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Abstract. Dynamic ensemble selection (DES) is the problem of finding,
given an input x, a subset of models among the ensemble that achieves
the best possible prediction accuracy. Recent studies have reformulated
the DES problem as a multi-label classification problem and promising
performance gains have been reported. However, their approaches may
converge to an incorrect, and hence suboptimal, solution as they don’t
optimize the true - but non standard - loss function directly. In this
paper, we show that the label dependencies have to be captured explicitly
and propose a DES method based on Probabilistic Classifier Chains.
Experimental results on 20 benchmark data sets show the effectiveness
of the proposed method against competitive alternatives, including the
aforementioned multi-label approaches. This study is reproducible and
the source code has been made available online (https://github.com/
naranil/pcc des).
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1 Introduction

The ubiquity of ensemble models in several interesting machine learning prob-
lems stems primarily from their potential to significantly increase prediction
accuracy over individual classifier models [10,18,29]. Ensemble methods can be
divided into two categories, depending on how they generate the committee of
the classifiers. When the same classification algorithm is used to generate all the
models of the ensemble, the ensemble method is called homogeneous, otherwise it
is called heterogeneous. In the last decade, there has been a great deal of research
focused on the problem of selecting good subensembles of base classifiers prior
to combination in order to improve generalization and prediction efficiency.

The process of selecting a subset of classifiers is called ensemble selection
or ensemble pruning. When the same subset of models is selected for all test
instances, the process is referred to as static selection [14]. In that case, the
simplest idea is to select the ensemble members from a set of individual classifiers
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that are subject to less resource consumption and response time with accuracy
that performs at least as good as the original ensemble. A natural follow-up is
to determine this subset dynamically, i.e. according to the current input feature
x. This process is referred to as dynamic ensemble selection (DES).

Several DES methods have been recently proposed in the literature. A com-
prehensive coverage of individual-based and group-based DES methods is pro-
vided in [3]. In individual-based methods, the selection of a subset of models for
each test instance is done by estimating the competence level of the base classi-
fiers individually, that is, without taking their dependency structure of the model
errors into account. Group-based methods make one step further by modeling
the error co-occurrences.

As noted in [16,17,20], DES may be cast as a distinct special case of multi-
label classification (MLC) problem with a specific zero-one error expressing the
fact that at least, half of the base classifiers selected for inclusion of the sub-
ensemble should be correct for the overall class to be correct (i.e. precision >
1/2, yes or no?). The question raised by these authors was: What should be
the properties of the MLC algorithm to minimize this non-standard loss? This
question was addressed from an experimental point of view only, pointing out
that precision was found experimentally a good surrogate loss candidate for the
success of DES. Yet, many loss functions has been proposed in the literature
and it is now well understood that a MLC method performing optimally for
one loss is likely to perform suboptimally for another loss [8]. For simple loss
functions, analytic expressions of the Bayes (optimal) classifier can be derived.
For example, the Hamming loss minimizer coincides with the marginal modes
of the conditional distribution of the class labels given an instance. Conversely,
for the subset 0/1 loss, the risk minimizer is given by the joint mode of the
conditional distribution, for which individual-based methods might not be good
choices. For more complex multi-label loss functions like the one associated with
the DES problem, the Bayes (optimal) classifier is unknown and the minimization
of such losses requires more involved procedures. In this paper, we show that the
minimization of the true loss function necessitates the modeling of dependencies
between labels (i.e. co-occurrence of errors) and we use Probabilistic Classifier
Chains (PCC), with Monte Carlo sampling, as a “plug-in rule approach” for
optimizing this loss directly.

The rest of the paper is organized as follows: Sect. 2 reviews recent studies on
DES and introduces our contribution in this context using MLC. Experiments
using relevant benchmarks data sets are presented in Sect. 3. Finally, Sect. 4
concludes with a summary of our contributions and raises issues for future work.

