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Abstract. New social and economic activities massively exploit big data
and machine learning algorithms to do inference on people’s lives. Appli-
cations include automatic curricula evaluation, wage determination, and
risk assessment for credits and loans. Recently, many governments and
institutions have raised concerns about the lack of fairness, equity and
ethics in machine learning to treat these problems. It has been shown
that not including sensitive features that bias fairness, such as gender
or race, is not enough to mitigate the discrimination when other related
features are included. Instead, including fairness in the objective func-
tion has been shown to be more efficient.

We present novel fair regression and dimensionality reduction meth-
ods built on a previously proposed fair classification framework. Both
methods rely on using the Hilbert Schmidt independence criterion as the
fairness term. Unlike previous approaches, this allows us to simplify the
problem and to use multiple sensitive variables simultaneously. Replac-
ing the linear formulation by kernel functions allows the methods to deal
with nonlinear problems. For both linear and nonlinear formulations the
solution reduces to solving simple matrix inversions or generalized eigen-
value problems. This simplifies the evaluation of the solutions for differ-
ent trade-off values between the predictive error and fairness terms. We
illustrate the usefulness of the proposed methods in toy examples, and
evaluate their performance on real world datasets to predict income using
gender and/or race discrimination as sensitive variables, and contracep-
tive method prediction under demographic and socio-economic sensitive
descriptors.

Keywords: Equity · Fairness · Machine learning · Regression
Dimensionality reduction · Kernel methods

1 Introduction

“Perfect objectivity is an unrealistic goal; fairness, however, is not.”
–M. Pollan, 2004
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Current and upcoming application of machine learning to real-life’s problems
is overwhelming. Applications have enormous consequences in people’s life, and
impact decisions on education, economy, health care, and climate policies. The
issue is certainly relevant. New social and economic activities massively exploit
big data and machine learning algorithms to do inferences, and they decide
on the best curriculum to fill in a position [15], to determine wages and in
pre-trial risk assessment [4,9], and to evaluate risk of violence [8]. Companies,
governments and institutions have raised concerns about the lack of fairness,
equity and ethics in machine learning to treat this kind of problems1. Machine
learning methods are actually far from being fair, just, or equitable in any way.
After all, standard pattern analysis is often about model fitting and not the
gender issue. Undoubtedly, attaining fair machine learning algorithms is a timely
important concern. Fairness is an elusive concept though, so it is the inclusion
of such qualitative measure in machines that only learn from data.

Several approaches exist in the literature to account for fairness in machine
learning. One of the earliest approaches tackled the bias problem through the
definition of classification rules [22,24]. Later, some other works focused on
(mainly) pre-processing the data [12,16,21,23]: down-weighting sensitive features
or directly removing them have been the preferred choices. Perhaps the most naive
approach is to simply discard the sensitive input features that bias discrimina-
tion [31]. Removing gender, disability or race, to predict monthly income is, how-
ever, not a good choice because model’s accuracy may be largely impacted by the
lack of informative features, and because some other correlated features enter the
model anyway. This effect is known in statistics as the omitted variable bias [6].

Another simple approach consists on including ad hoc weights and data
normalization to match the prior belief about fairness. Noting that data pre-
processing is a quite arbitrary approach, Kamiran and Calders et al. proposed
three solutions to learn fair classifiers [17]. Classifiers basically used the sensitive
features only during learning and not at the prediction time. A step forward in
this direction was presented in [12], where authors proposed pre-processing the
data by removing information from all attributes correlated with the objective
variable. The intuition behind this approach is that training on discrimination-
free data is likely to yield more equitable predictions. A discussion of several
more algorithms for binary protected and outcome variables can be found in
[18]. Other authors have focused on finding transformations of the input space
in order to extract features that do not retain information about the sensitive
input variables [30].

All in all, the relevance of fair methods in machine learning is ever increasing,
and a wide body of literature and approaches exist. We focus in this paper in
a field known as ‘disparate impact’, in which outcomes should not differ based
on individuals’ protected class membership. Many definitions for the elusive
concept of fairness in machine learning are available (see [3,5,7,11,12,16,22,29]):
redlining, negative legacy, underestimation or subset targeting, to name a few.
We frame our methods in the ‘indirect discrimination’ subfield.

