl

∑
(i,j)∈Ω RijFikGjl/(F iSGj)

∑
(i,j)∈Ω FikGjl

.

3.2 Gibbs Sampling

Schmidt et al. [15] introduced a Gibbs sampling algorithm for approximating
the posterior distribution—a similar NMF model that uses Gibbs sampling can
be found in [24,25]. Gibbs sampling works by sampling new values for each
parameter θi from its marginal distribution given the current values of the other
parameters θ−i, and the observed data D. If we sample new values in turn for
each parameter θi from p(θi|θ−i,D), we will eventually converge to draws from
the posterior, which can be used to approximate the posterior p(θ|D). We have
to discard the first n draws because it takes a while to converge (burn-in), and
since consecutive draws are correlated we only use every ith value (thinning).

For NMF this means that we need to be able to draw from distributions

p(τ |U ,V ,λ,D) p(Uik|τ,U−ik,V ,λ,D)
p(λk|τ,U ,V ,D) p(Vjk|τ,U ,V −jk,λ,D).

where U−ik denotes all elements in U except Uik, and similarly for V −jk. λ is
a vector including all λk values. Using Bayes theorem we obtain the following
posterior distributions:

p(τ |U ,V ,λ,D) = G(τ |α∗
τ , β∗

τ ) p(Uik|τ,U−ik,V ,λ,D) = T N (Uik|μU
ik, τU

ik)

p(λk|τ,U ,V ,D) = G(λk|α∗
k, β∗

k) p(Vjk|τ,U ,V −jk,λ,D) = T N (Vjk|μV
jk, τV

jk)

where

T N (x|μ, τ) =

⎧
⎨

⎩

√
τ
2π exp

{− τ
2 (x − μ)2

}

1 − Φ(−μ
√

τ)
if x ≥ 0

0 if x < 0

is a truncated normal: a normal distribution with zero density below x = 0 and
renormalised to integrate to one. Φ(·) is the cumulative distribution function of
N (0, 1).

For NMTF we can derive a Gibbs sampling algorithm similarly, as done by
Brouwer and Lió [4]. The posteriors, together with the parameter values for both
Gibbs samplers, are given in the supplementary materials.
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3.3 Iterated Conditional Modes

The iterated conditional models (ICM) algorithm for inference in the NMF model
was given in Schmidt et al. [15]. It works very similarly to the Gibbs sampler,
but instead of randomly drawing a value from the conditional posteriors, we
take the mode at each iteration. This gives a maximum a posteriori (MAP)
point estimate θMAP = maxθ p(θ|D), rather than a full posterior distribution.
We furthermore still need to use thinning and burn-in. For random variables
X ∼ G(a, b), Y ∼ T N (μ, τ), the modes are a−1

b and max (0, μ), respectively.
In practice ICM often converges to solutions where multiple columns in the

matrices are all zeros, leading to poor approximations. We have addressed this
issue by resetting zeros to a small positive value like 0.1 at each iteration.

3.4 Variational Bayesian Inference

Variational Bayesian inference (VB) has been used for other matrix factorisation
models before [8], but not for the nonnegative model in this paper. We therefore
now introduce a new VB algorithm for our model. Like Gibbs sampling, VB
is a way to approximate the true posterior p(θ|D). The idea behind VB is to
introduce an approximation q(θ) to the true posterior that is easier to compute,
and to make our variational distribution q(θ) as similar to p(θ|D) as possible (as
measured by the KL-divergence). We assume the variational distribution q(θ)
factorises completely, so all variables are independent in the posterior,

q(θ) =
∏

θi∈θ

q(θi).

This is called the mean-field assumption. We use the same forms of q(θi) as
we used in Gibbs sampling,

q(τ) = G(τ |α∗
τ , β∗

τ ) q(λk) = G(λk|α∗
k, β∗

k)

q(Uik) = T N (Uik|μU
ik, τU

ik) q(Vjk) = T N (Vjk|μV
jk, τV

jk).