2 Problem Statement and Contribution

In this section, we first survey and appraise the recent literature reporting the
use of machine learning techniques devoted to the DES problem, giving some
prominence to the use of multi-label classification methods. We then present our
proposed DES approach based on Probabilistic Classifier Chains.
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2.1 Dynamic Ensemble Selection (DES)

The key assumption on which DES methods hinge is that each model in the
ensemble has distinct prediction abilities on different subsets of the input space.
A criterion to measure the level of competence of a base classifier (e.g. accuracy)
is needed. The literature reports several of DES methods, considers the classi-
fiers either individually or in groups [3]. In the first category, the classifiers are
selected based on their individual competence on the whole or on a local region
of the feature space using a validation set. Most of the methods proposed for
this purpose are based either on the nearest neighbors algorithm [12,26] or on
clustering techniques [13]. Regarding the number of classifiers they select, these
individual-based selection procedures are organized into two groups: dynamic
selection, for the methods that only select the best classifier; and dynamic com-
bination, for the methods that are not restricted in the number of classifiers they
select.

In the (group-based) DES category, the selection procedures decide for the
appropriate subset of the initial ensemble by taking into account the depen-
dencies between the classification errors of the individual models. The most
famous methods in this category are meta-learning based procedures. Recently,
the authors in [6] proposed a DES “meta-learning” framework: instead of using
only single criterion to estimate the competence level of the classifiers, several
meta-features are used to capture distinct desirable “properties” characterizing
the behavior of the base classifiers. These meta-features are extracted from the
training data and used by the meta-classifier to decide whether a base classifier
is competent on a given input sample x.

2.2 DES as a Multi-label Classification Problem

The DES problem has recently been reformulated as a multi-label classification
(MLC) problem [16,17,20]. The multi-label training set is constructed on a val-
idation set. The labels are 0–1 indicator random variables indicating whether
the corresponding model has made an error on input sample x. The transforma-
tion process is illustrated in Table 1. This formulation allows us to cast the DES
problem as a standard MLC problem, which can be efficiently solved using stan-
dard MLC techniques. The IBEP-MLC method in [16,17] was the first framework
to use MLC approaches for DES: ML-KNN [27] and Calibrated Label Ranking
(CLR) [11]. Significant improvements in accuracy have been reported using a het-
erogeneous ensemble of 200 classifiers. Another recent proposal, called CHADE
(for CHAined Dynamic Ensemble) algorithm [20] is based the classifier chain
(CC) technique [22]. This approach was evaluated on a bagging ensemble of 100
decision stumps using a large set of classification data sets.

However, the literature leaves open the question of deciding what MLC algo-
rithm should work best, and more importantly how to exploit the dependencies
between the labels, implicitly giving the misleading impression that any MLC
method could solve the DES task. The benefit of exploiting label dependence is
known to be closely depend on the type of loss to be minimized. Rather than
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Table 1. Problem transformation

Validation set Classifier predictions Multi-label metabase

Xval Yval c1 c2 c3 Xval Ŷval

⇒
x1 0 1 1 0 x1 0 0 1
x2 1 0 1 1 x2 0 1 1

... ... ... ...
xn 0 0 1 0 xn 1 0 1

proposing yet another MLC algorithm, the aim of this paper is to elaborate more
closely on the idea of exploiting label dependence to solve the DES task.

2.3 DES Loss Function

When the multi-label training set is constructed for an ensemble of classifiers
Ψ = {ψ1, . . . ;ψn}, the goal is to output a subset Ψx of classifiers (Ψx ⊂ Ψ) using
a multi-label classifier for a given test instance x. A natural question is what
should be learned from the labels dependency structure to solve the DES task,
and what is the appropriate loss function for training the MLC method to obtain
a “good” subset of classifiers.

Let’s denote the subset of classifiers that correctly classify x as Φx and sup-
pose that hx = (hi)ni=1 (hi ∈ {0, 1}) and wx = (wi)ni=1 (wi ∈ {0, 1}) are the
binary representations for respectively Ψx and Φx, an intuitive way of obtaining
a correct final prediction in a two-class classification task is to have at least 50%
of the classifiers from Ψx to be in Φx [16,17]. This condition can be written in
different ways:

|Ψx ∩ Φx|
|Ψx| > 0.5 ⇔ hx.wx

hx.hx
> 0.5 ⇔

n∑

i=1

hi.wi

n∑

i=1

hi

> 0.5

This yields the following actual loss function (also referred to as task loss),

Task loss(hx,wx) =

⎧
⎪⎨

⎪⎩

0, if
hx.wx

hx.hx
> 0.5

1, otherwise.