1 http://www.fatml.org/.

http://www.fatml.org/
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Recently, an interesting regularization framework for fair classification was
proposed in [19]. The framework optimizes a functional that jointly minimizes
the classification error and the dependence between predictions and the sensi-
tive variables using mutual-information concepts. We build our proposal upon
this framework, and extend it to regression, and to unsupervised dimension-
ality reduction problems with kernel methods. The proposed kernel machines
exploit cross-covariance operators in Hilbert spaces. Both theoretical and empir-
ical advantages are gained. Advantageously, the solutions only involve solving
simple matrix inversion or generalized eigenproblems. This allows to check dif-
ferent solutions when the trade-off between prediction and fairness is modified.
The methods are able to deal naturally with input variables of several dimen-
sions for the regular as well as for the sensitive variables. Note that this is espe-
cially important for the fairness term, where a robust measure of dependence is
needed. On top of this, the proposed methods can incorporate prior knowledge
about the fairness, invariances and interestingness of the feature relations. We
illustrate performance in toy data as well as in two real problems: income pre-
diction subject to gender and/or race discrimination, and contraceptive method
prediction under demographic and socio-economic sensitive descriptors.

The remainder of the paper is organized as follows. Section 2 describes the
problem statement, introduces notation and presents the fair kernel regression
framework in the input and the Hilbert space. Section 3 extends the fair kernel
learning framework to dimensionality reduction problems. Toy examples guide
the presentation of the two approaches. Experimental evidence of performance
is given in Sect. 4. Conclusions finalize the paper in Sect. 5.

2 Fair Regression Framework

This section starts by defining the notation and the concept of fair predictions.
Then we introduce the proposed framework for performing fair regression learn-
ing based on cross-covariance operators for dependence estimation in Hilbert
spaces. We conclude with an illustrative example.

2.1 Notation, Preliminaries, and the Regularization Framework

Let us define the notation and the problem setting. We are given n samples of
a response (or target) data matrix Y ∈ R

n×c, and d + q prediction variables:
d unprotected Xu ∈ R

n×d and q sensitive S ∈ R
n×q. The goal is to obtain

an accurate prediction function (or model) f for the target variable Y from the
input data, X = (Xu,S). This function is said to be totally fair if the predictions
are statistically independent of the sensitive (protected) features [5,10].

Therefore, two main ingredients are needed to perform fair predictions: we
need to ensure independence of the predictions on the sensitive variables, and
simultaneously to obtain a good approximation of the target variables. The reg-
ularization framework proposed in [19] tackles the problem of finding a fair
function f for classification by including a term to enforce fair classification. In
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our proposal the proposed function f tries to learn the relation between observed
input-output data pairs (x1,y1), . . . , (xn,yn) ∈ X ×Y such that generalizes well
(good predictions ŷ∗ = f(x∗) ∈ Y for the unseen input data point x∗ ∈ X ), and
the predictions should be as independent as possible of the sensitive features.
Then, the following functional needs to be optimized:

L =
1
n

n∑

i=1

V (f(xi),yi) + λ Ω(‖f‖H) + μ I(f(x), s), (1)

where V is the error cost function, Ω(‖f‖H) acts as a regularizer of the pre-
dictive function and controls the smoothness and complexity of the model, and
I(f(x), s) measures the independence between model’s predictions and the pro-
tected variables. Note that one aims to minimize the amount of information
that the model shares with the sensitive variables while controlling the trade-off
between fitting and independence through hyperparameters λ and μ. By setting
μ = 0 one obtains the ordinary Tikhonov’s regularized functional, and by setting
λ = 0 one obtains the unregularized versions of this framework.

The framework admits many variants depending of the cost function V , reg-
ularizer Ω and the independence measure, I. For example, in [19], the function
f was the logistic regression classifier and I was a simplification of the mutual
information estimate. Despite the good results reported in [19], these choices
did not allow to solve the problem in closed-form, nor coping with more than
one sensitive variable at the same time, since the proposed mutual information
is an uni-dimensional dependence measure. In the following section, we elabo-
rate further this framework under the concept of cross-covariance operators in
Hilbert spaces, which lead to closed-form solutions and allow to deal with several
sensitive variables simultaneously.