It can be shown [3] that the optimal distribution for the ith parameter, q∗(θi),
can be expressed as follows (for some constant C), allowing us to find the optimal
updates for the variational parameters.

log q∗(θi) = Eq(θ−i) [log p(θ,D)] + C.

We now take the expectation with respect to the distribution q(θ−i) over the
parameters but excluding the ith one. This gives rise to an iterative algorithm:
for each parameter θi we update its distribution to that of its optimal variational
distribution, and then update the expectation and variance with respect to q.
We therefore need updates for the variational parameters, and to be able to
compute the expectations and variances of the random variables. This algorithm
is guaranteed to maximise the Evidence Lower Bound (ELBO)

L = Eq [log p(θ,D) − log q(θ)] ,

which is equivalent to minimising the KL-divergence.
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We use f̃(X) as a shorthand for Eq [f(X)], where X is a random variable and
f is a function over X. For random variables X ∼ G(a, b) and Y ∼ T N (μ, τ)
the variance and expectation are

X̃ =
a

b
Ỹ = μ +

1√
τ

λ
(−μ

√
τ
)

Var [Y ] =
1
τ

[
1 − δ

(−μ
√

τ
)]

,

where ψ(x) = d
dx log Γ (x) is the digamma function, λ(x) = φ(x)/[1 − Φ(x)], and

δ(x) = λ(x)[λ(x)−x]. φ(x) = 1√
2π

exp{− 1
2x2} is the density function of N (0, 1).

The updates for NMF are given in the supplementary materials. Our VB
algorithm for NMTF follows the same steps as before, but now has an added
complexity due to the term Eq

[
(Rij − F i · S · Gj)2

]
. Before, all covariance terms

for k′ �= k were zero due to the factorisation in q, but we now obtain some
additional non-zero covariance terms:

Eq

[
(Rij − F i · S · Gj)2

]
=

(

Rij −
K∑

k=1

L∑

l=1

F̃ikS̃klG̃jl

)2

+
K∑

k=1

L∑

l=1

Varq [FikSklGjl] (1)

+
K∑

k=1

L∑

l=1

∑

k′ �=k

Cov [FikSklGjl, Fik′Sk′lGjl] (2)

+
K∑

k=1

L∑

l=1

∑

l′ �=l

Cov [FikSklGjl, FikSkl′Gjl′ ] . (3)

The above variance and covariance terms are equal to the following, respec-
tively, leading to the variational updates given in the supplementary materials.

F̃ 2
ikS̃2

klG̃
2
jl − F̃ik

2
S̃kl

2
G̃jl

2
, Varq [Fik] S̃klG̃jlS̃kl′G̃jl′ , F̃ikS̃klVarq [Gjl] F̃ik′ S̃k′l.

3.5 Complexity

Each of the four approaches have the same time complexities, but vary in how
efficiently the updates can be computed, and how quickly they converge. The
time complexity per iteration for NMF is O(IJK2), and O(IJ(K2L + KL2))
for NMTF. However, the updates in each column of U ,V ,F ,G are independent
of each other and can therefore be updated in parallel. For Gibbs and ICM
this means we can draw these values in parallel, but for VB and NP we can
jointly update the columns using a single matrix operation. Modern computer
architectures can exploit this using vector processors, leading to a great speedup.

Furthermore, after the VB algorithm converges we have our approximation to
the posterior distributions immediately, whereas with Gibbs and ICM we need to
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obtain further draws after convergence and use a thinning rate to obtain an accu-
rate MAP (ICM) or posterior (Gibbs) estimate. This deterministic behaviour of
VB and NP makes them easier to use. Although additional variables need to be
stored to represent the posteriors, this does not result in a worse space complex-
ity, as the Gibbs sampler needs to store draws over time.