= 1 − [[
hx.wx

hx.hx
> 0.5]] (1)

Unfortunately, there is no closed-form of the Bayes optimal multi-label clas-
sifier, that is, a mapping h∗ from the input features X to the labels Y that
minimizes the expected loss (or risk) L of the model h, defined as:

RL(h) = EXYL(Y,h(X)) =
∑

x,y∈X×Y
P (x,y)L(y,h(x)) (2)
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The optimal classifier, h∗, commonly referred to as Bayes classifier, minimizes
the risk conditioned on x: h∗(x) = arg minh

∑
y∈Y P (y|x)L(y,h(x)). Finding

h∗(x) directly by brute force search leads to intractable optimization problems
and only very few loss functions have a (known) closed-form solution. For simple
loss functions, analytic expressions of the Bayes optimal classifier have been
derived in [8]. For example, the Hamming loss minimizer was shown to coincide
with the marginal modes of the conditional distribution of the labels given an
instance x, and methods such as Binary Relevance (BR), perform particularly
well in this case. Conversely, for the subset 0/1 loss, the risk minimizer was
proven to be the joint mode of the conditional distribution, for which methods
such as the Label Powerset classifier (LP) is a good choice. Further results have
been established for the ranking loss [8], and more recently for the F-measure
loss [7]. However, as far as we know, there is no closed-form expression of the
Bayes classifier that minimizes the DES task loss. In such situations, the true
loss is usually replaced by a surrogate loss that is easier to cope with.

2.4 MLC Approaches to the DES Problem

With the above difficulty in mind, Markatopoulou et al. [16,17], used the preci-
sion loss as surrogate loss:

Precision loss(hx,wx) = 1 − hx.wx

hx.hx
= 1 − Pr(hx,wx) (3)

To solve the problem, two multi-label learning algorithms (ML-KNN [27] and
CLR [11]) were used. Each algorithm outputs a score vector for each label. There
were used in tandem with a thresholding strategy as an attempt to optimize
the task loss. Despite the performance improvements reported, we shall see next
that a method performing optimally for the precision loss may not perform well
for the DES task loss, even upon tuning the threshold value. More problematic is
the fact that the standard version of ML-KNN does not consider the correlation
between labels and, as such, is devoted to minimize the Hamming loss (LH) [8]:

LH(Ψx, Φx) =
|(Ψx ∩ Φx) ∪ (Ψx ∩ Φx)|

|Ψ | , LH(hx,wx) =
1
n

n∑

i=1

[[hi = wi]] (4)

Tuning automatically the threshold via cross-validation was performed to
overcome the theoretical shortcomings of the base MLC approaches. Clearly,
choosing higher confidence thresholds for inclusion in the final pool tends to
reduce the precision loss. Threshold values greater than 0.75 have been consid-
ered in their work.

In [20], the Classifier Chains (CC) [22] classifier was used to take the corre-
lation between labels into account. However Dembczynski et al. [8] argued that
CC is more appropriate for the subset 0/1 loss as it tends to approximate the
joint mode of the conditional distribution of label vectors in a greedy manner.
The 0/1 loss is given by:

L0/1(Ψx, Φx) = [[∀ψ ∈ Ψx, ψ ∈ Φx]], L0/1(hx,wx) = [[hx = wx]] (5)
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Table 2. A DES example cast as a multi-label problem: different loss functions yield
distinct minimizers.

y1 y2 y3 y4 P (y1, . . . , y4 | x)

1 1 0 1 3/7

1 1 1 0 2/7

1 0 1 1 1/7

0 0 1 1 1/7

The above methods have several shortcomings. Consider the simple DES
example in Table 2. The ensemble consists of 4 models, each having a mean
accuracy exceeding 50%. The joint conditional distribution P (y1, . . . , y4 | x) is
displayed.

It is easy to show that in this toy example, the optimal solution for the
Hamming loss, 0/1 loss, DES task loss and Precision loss respectively are given by
h∗
hl = (1, 1, 1, 1), h∗

0/1 = (1, 1, 0, 1), h∗
DEStaskloss ∈ {(0, 1, 1, 1), (1, 0, 1, 1)} and

h∗
Precisionloss = (1, 0, 0, 0). This illuminating toy example is important to caution

the hurried researcher against using “off-the-shelf” MLC techniques to solve the
DES problem. Indeed, IBEP-MLC which minimizes the Hamming loss implicitly,
would select all the classifiers, whereas CHADE, based on CC that attempts
to minimize the 0/1 loss, would output {c1, c2, c4}. As may be observed, both
methods fail to recover the optimal solution for the DES actual loss function,
{c2, c3, c4} or {c1, c3, c4}. It is also worth noting that the thresholding strategy
based on the marginal label probabilities is unable cope with this problem. In
fact, some information on the label dependency structure has to be captured
to optimize the DES actual loss function. The following result shows that the
precision loss tends to favor the best performing model,

Lemma 1. The mapping h(.) = (h1(.), . . . , hn(.)) defined by:
⎧
⎨

⎩

hk(x) = 1, k = arg maxi∈{1,...,n}P(Yi = 1|x).

hj(x) = 0, j �= k
(6)

minimizes the expected precision score loss.