2.2 Fair Linear Regression

Let us now provide a straightforward instantiation of the proposed framework
for fair linear regression (FLR). We will adopt a linear predictive model for f ,
i.e. the matrix of predictions for a test data matrix X∗ is given by Ŷ∗ = X∗W,
the mean square error for the cost function V = ‖Y −XW‖22 and the standard
�2 regularization for model weights Ω := ‖W‖22. Other choices could be taken,
leading to alternative formulations. In order to measure dependence, we will
rely on the cross-covariance operator between the predictions and the sensitive
variables in Hilbert space. Let us consider two spaces Y ⊆ R

c and S ⊆ R
q, where

random variables (ŷ, s) are sampled from the joint distribution Pys. Given a set
of pairs D = {(ŷ1, s1), . . . , (ŷn, sn)} of size n drawn from Pys, an empirical
estimator of HSIC [14] allows us to define

I := HSIC(Y,S,Pys) = ‖Cys‖2HS = ‖Ỹ�S̃‖2 =
1
n2

Tr(Ỹ�S̃S̃�Ỹ),
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where ‖ · ‖HS is the Hilbert-Schmidt norm, Cys is the empirical cross-covariance
matrix between predictions and sensitive variables2, Ỹ and S̃ represent the
feature-centered Y and S respectively, and Tr(·) denotes the trace of the matrix.
We want to stress that HSIC allows us to estimate dependencies between multi-
dimensional variables, and that HSIC is zero if an only if there is no second-order
dependence between ŷ and s. In the next section we extend the formulation to
higher-order dependencies with the use of kernels [25,26].

Plugging these definitions of f , V , Ω and I in Eq. (1), one can easily show
that the solution has the following closed-form solution for weight estimates

Ŵ = (X̃�X̃ + λ I +
μ

n2
X̃�S̃S̃�X̃)−1X̃�Y, (2)

where fairness is trivially controlled with μ, which acts as an additional regular-
ization term. Also note that when μ = 0 the ordinary regularized least squares
solution is obtained.

2.3 Fair Kernel Regression

Let us now extend the previous model to the nonlinear case in terms of the
prediction function, the regularizer and the dependence measure by means of
reproducing kernels [25,26]. We call this method the fair kernel regression (FKR)
model. We proceed in the standard way in kernel machines by mapping data X
and S to a Hilbert space H via the mapping functions φ(·) and ψ(·) respectively.
This yields Φ,Ψ ∈ H ⊆ R

dH , where dH is the (unknown and possibly infinite)
dimensionality of mapped points in H. The corresponding kernel matrices can
be defined as: K̃ = Φ̃Φ̃� and K̃S = Ψ̃ Ψ̃�. Now the prediction function is
Ŷ = ΦWH, the regularizer is Ω := ‖WH‖22, and the dependence measure I is
the HSIC estimate between predictions Ŷ and sensitive variables S, which can
now be estimated in Hilbert spaces: I := HSIC(Y,H,Pys) = ‖Cys‖2HS. Now, by
plugging all these terms in the cost function, using the representer’s theorem
WH = Φ̃�Λ and after some simple linear algebra, we obtain the dual weights
in closed-form

Λ = (K̃ + λI +
μ

n2
K̃K̃S)−1Y, (3)

which can be used for prediction with a new point x∗ by using ŷ∗ = k∗Λ,
where k∗ = [K(x∗,x1), . . . ,K(x∗,xn)]�. In the case where μ = 0 the method
reduces to standard kernel ridge regression (KRR) method [26]. Centering points
in feature spaces can be done implicitly with kernels [26]: a kernel matrix K is
centered by doing K̃ = HKH, where H = I − 1

n11
�.

Lemma 1. Both KRR and FKR model weights are bounded in norm by the
same quantitiy.