3.6 Initialisation

Initialising the parameters of the models can vastly influence the quality of
convergence. This can be done by using the hyperparameters λU

ik, λV
jk, λF

ik, λS
kl,

λG
jl, α, β, α0, β0, αF

0 , βF
0 , αG

0 , βG
0 to set the initial values to the mean of the

priors of the model, or using random draws. We found that random draws tend to
give faster and better convergence than the expectation, as it provides a better
initial guess of the right patterns in the matrices. For matrix tri-factorisation
we can initialise F by running the K-means clustering algorithm on the rows
as datapoints, and similarly G for the columns, as suggested by Ding et al. [6].
For the VB and NP algorithms we then set the μ parameters to the cluster
indicators, and for Gibbs and ICM we add 0.2 for smoothing. We found that
this improved the convergence as well, with S initialised using random draws.

Table 1. Overview of the four drug sensitivity datasets, giving the number of cell lines
(rows), drugs (columns), and the fraction of entries that are observed.

Dataset Cell lines Drugs Fraction observed

GDSC IC50 707 139 0.806

CTRP EC50 887 545 0.801

CCLE IC50 504 24 0.965

CCLE EC50 504 24 0.630

3.7 Software

Implementations of all methods, the datasets, and experiments described in
the next section, are available at https://github.com/ThomasBrouwer/BNMTF
ARD.

4 Experiments

To demonstrate the trade-offs between the four inference methods presented, we
conducted experiments on synthetic data and four real-world drug sensitivity
datasets. We compare the convergence speed, robustness to noise, and robustness
to sparsity.

https://github.com/ThomasBrouwer/BNMTF_ARD
https://github.com/ThomasBrouwer/BNMTF_ARD
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4.1 Datasets

For the synthetic datasets we generated the latent matrices using unit mean
exponential distributions, and adding zero mean unit variance Gaussian noise to
the resulting product. For the matrix factorisation model we used I = 100, J =
80,K = 10, and for the matrix tri-factorisation I = 100, J = 80,K = 5, L = 5.

We considered four drug sensitivity datasets, each detailing the effectiveness
(IC50 or EC50 values) of a range of drugs on different cell lines for cancer and
tissue types, where some of the entries are missing. We consider the Genomics
of Drug Sensitivity in Cancer (GDSC v5.0 [21], IC50), Cancer Therapeutics
Response Portal (CTRP v2 [16], EC50), and Cancer Cell Line Encyclopedia
(CCLE [2], IC50 and EC50). The four datasets are summarised in Table 1, giving
the number of cell lines, drugs, and the fraction of entries that are observed.

In some experiments we focused on a selection of the datasets, but results
for all can be found in the supplementary materials, together with preprocessing
details. For all models we used weak priors (λ = 0.1, ατ = βτ = α0 = β0 = 1).

(a) Synthetic (b) GDSC (c) CTRP (d) CCLE IC50 (e) CCLE EC50

Fig. 3. Convergence of algorithms on the synthetic and drug sensitivity datasets, mea-
suring the training data fit (mean square error) across iterations, for each of the infer-
ence approaches for NMF (top row) and NMTF (bottom row).

4.2 Convergence Speed

We firstly measured the convergence speeds of the different inference methods on
the datasets, using the versions of NMF and NMTF without ARD. Convergence
plots on all datasets are given in Fig. 3, plotting the mean squared error on the
training data against the number of iterations, for NMF (top row) and NMTF
(bottom row). For the synthetic data we used the correct number of factors, and
for the drug sensitivity datasets we used K = 20 for NMF and K = L = 10 for
NMTF. We ran each method 20 times, taking the average training errors.
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Although the results are empirical, they show that the inference approaches
have different convergence speeds and depths (final training error reached). On
the synthetic data VB is the fastest, followed by ICM and Gibbs, and finally NP.
All methods reach the optimal MSE of 1 (which is the level of noise added). On
the real-world drug sensitivity datasets, all methods reach their lowest depth at
roughly the same number of iterations. However, ICM and NP generally converge
much deeper than VB and Gibbs. Although this initially seems good, this is a sign
of overfitting to the training data, and can lead to poor predictions for unseen
data. We will see this later in the noise and sparsity experiments (Sects. 4.4 and
4.5), where VB and Gibbs are more robust than ICM and NP.