Proof. Minimizing the expected precision loss is equivalent to maximizing the
expected precision which can easily be bounded above:

EY|XPr(h,Y) =
∑

y∈Y
P (y|x)

n∑

i=1

hi.yi

n∑

i=1

hi

=

n∑

i=1

hiP (yi = 1|x)

n∑

i=1

hi

≤ maxi P (yi = 1|x)

The mapping h(.) defined above reaches this bound and is thus Bayes optimal
for the expected precision. This concludes the proof.
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Therefore, picking the label having the highest confidence is a Bayes optimal
solution to the MLC problem under the precision loss. However, we have just
seen that on a toy problem that the best performing model is not always a good
solution to the DES problem even if it is straightforward to identify. We may
conclude that Precision loss is not a valid surrogate loss for this task. In this
paper we focus on a general technique capable of minimizing the DES actual loss
function based on a combination of Probabilistic Classifier Chains and Monte
Carlo sampling. A similar approach was successfully applied to maximize the
F-measure in [7]. This constitutes our main contribution.

2.5 Probabilistic Classifier Chains and Monte Carlo Inference

We have seen that some information on the joint conditional distribution
P (Y | x) has to be captured to minimize the DES task loss. Brute-force search
is however intractable as the number of possible labels permutations grows as
O(2n). One idea to cope with this issue is to infer a label combination prob-
ability in a step-wise manner using the chain rule of probability. Given a test
instance x, the joint conditional probability of the labels y = (y1, . . . , yn) can
be expressed by the chain rule of probability:

Px(y) = P (y|x) = P (y1|x) ·
n∏

i=2

P (yi|x, y1, . . . yi−1) (7)

The rationale behind Probabilistic Classifier Chains [5] (PCC) is to estimate
the joint conditional probability using this chain rule. PCC is the probabilis-
tic counterpart of the Classifier Chain [22] algorithm. The method goes as fol-
lows: n probabilistic classifiers are used to estimate the probability distributions
P (yi|x, y1, . . . , yi−1) for each label i = 1, . . . , n. Therefore, the ith classifier hi

is trained on a training data set composed of the original training data Xtr

and (ytr1 , . . . , ytri−1). While the training stage is rather straightforward, several
approaches have been proposed in the literature for performing inference during
the testing stage. CC is the simplest approach: each hi predicts in sequential
fashion the label yi with the highest marginal conditional probability, taking
as input the current input x and the previous predicted labels (ŷ1, . . . , ŷi−1).
Therefore, CC may be regarded as a greedy approximation of PCC, focusing on
the 0/1 loss minimization as the method estimates the mode of the joint distri-
bution in a greedy fashion. In contrast, inference with PCC amounts to explore
exhaustively the probability tree to estimate the Bayes optimal solution for any
type of loss. This approach called Exhaustive Search (ES) estimates the true
risk minimizer at the cost of extensive computation time since the tree diagram
grows exponentially with n. Several methods have been proposed to reduce the
computational burden of ES: ε-Approximation, Beam Search and Monte Carlo
sampling (MC) (see for instance [19] and references therein for further details
and experimental comparisons). However, ε-Approximation and Beam Search
also tend to minimize of the 0/1 loss instead of the DES task loss. In this paper,
we use Monte Carlo MC sampling technique [21] due to its ability to minimize
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arbitrary loss functions. The procedure is rather straightforward: given a new
unlabeled instance x, the labels are sampled in sequence, by taking the previ-
ously sampled labels ŷ1, . . . , ŷi as input to the classifier hi in order to estimate
the marginal conditional probability of the next label yi+1. Finally, the label
combination ŷpcc that exhibits the lowest DES task loss value among the nMC

samples is chosen as the final prediction. Note that the DES task loss mini-
mizer is estimated over a subset of nMC samples drawn randomly instead of the
whole set of possible labels, in order to keep the computational burden as low
as possible. Once the nMC samples are drawn, the search for the DES task loss
minimizer requires O(n2

MC) further operations (calls to the loss functon) which
can be prohibitive for large values of nMC . Of course, the preference for smaller
values of nMC should be traded off against the prediction performance of the
selected classifiers. In our experiments, we set nMC = 1000. The PCC + Monte
Carlo method applied to DES is termed PCC-DES in the sequel.