2 The covariance matrix is Cys = Eys(ys
�)−Ey(y)Es(s

�), where Eys is the expectation
with respect to Pys, and Ey is the marginal expectation with respect to Py (hereafter
we assume that all these quantities exist).
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Proof. Let us assume the same kernel matrix K̃ for KRR and FKR, and also
suppose λ, μ ≥ 0, then the following bound is satisfied: ‖(K̃+λI+ µ

n2 K̃SK̃)−1‖ ≤
‖(K̃+λI)−1‖. Given μ ≥ 0 the following inequality, with � meaning the standard
PSD order, holds true: K̃+ λI+ µ

n2 K̃SK̃ � K̃+ λI. Then also holds (K̃+ λI+
µ
n2 K̃SK̃)−1 � (K̃+λI)−1, and by taking norms we have the following inequality
‖(K̃ + λI + µ

n2 K̃SK̃)−1‖ ≤ ‖(K̃ + λI)−1‖. FKR model weights can be bounded

‖ΛFKR‖ =
∥∥∥(K̃ + λI +

μ

n2
K̃SK̃)−1Y

∥∥∥ ≤
∥∥∥(K̃ + λI +

μ

n2
K̃SK̃)−1

∥∥∥ ‖Y‖

≤
∥∥∥(K̃ + λI)−1

∥∥∥ ‖Y‖ ,
(4)

which is the same bound for KRR weights:

‖ΛKRR‖ =
∥∥∥(K̃ + λI)−1Y

∥∥∥ ≤
∥∥∥(K̃ + λI)−1

∥∥∥ ‖Y‖ .

Illustrative example. Here we illustrate the performance of the proposed meth-
ods in a controlled synthetic experiment. The data considers a sensitive variable
drawn from a zero mean Gaussian with standard deviation σs, s ∼ N (0, σs), and
a parametric function fs(s) that yields an intermediate variable a buried in addi-
tive white Gaussian noise (AWGN), i.e. a = fs(s) + nf , where nf ∼ N (0, σf ).
System’s output combines both the sensitive as well as its arbitrarily transformed
version affected by AWGN y = gs(s) + gr(a) +ny, where ny ∼ N (0, σy). In this
example we used fs(x) = log(x), and gr(x) = gs(x) = x2. This system ensures
that, even without using variable s explicitly as an input factor in the regres-
sion model, the information conveyed in s is embedded in a indirectly. Two
settings are considered, with and without using the sensitive variable s as an
input feature. In both experiments we used the RBF kernel function and fitted
hyperparameters (λ, μ and the kernel widths) to be optimal for each μ value.
Figure 1 shows the results for the four different configurations (linear and non-
linear, with and without considering s), the horizontal axis represents the mean
square error (MSE) of the prediction and the vertical axis the HSIC between
the prediction and the protected variable. An ideal fair model would obtain zero
MSE and zero HSIC. For each configuration, we give the family of solutions that
can be obtained by modifying the parameter μ. Classical solutions that do not
include the fairness term show that KRR improves the ordinary LR results in
MSE terms, but both methods obtain similar HSIC values. On the other hand,
the inclusion of the sensitive variable s as input feature obtains more fair results
in HSIC terms but worst results in MSE terms. The fairness paths are obtained
for different μ values. The nonlinear regression methods outperform in general
the linear counterparts. Including the sensitive variable as input returns better
trade-off results. For example, the FKR can be tuned to have the same fair-
ness level as KRR\S but obtaining around 30% lower prediction error. A similar
conclusion can be extracted in the linear case, yet the improvement is smaller.
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3 Fair Dimensionality Reduction Framework

Fig. 1. Regression curves of the
prediction error (MSE) versus
the unfairness (independence of
predictions with sensitive vari-
ables) in four different config-
urations (FLR and FKR, with
and without the sensitive vari-
able s) and different values of
µ (crosses indicate µ = 0 solu-
tions).

Let us now show a different frame for fair
machine learning. Rather than optimizing a
regression model, we are here concerned about
obtaining fair feature representations. We rely
on the field of multivariate analysis to develop
both linear and nonlinear (kernel) dimensional-
ity reduction methods.