In the supplementary materials we also give the convergence speed against
time taken, which shows that the NP approach takes the least amount of time
per iteration, followed by ICM, VB, and then Gibbs. In summary, ICM and NP
give the fastest convergence, followed by VB, and then Gibbs.

4.3 Cross-Validation

Next we measured the cross-validation performances of the methods on the four
drug sensitivity datasets. For each method we performed 10-fold nested cross-
validation (nested to pick the dimensionality K—for simplicity we used L = K
for the NMTF models), giving the average performance in Fig. 4. For the ARD
models we did not need to pick the dimensionality, instead using K = 20 for
NMF, and K = 10, L = 10 for NMTF.

Fig. 4. 10-fold cross-validation results (mean squared error) for drug sensitivity predic-
tions on each of the four datasets. Each boxplot gives the median (red line), standard
deviation (blue box), and upper quartiles (black lines). (Color figure online)
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We can see that most models perform very similarly, with little to no dif-
ference between the matrix factorisation and tri-factorisation versions. Using
the ARD models often works equally well as without ARD, but with the added
benefit of not having to run nested cross-validation to choose the dimensionality,
reducing the running time from hours to minutes. However, sometimes ARD fails
to prevent overfitting, such as for VB NMF on CTRP EC50, and Gibbs NMF
on CCLE EC50). This is unsurprising as the ARD models are given dimension-
alities that are way too high. We will see in Sect. 4.6 that the ARD is actually
very efficient at turning off unnecessary factors and reducing overfitting.

We can also see that the VB and Gibbs models often do a bit better than the
NP and ICM versions. This is especially obvious on the CCLE IC50 dataset, and
also on GDSC IC50. On the CCLE EC50 dataset the NP NMF model completely
overfits on one of the folds, leading to extremely high predictive errors.

4.4 Noise Test

We conducted a noise test on the synthetic data to measure the robustness of
the methods. We add different levels of Gaussian noise to the data, with the
noise-to-signal ratio being given by the ratio of the standard deviation of the
Gaussian noise we add, to the standard deviation of the generated data. For
each noise level we split the datapoints randomly into ten folds, and measure the
predictive performance of the models on one held-out set. The results are given
in Figs. 5a (NMF) and 5b (NMTF), where we can see that the non-probabilistic
approach starts overfitting heavily at low levels of noise, whereas the Bayesian
approaches achieve the best possible predictive powers even at high levels of
noise. In the supplementary materials we also show that adding ARD did not
make a difference for the robustness of the Bayesian models.

4.5 Sparsity Test

We furthermore measured the robustness of each inference technique to sparsity
of the data. For different fractions of missing values we randomly split the data
ten times into train and test sets using those proportions, and measured the
average predictive error. We conducted this experiment on the synthetic data,
using the true dimensionality K (and L) for each model. We also performed it
on the GDSC and CTRP datasets, using the most common dimensionalities in
the cross-validation from Sect. 4.3 (given in supplementary materials).

The results are given in Figs. 6a (NMF) and 6d (NMTF) for the synthetic
data, Fig. 6b and e for GDSC, and Fig. 6c and f for CTRP. We can see that the
non-probabilistic models start overfitting even on very low sparsity levels (with
the exception of Fig. 6d)—in Fig. 6a we cannot even see the line. The ICM models
are also less robust when the sparsity is high. In contrast, the Gibbs sampling
model achieves very good predictive performance even under extreme sparsity.
The VB models are similar, but for sparser data it can sometimes not find the
best solution, as can be seen in Fig. 6d. We conducted this experiment for the
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models with ARD as well (results given in supplementary materials), where we
show that ARD makes no difference to the robustness of Gibbs and VB (which
are already very robust), but for ICM it can sometimes improve results.

(a) NMF (b) NMTF

Fig. 5. Noise test performances, measured by average predictive performance on test
set (mean square error) for different noise-to-signal ratios.