3 Experiments

In this section, we report on the experiments performed to evaluate the use of the
proposed PCC-DES method on several data sets and we compare its predictive
performance against other multi-label based DES methods. The following exper-
iments were performed on 20 binary classification data sets primarily selected
from the UCI Machine Learning Repository [2] and some other online reposi-
tories, covering a wide variety of topics including health, education, business,
science etc., and exhibiting various dimensionalities as described in Table 3.

3.1 Ensemble Generation

In order to make fair comparisons, we used two ensemble generation techniques
that appeared in the literature and investigated the performance of PCC-DES
against other multi-label based DES techniques.

The First (ensemble) generation was used in [16,17]. An heterogeneous
ensemble of 200 classifiers was constructed consisting of: (1) 40 multilayer per-
ceptrons (MLPs) with {1, 2, 4, 8, 16} hidden units, momentum varying in {0,
0.2, 0.5, 0.9} and two learning rates: 0.3 and 0.6, (2) 60 k nearest neighbors
(kNNs) with 20 values for k evenly distributed between 1 and the number of
training observations, 3 weighting methods: no weights, inverse-weighting and
similarity-weighting, (3) 80 support vector machines (SVMs) composed of 16
polynomial SVMs with a kernel of degree 2 and 3 and a complexity parameter
C varying from 10−5 to 102 in steps of 10, and 64 radial SVMs with the same
values of C and a width γ in {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}, and (4)
20 decision trees (DTs), half of which are trained using Gini and half using
entropy as split criteria; five values of the maximum depth pruning option 1, 2,
3, 4 and None, 8 decision trees using also Gini and entropy, varying the number
of features to consider when looking for the best split (square root, log2, 50%
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Table 3. Characteristics of the data sets used in the study

Datasets # Instances # Features # Classes Ref.

Adult 48842 14 2 [2]

AutoMoto 1980 2159 2 [23]

BaseHock 1993 4862 2 [23,28]

Breast cancer wisconsin (original) 699 9 2 [2]

Colic 368 27 2 [2]

Colon 62 2000 2 [1]

Credit Approval 690 15 2 [2]

EleCrypt 1973 2514 2 [23]

German credit 1000 24 2 [2]

GunMid 1847 2917 2 [23]

Hepatitis 155 19 2 [2]

Ionosphere 351 34 2 [2]

Chess (Krvskp) 3196 36 2 [2]

Madelon 2600 500 2 [2]

Ovarian 54 1536 2 [25]

PcMac 1943 3289 2 [23,28]

RelAthe 1427 4322 2 [23,28]

Connectionist bench (Sonar) 208 60 2 [2]

Spambase 4601 57 2 [2]

Congressional voting records (Vote) 435 16 2 [2]

and 100%) of the total number of features, and 2 decision trees using Gini and
2 values for the minimum number of samples per leaf 2, 3.

The Second (ensemble) generation was used in [4]. A pool of 200 heteroge-
neous models was constructed consisting of: (1) 50 bagged trees (BAG-DTs)
using 25 trees for each splitting criterion (Gini and entropy), (2) 50 random
subspace trees (RSM-DTs) consisting of 25 trees per splitting criterion, (3) 8
Boosting decision trees (BST-DTs) obtained by boosting a decision tree for each
splitting criterion (Gini and entropy) and since Boosting can overfit, boosted
DTs were added to the pool after 2, 4, 8, 16 steps of boosting, (4) 14 Boosting
stumps (BST-STMP) obtained by boosting single level decision trees with both
splitting criteria, each boosted 2, 4, 8, 16, 32, 64, 128 steps, (5) 24 multilayer
perceptrons (MLPs) with {1, 2, 4, 8, 32, 128} hidden units and a momentum
varying in {0, 0.2, 0.5, 0.9}, and (6) 54 support vector machines (SVMs) com-
posed of 6 linear SVMs with complexity parameter C varying from 10−3 to 102

in steps of 10, 48 radial SVMs with the same values of C and a width γ in {0.001,
0.005, 0.01, 0.05, 0.1, 0.5, 1, 2}.
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These two strategies have many classifiers (MLPs and SVMs) in common.
Yet, the second generation is expected to perform better as more powerful mod-
els (BAG-DTs, RSM-DTs, BST-DTs, BST-STMP) are generated. The
overall mean error rate, averaged over the 20 data sets, is 0.340 with the first
generation and 0.288 with the second generation. This should be kept in mind
when analyzing the results.