3.1 Fair Dimensionality Reduction

Let us define two training data matrices as
before, the full design matrix X ∈ R

n×d, and the
sensitive data matrix S ∈ R

n×q, and a labelled
data matrix Y ∈ R

n×c (here we use 1-of-c encod-
ing). The goal here is to find a fair projection
matrix V ∈ R

d×np such that the projected data,
XV keeps as much information as possible from
the input features yet minimally aligned with
the protected, sensitive features. We denoted
V = [v1| · · · |vnp

], where vi is the i-th projection
vector and np is the dimension of the projection subspace. Hereafter, the terms
alignment and statistical dependency will be used interchangeably. As before, in
order to minimize alignment (dependence) between random variables X and S,
we will use the cross-covariance operator, whose empirical estimate reduces to
compute the norm of the corresponding empirical cross-covariance given by the
HSIC estimator. We will also use HSIC to maximize the dependence between
the projected and the original data. The problem can thus be easily formalized
as the maximization of the following Rayleigh quotient:

V∗ = arg max
V

{
HSIC(X̃V, X̃)
HSIC(X̃V, S̃)

}
= arg max

V

{
Tr(V�(X̃�X̃X̃�X̃)V)
Tr(V�(X̃�S̃S̃�X̃)V)

}
,

where X̃ represents the feature-centered X. This leads to solving a generalized
eigenvalue problem with the empirical covariance Cxx = 1

nX̃
�X̃ and input-

sensitive cross-covariance Cxs = 1
nX̃

�S̃:

CxxC�
xx v = λCxsC�

xs v.

The solution resembles that of the standard orthonormalized partial least squares
(OPLS) [27]. Note that the generalized eigenproblem involves symmetric matri-
ces. The matrix projection operator V can then been used to obtain fair scores
for a new data point x∗ ∈ R

d×1 as follows x̃′
∗ = V�x∗ ∈ R

np×1.
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3.2 Kernel Fair Dimensionality Reduction

Let us now derive a nonlinear version of FDR by means of reproducing ker-
nels [25,26]. We proceed in the standard way by mapping data X and S to
a Hilbert space H via mapping functions φ(·), ψ(·), which yield Φ, Ψ ∈ R

n×dH

respectively, where dH is the dimensionality of H. The FDR ratio now translates
into finding a projection matrix U = [u1| · · · |unp

] ∈ R
dH×np such that:

U∗ = arg max
U

{
Tr(U�(Φ̃�Φ̃Φ̃�Φ̃)U)
Tr(U�(Φ̃�Ψ̃ Ψ̃�Φ̃)U)

}
,

where Φ̃, and Ψ̃ contain the centered data in Hilbert space. Now, by applying
the representer’s theorem U = Φ̃�Λ (where Λ = [α1| · · · |αnp

]�), replacing dot
products with kernel functions, k̃x(x,x′) = φ̃(x)�φ̃(x′), k̃s(s, s′) = ψ̃(s)�ψ̃(s′),
and defining kernel matrices, K̃x = Φ̃Φ̃�, and K̃s = Ψ̃ Ψ̃�, we obtain a dual
problem:

Λ∗ = arg max
Λ

{
Tr(Λ�(K̃xK̃xK̃x)Λ)
Tr(Λ�(K̃xK̃sK̃x)Λ)

}
,

which reduces again to solving a generalized eigenproblem:

K̃xK̃xα = λK̃sK̃xα.

This problem can be solved iteratively by first computing the leading pair
{λi,αi}, and then deflating the matrices. The deflation equation for KFDR can
be written as:

K̃xK̃xK̃x ← K̃xK̃xK̃x − λiK̃xK̃sK̃xαiα
�
i K̃xK̃sK̃x.

which is equivalent to
K̃x ← K̃x −

√
λiK̃xK̃sαi,

i.e., at each step we remove from the kernel matrix the best approximation
based on the newly extracted projections of the sensitive data K̃xK̃sαi. The
deflation procedure decreases by 1 the rank of the matrix, so the maximum
number of features that can be extracted with KFDR is rank(K̃xK̃s), which for
most mapping functions will be np = min{n, c}.