(a) Synthetic, NMF (b) GDSC, NMF (c) CTRP, NMF

(d) Synthetic, NMTF (e) GDSC, NMTF (f) CTRP, NMTF

Fig. 6. Sparsity test performances, measured by average predictive performance on test
set (mean square error) for different sparsity levels. The top row gives the performances
for NMF, and the bottom for NMTF, for the synthetic data (left), GDSC dataset
(middle), and CTRP dataset (right).
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4.6 Model Selection

Finally, we conducted an experiment to see the extent of overfitting if the model
is given a high dimensionality K, and whether this is remedied through the use
of ARD. If we give a model a higher dimensionality, it can fit more to the data,
but this can lead to overfitting and a higher predictive error. ARD can remedy
this by turning off scarsely used factors, hopefully leading to less overfitting.

On the GDSC dataset, we performed 10-fold cross-validation for different
values of K (and L for NMTF, using K = L) for Gibbs, VB, and ICM. We show
these results in Figs. 7a–f, where the results for models without ARD are given
by crosses (x) and with ARD by circles (o). We can see that in most graphs,
the models with ARD have a much flatter line as the dimensionality increases,
hence reducing overfitting. This effect is more apparent for the NMF models
than for the NTMF ones. The only exception is NMTF ICM, where the ARD
is preventing the model from fitting as much to the data, hence leading to poor
predictive results. Results for this experiment on the other three drug sensitivity
datasets is given in the supplementary materials, which show that this problem
only occurred for NMTF ICM on the GDSC dataset.

(a) NMF VB (b) NMF Gibbs (c) NMF ICM

(d) NMTF VB (e) NMTF Gibbs (f) NMTF ICM

Fig. 7. 10-fold cross-validation performances of the Bayesian models on the GDSC
dataset, where we vary the dimensionality K (using L = K for NMTF). The top row
gives the performances for NMF, the bottom row for NMTF. Performances for models
without ARD are given by dotted lines and crosses (x), with ARD by circles (o).
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Table 2. Qualitative comparison of inference methods.

Method Estimate Requires
sampling

Speed of
convergence

Robustness

Non-probabilistic Point No High Low

Iterated conditional
modes

Point (MAP) Yes High Medium

Gibbs sampling Full posterior Yes Low High

Variational Bayes Full posterior No Medium Fairly high

5 Conclusion

We have studied the trade-offs between different inference approaches for
Bayesian nonnegative matrix factorisation and tri-factorisation models. We con-
sidered three methods, namely Gibbs sampling, iterated conditional modes, and
non-probabilistic inference, and introduced a fourth one based on variational
Bayesian inference. We furthermore extended these models with the Bayesian
automatic relevance determination prior, to perform automatic model selection.
Through experiments on both synthetic data, and real-world drug sensitivity
datasets, we explored the trade-offs in convergence, robustness to noise, and
robustness to sparsity.

A qualitative summary based on our quantitative findings can be found in
Table 2. We found that the non-probabilistic methods are not very robust to
noise and sparsity. Gibbs sampling is the most robust of the methods, especially
for sparse datasets, and gives a full Bayesian posterior estimate. However, it
converges slowly, and requires additional samples to estimate the posterior. Iter-
ated conditional modes offers a much faster convergence and run-time speed, but
sacrifices some robustness, still requires sampling, and no longer returns a full
posterior (giving a MAP estimate instead). Our variational Bayesian inference
gives good convergence speeds while maintaining more robustness properties.

Finally, we have shown that ARD is an effective way of reducing overfitting
when using the wrong dimensionality in matrix factorisation models. This can
eliminate the use for performing model selection, or nested cross-validation—
although it is not perfect. We also discovered that adding ARD has little impact
on performance, or on the robustness of the models to sparsity and noise (except
for iterated conditional modes, where ARD increases its robustness to sparsity).

Our experiments were conducted for a specific version of Bayesian matrix
factorisation and tri-factorisation, but we believe they offer insights into the
trade-offs between different inference techniques in other matrix factorisation
models, as well as tensor and Tucker decomposition methods.
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