3.2 Compared Methods and Evaluation Protocol

To gauge the practical relevance of our PCC-DES method, we compared its per-
formance to four multi-label based DES methods in terms of accuracy improve-
ments.

• BR-DES: Binary Relevance based DES method. BR resolves the MLC problem
by training a classifier for each label separately. It is tailored for the Hamming
loss [8].

• LP-DES: Label Powerset based DES method. LP reduces the MLC problem
to multi-class classification, considering each label subset as a distinct meta-
class. LP is tailored for the subset 0/1 loss [8].

• PM-DES:Precision loss minimizerbasedDEStechnique.Asdiscussed inSect. 2,
this approach attempts to select the best classifier in the pool, given x.

• CHADE: CHAined Dynamic Ensemble algorithm [20]. It is based on the clas-
sifier chain (CC) technique. CC tailored for the subset 0/1 loss [8].

• BEST: the classifier with the highest accuracy in the validation data is selected
(static method) [24].

• ENSEMBLE: the complete ensemble is classically used (baseline method).

Following [8], the logistic regression chosen as the base classifier of the MLC
methods in our experiments. As noted earlier, a set of nMC = 1000 samples
was considered during the MC inference stage. The performance of the models
was tested using a 5-fold cross-validation experiment. At each step of the cross-
validation, 75% of the training data set was used to train the ensemble and
the remaining 25% as a validation set to train the meta-learners for DES. This
process was repeated 5 times for each DES method. The overall accuracy was
computed by averaging over those 25 iterations.

3.3 Results and Discussion

The average accuracies of the compared methods for all 20 data sets using the
first and the second generation strategies are reported respectively in Tables 4
and 5. We follow in this study the methodology proposed by [9] for the com-
parison of several algorithms over multiple data sets. In this study, the non-
parametric Friedman test is firstly used to determine if there is a statistically
significant difference between the rankings of the compared techniques. The
Friedman test reveals here statistically significant differences (p < 0.05) for each
ensemble generation strategy. Next, as recommended by Demsar [9], we perform
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the Nemenyi post hoc test with average rank diagrams. These diagrams are given
on Fig. 1. The ranks are depicted on the axis, in such a manner that the best
ranking algorithms are at the rightmost side of the diagram. The algorithms
that do not differ significantly (at p = 0.05) are connected with a line. The crit-
ical difference (CD) is shown above the graph (CD = 2.0139 here). As may be
observed from CD plots and the results in Tables 4 and 5 PCC-DES outperform
the other models most of the time.

As far as the first ensemble generation is concerned (c.f. Table 4 and Fig. 1),
the performances of PCC-DES are not statistically distinguishable from the per-
formances of the single best classifier in the ensemble (BEST). As mentioned
before, the first generation produces a pool containing several weak classifiers.
Selecting the best single model from this pool yields remarkably good perfor-
mance. The nonparametric statistical tests we used are very conservative. To
further support these rank comparisons, we compared the 25 accuracy values
obtained over each data set split for each pair of algorithms according to the
paired t-test (with p = 0.05). The results of these pairwise comparisons are
depicted in the last row of Table 4 in terms of “win/tie/loss” statuses of all
methods against PCC-DES; the three values respectively indicate how times
many the corresponding approach is significantly better/not significantly dif-
ferent/significantly worse than PCC-DES. Inspection of this win/tie/loss values
reveals that DES using PCC (PCC-DES) is the only MLC-based DES method
able to outperform the best single model BEST. The win/tie/loss values triples
are statistically better with PCC-DES on 10 data sets, poorer on 1 data set only,
and not significant on 8 data sets. Overall, PCC-DES compares more favorably
to the other approaches, sometimes by a noticeable margin, in terms of accuracy.