The KFDR method is again similar to the KOPLS in [1,2], but here we seek
for independent projections from the inequitable variables S while maximizing
the variance. As for any kernel multivariate analysis method, projecting a new
test point x∗ ∈ R

d×1 is possible, x̃′
∗ = U�φ̃(x∗) = Λ�Φ̃φ̃(x∗) = Λ�k̃∗, where

k̃∗ = [kx(x1,x∗), . . . , kx(xn,x∗)]�.

Invariant feature extraction. This example considers n = 1000 points drawn
from a sinus function buried in noise, bi = sin(ai) + ni, where a ∼ U(0, 1.5π)
and ni ∼ N (0, 0.1). We compare the maps of PCA and FDR and their kernel
counterparts. For illustration purposes we consider two different configurations
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of the inputs, by switching the sensitive variable to be either a or b. Note that
this only changes the results for FDR since PCA and KPCA do not distinguish
between sensitive and unprotected variables. Figure 2 shows the first component
projection as a color map in the background for the different methods. Essentially
PCA and FDR methods cannot account for the nonlinear feature relations, but
FDR allows one to easily force invariance to a pre-specified dimension of interest.
Compare for instance the first (PCA) and the second (FDR, S = a) plots. The
first component found by PCA is diagonal, revealing it has information about
both components (a and b). On the other hand, the first component found by
FDR is vertical, thus avoiding the information in the horizontal axis, i.e. it is
insensitive to the information in a, as expected. Similar effects are observed in
the kernel versions, yet recovering the nonlinear structure of the manifold.

PCA FDR (S = a) FDR (S = b)

KPCA KFDR (S = a) KFDR (S = b)

Fig. 2. Linear and kernel feature extraction in a noisy sinusoid distribution. For the
sake of simplicity we only show projections onto the first component. The value of the
projection is shown as a color map in the background, where dark tones mean small
values and brighter tones mean big values. See details in the text. (Color figure online)

Noise-aware feature extraction. We generated a bidimensional banana-shaped
distribution corrupted by correlated noise in the π/4-direction to which we want
to be independent, cf. Fig. 3. We compare results of KFDR with those from
standard KPCA. Projections #2 and #3 capture the noise distribution while
for the KFDR all extracted projections are invariant to variations in the π/4
direction where the noise is mostly present. The method is intimately related to
the kernel signal to noise ratio in [13].

4 Experimental Evidence

The aim of this section is to empirically test the proposed methods on real data.
We will see that using regular models and removing the sensitive variables is not
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KPCA np = 1 KPCA np = 2 KPCA np = 3

KFDR np = 1 KFDR np = 2 KFDR np = 3

Fig. 3. Dimensionality reduction in a noisy two-dimensional example.

enough to obtain fair solutions. First, we will present the data used and then
we will evaluate both proposals, regression and dimensionality reduction, using
two different datasets from the UCI Machine Learning repository. Source code
and illustrative demos are available in http://isp.uv.es/soft regression.html for
the interested reader.

4.1 Datasets

We consider two datasets from the UCI repostory [20]: the Adult dataset and
the Contraceptive dataset. Both of them involve sensitive attributes and pose
problems of equitable prediction.

Dataset 1: Adult Dataset. This dataset is readily pre-processed and avail-
able from the libsvm website3, and has been used in several studies about fair
machine learning methods for classification and feature extraction [12,19,28,30].
The original Adult data set contains 14 features, among which six are continuous
and eight are categorical. In this data set, continuous features were discretized
into quantiles, and each quantile was represented by a binary feature. Also, a
categorical feature with m categories is converted to m binary features. Finally,
the original 14 features are pre-processed into 123 features. Details on how each
feature is finally converted can be found in Table 1. The dataset is already split
into 2 sets, the first one for training the models, which consists of 32561 instances,
and the second one was used for testing the results and contains 16281 instances.
Both in regression and dimensionality reduction experiments we fit the hyper-
parameters using 5000 instances to train and 5000 to validate both randomly

3 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.

http://isp.uv.es/soft_regression.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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Table 1. Original and processed features for the adult dataset from the UCI repository.
The type column distinguishes between a continuous (c) or discrete (d) attribute.

# Feature Original feature type (c/d) # Processed feat

1 Age c [1,5]

2 Workclass d [6,13]

3 Final weight c [14,18]

4 Education d [19,34]

5 ed num c [35,39]

6 Marital status d [40,46]

7 Occupation d [47,60]

8 Relationship d [61,66]

9 Race d [67,71]

10 Sex d [72,73]

11 Capital gain c [74,75]

12 Capital loss c [76,77]

13 Hours × week c [78,82]

14 Country d [83,123]

selected from the training set. Afterwards we evaluate those models using the
whole test set. All the presented results are the mean of twenty-five realizations
of each experiment.

Dataset 2: Contraceptive Method Choice Data Set. In the second prob-
lem we study the drivers for adoption of contraceptive types by a women cohort.
We used the Contraceptive Method Choice (CMC) Data Set from the UCI repos-
itory, which can be downloaded from https://archive.ics.uci.edu/ml/datasets/
Contraceptive+Method+Choice. This dataset is a subset of the 1987 National
Indonesia Contraceptive Prevalence Survey. The samples are married women
who were either not pregnant or do not know if they were at the time of inter-
view. The problem is to predict the current contraceptive method choice leading
to three possibilities: ‘no use’, ‘long-term methods’, or ‘short-term methods’ of
a woman based on demographic and socio-economic descriptors. We simplified
the problem and considered the classes using/not-using a contraceptive method.
Table 2 summarizes the total number of features and the class attributes.

The data set consists of 1473 samples with 9 features, and one variable to
infer, the contraceptive method. In order to train our algorithms, we split the
data into train (500 samples), validation (500 samples) and test sets (the remain-
ing 473 samples). The experiment is performed 25 times, and results are averaged
to avoid skewed conclusions.

https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
https://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
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Table 2. Original and processed features for the contraceptive method choice data set
from the UCI repository. The type column distinguishes between a continuous (c) or
discrete (d) attributes.

# Feature Original feature Type (c/d)

1 Wife’s age c

2 Wife’s education d

3 Husband’s education d

4 Number of children ever born c

5 Wife’s religion d

6 Wife’s now working d

7 Husband’s occupation d

8 Standard-of-living index d

9 Media exposure d

10 Contraceptive method used Class attribute

4.2 Experimental Setup

In the regression experiment, we optimize the hyperparameters λ (model regu-
larization), σ (kernel width) and σS (the kernel parameter for the dependence
estimation) using different logarithmically spaced values. Specifically we tried
seven values in the interval [10−4, 103] for λ, 10 values in [10−4, 104] for σ, and
10 values in [10−1, 102] for σS . We start by seeking the optimal λ and σ param-
eters that minimize the error in the validation data. Once these two parameters
are fixed we explore the kernel parameter for the dependence estimation in order
to maximize the dependence between the model and the sensitive data. Finally,
we try 25 different logarithmic spaced values in the interval [10−7, 103] for the μ
fairness hyperparameter (large μ values imply more fair models).

In the FDR experiment the only hyperparameter to tune is σS , which is
optimized to maximize the dependence between the transformed data and the
sensitive variables. We optimized this parameter trying 15 values in the interval
[10−5, 103]. Different number of components np were extracted.

4.3 Results for Fair Regression

We analyze the performance of both linear (FLR) and the nonlinear kernel
(FKR) formulations. As done in the toy example, we explore the possibility
of including or not the sensitive variables S in the models. Figure 4 shows the
results for different values of μ. Since the original data was collected for a clas-
sification problem, we binarized the outputs (c = 2), and treat it as a regression
problem, afterwards we use max-vote to obtain the predicted class. We ana-
lyze two different situations: one where the methods avoid discriminating only
by gender and another when the methods avoid discriminating by gender and
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Fig. 4. Error in income classification versus (un)fairness of the sensitive variables for
the Adult dataset, avoiding discrimination by gender (left), and by both gender and
race (right).

race simultaneously. Note that in the latter case the sensitive variable is bidi-
mensional. While this situation is quite general, using complicated information
measures like mutual information (as proposed in [19]) increases dramatically
the complexity of the problem. However, in our case, it is straightforward to
deal with multidimensional sensitive variables.