Regarding the second ensemble generation strategy, here again PCC-DES out-
performs the other algorithms, except BR-DES (c.f. Table 5 and Fig. 1). PCC-DES
ranks first as well. Yet, it is not statistically better than BR-DES according the
post hoc test. On the other hand, the win/tie/loss counts in Table 5 are statis-
tically better for PCC-DES on 4 data sets and not significant on 16 data sets.

Fig. 1. Average rank diagrams of the compared DES methods using the first (left) and
second (right) ensemble generation strategies.



180 A. Narassiguin et al.

T
a
b
le

4
.

M
ea

n
s

a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n
s

o
f

a
cc

u
ra

cy
fo

r
co

m
p
a
re

d
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

d
a
ta

se
ts

w
it

h
th

e
fi
rs
t
en

se
m
bl
e

ge
n
er
a
ti
o
n

st
ra

te
g
y

D
a
ta

se
t

E
N

S
E

M
B

L
E

P
M

-D
E

S
B

R
-D

E
S

L
P

-D
E

S
C

C
-D

E
S

P
C

C
-D

E
S

B
E

S
T

A
d
u
lt

0
.7

5
2
±

0
.0

6
•

0
.7

8
1
±

0
.0

4
•

0
.7

9
8
±

0
.0

6
•

0
.7

5
5
±

0
.0

6
•

0
.7

9
0
±

0
.0

6
•

0
.8

0
3
±

0
.0

4
0
.7

9
1
±

0
.0

4
•

A
u
to

m
o
to

0
.6

3
1
±

0
.1

6
•

0
.8

7
2
±

0
.0

4
•

0
.8

5
2
±

0
.0

4
•

0
.7

7
4
±

0
.0

6
•

0
.8

1
8
±

0
.0

6
•

0
.9

0
2
±

0
.0

5
0
.8

4
5
±

0
.0

4
•

B
a
se

H
o
ck

0
.6

4
3
±

0
.1

9
•

0
.9

1
1
±

0
.0

2
•

0
.8

6
7
±

0
.0

7
•

0
.8

0
8
±

0
.0

6
•

0
.8

2
4
±

0
.1

1
•

0
.9

3
3
±

0
.0

3
0
.9

1
2
±

0
.0

3
•

B
re

a
st

-c
a
n
ce

r
0
.9

6
0
±

0
.0

2
•

0
.9

6
5
±

0
.0

2
0
.9

7
0
±

0
.0

2
0
.9

6
1
±

0
.0

2
•

0
.9

7
0
±

0
.0

2
0
.9

7
0
±

0
.0

2
0
.9

6
8
±

0
.0

2

C
o
li
c

0
.6

7
8
±

0
.0

3
•

0
.8

1
2
±

0
.0

5
0
.7

3
7
±

0
.0

5
•

0
.7

0
9
±

0
.0

5
•

0
.7

3
5
±

0
.0

5
•

0
.8

2
2
±

0
.0

4
0
.8

2
1
±

0
.0

6

C
o
lo

n
0
.6

8
4
±

0
.2

0
•

0
.7

8
1
±0

.1
3

0
.7

9
4
±

0
.1

5
0
.7

7
4
±

0
.1

6
•

0
.7

9
1
±

0
.1

7
0
.8

1
3
±

0
.1

4
0
.7

7
9
±

0
.1

5

C
re

d
it

a
p
p
ro

va
l

0
.8

2
8
±

0
.0

6
•

0
.8

5
2
±

0
.0

3
•

0
.8

7
1
±

0
.0

3
0
.8

3
1
±

0
.0

5
•

0
.8

7
0
±

0
.0

3
0
.8

7
2
±

0
.0

4
0
.8

6
6
±

0
.0

3

E
le

cr
y
p
t

0
.7

7
4
±

0
.2

3
•

0
.9

0
9
±

0
.0

2
•

0
.8

8
2
±

0
.0

5
•

0
.8

1
8