In both cases we observe a similar behavior as in the toy example. Both the
linear and kernel classical versions (LR and KRR) obtain relatively good classifi-
cation error rates, but their dependence with the sensitive variables is relatively
high. The use of fair versions open the possibility of decreasing this dependence
while yielding similar classification errors. Results are better when using the
kernel version FKR, which is capable of learning a model with low classification
error rate and virtually independent of the sensitive features. Including the sen-
sitive variables when using our proposed method obtains better results in the
kernel case. In the linear case, removing the sensitive features has almost no
impact on the results.

When it comes to the second dataset, we performed our experimentation over
the sensitive variables: wife’s education, husband education, number of children
ever born and also media exposure (features 2, 3, 4 and 9 respectively). The
experiments were done by considering only one sensitive variable at a time.
Figure 5 shows the results for all these protected variables. Several conclusions
can be derived: (1) kernel fair regression outperforms the linear counterpart in
all the hyperparameter space (both on error and fairness); (2) removing the
sensitive feature degrades results, as its information is implicitly conveyed by
other included features; and (3) one can achieve arbitrary fairness levels tuning
the μ hyperparameter, at the cost of a moderately increased prediction error
(+2–5% increase in classification error).
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Fig. 5. Error in contraceptive usage classification versus (un)fairness of the sensitive
variables for the CMC dataset. Top row (left) wife’s education, (right) husband’s edu-
cation, and bottom row (left) number of children ever born and (right) media exposure.

4.4 Results for Fair Dimensionality Reduction

We analyzed the performance of the proposed dimensionality reduction in the
income prediction dataset. We present results of using a k-nn classifier (k = 1)
after reducing the dimensionality of the data set using different methods. In
particular, we analyzed the standard Principal Components Analysis (PCA),
Kernel PCA (KPCA), and the proposed fair dimensionality Reduction (FDR)
and its kernel counterpart (KFDR). As in the previous experiment, we also
analyze the solution with and without the sensitive features as inputs.

Figure 6 shows the solutions of different methods. In the case of PCA and
KPCA we show results for different numbers of features, which affects the clas-
sification error but minimally the fairness score. In both experiments the best
fairness-accuracy trade-offs are given by the FDR and KFDR when using all
variables as inputs. In particular, when avoiding the gender discrimination, the
proposed framework shows better classification error for the KFDR. When we
use as sensitive variables gender and race the differences of the proposals with
regard the classical methods are more noticeable since the classification errors
are similar but the dependence achieved by the proposals are several orders of
magnitude lower.
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Fig. 6. Error rate in income classification versus independence between predictions and
the sensitive variables to avoid discrimination by gender (left), and by both gender and
race (right). PCA and KPCA has been evaluated for different number of features, np.

5 Conclusions

We have presented novel fair nonlinear regression and dimensionality reduction
methods. We included a term to the cost function based on the Hilbert-Schmidt
independence criterion which enforces fairness in the solutions and allows to deal
with several sensitive variables simultaneously. We presented the methods in lin-
ear fashion and extended them to deal with nonlinear problems by using kernel
functions. For both the linear and nonlinear cases, the solution for the regres-
sion weights and the basis functions in dimensionality reduction are expressed in
closed-form, as they only involve solving matrix inversion or generalized eigen-
problems respectively.

Tuning the fairness hyperparameter in regression allows us to input sensitive
variables to the regression model while keeping the solution fair. This increases
the information that can be used by the model during the prediction rather than
just ignoring them. Methods performance were successfully illustrated using both
synthetic and real data.

We would like to highlight that introducing kernels (and adopting HSIC) for
fairness is not incidental: it allows us to achieve closed-form solutions, to trim
fairness-fitness with a single hyperparameter, and to encode prior knowledge in
a simple way. Interpretability of the models is obviously an issue and will be
explored in the near future. While the framework aims to deal with ‘population
fairness’, not with ‘individuals’ fairness’, this refinement can be easily included
in our kernel formulations by defining an individual/group diagonal matrix F
and replacing X with XF (I with F−1 for the kernel formulations). As a future
work, we also aim to include kernel conditional independence tests. The proposed
framework could be easily extended to other machine learning algorithms, from
neural networks to Gaussian processes.
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