±

0
.0

7
•

0
.8

3
3
±

0
.1

0
•

0
.9

3
8
±

0
.0

2
0
.9

1
8
±

0
.0

3
•

G
er

m
a
n

cr
ed

it
0
.7

0
0
±

0
.0

4
•

0
.7

2
7
±

0
.0

5
•

0
.7

3
6
±

0
.0

5
0
.7

2
2
±

0
.0

4
•

0
.7

2
4
±

0
.0

4
•

0
.7

4
5
±

0
.0

5
0
.7

3
3
±

0
.0

5

G
u
n
m

id
0
.5

8
2
±

0
.1

1
•

0
.7

6
8
±

0
.0

4
•

0
.7

5
6
±

0
.0

5
•

0
.7

1
5
±

0
.0

5
•

0
.7

3
8
±

0
.0

6
•

0
.8

0
6
±

0
.0

4
0
.7

8
4
±

0
.0

4
•

H
ep

a
ti

ti
s

0
.7

9
4
±

0
.1

3
•

0
.8

0
6
±

0
.1

1
0
.7

9
5
±

0
.1

3
•

0
.7

9
5
±

0
.1

3
•

0
.7

9
5
±

0
.1

3
•

0
.8

0
8
±

0
.1

2
0
.8

1
5
±

0
.1

2

Io
n
o
sp

h
er

e
0
.6

4
1
±

0
.1

9
•

0
.9

0
9
±

0
.0

5
0
.7

6
6
±

0
.1

5
•

0
.6

6
1
±

0
.1

9
•

0
.7

6
5
±

0
.1

4
•

0
.9

1
9
±

0
.0

4
0
.9

2
7
±

0
.0

5
◦

K
rv

sk
p

0
.6

6
2
±

0
.1

2
•

0
.9

4
6
±

0
.0

2
•

0
.9

1
6
±

0
.0

5
•

0
.8

0
1
±

0
.0

9
•

0
.9

1
2
±

0
.0

6
•

0
.9

6
6
±

0
.0

2
0
.9

5
2
±

0
.0

3
•

M
a
d
el

o
n

0
.5

0
1
±

0
.0

5
•

0
.5

8
4
±

0
.0

5
0
.5

7
4
±

0
.0

4
0
.5

4
6
±

0
.0

4
•

0
.5

6
3
±

0
.0

4
0
.5

9
0
±

0
.0

5
0
.5

8
0
±

0
.0

6

O
va

ri
a
n

0
.3

6
9
±

0
.3

7
•

0
.7

7
8
±

0
.1

5
0
.8

3
3
±

0
.0

9
0
.7

4
5
±

0
.1

3
•

0
.8

3
3
±

0
.1

0
0
.8

2
3
±

0
.0

4
0
.7

7
1
±

0
.1

6

P
cM

a
c

0
.6

0
2
±

0
.1

5
•

0
.8

3
8
±

0
.0

3
•

0
.8

0
2
±

0
.0

7
•

0
.7

2
5
±

0
.0

6
•

0
.7

5
9
±

0
.1

1
•

0
.8

8
2
±

0
.0

3
0
.8

3
6
±

0
.0

3
•

R
el

a
th

e
0
.5

6
2
±

0
.0

6
•

0
.8

4
9
±

0
.0

4
•

0
.8

0
1
±

0
.0

6
•

0
.7

8
9
±

0
.0

6
•

0
.6

7
4
±

0
.0

7
•

0
.8

8
8
±0

.0
3

0
.8

5
5
±

0
.0

4
•

S
o
n
a
r

0
.0

9
3
±

0
.1

8
•

0
.4

3
8
±

0
.1

3
0
.2

9
8
±

0
.1

4
•

0
.2

2
0
±

0
.1

9
•

0
.3

0
3
±

0
.1

4
•

0
.4

6
5
±

0
.1

2
0
.3

9
6
±

0
.1

4
•

S
p
a
m

b
a
se

0
.7

5
6
±

0
.0

6
•

0
.8

9
0
±

0
.0

3
0
.8

5
4
±

0
.0

3
•

0
.7

5
4
±

0
.0

6
•

0
.8

1
2
±

0
.0

5
•

0
.8

9
8
±

0
.0

3
0
.8

8
3
±

0
.0

3
•

V
o
te

0
.9

4
5
±

0
.0

4
0
.9

2
8
±

0
.0

5
0
.9

4
0
±

0
.0

5
0
.9

3
0
±

0
.0

5
•

0
.9

3
9
±

0
.0

5
0
.9

4
5
±

0
.0

4
0
.9

3
8
±

0
.0

5

(W
in

/
ti

e/
lo

ss
)

0
/
0
/
1
9

0
/
9
/
1
0

0
/
6
/
1
3

0
/
0
/
2
0

0
/
5
/
1
4

1
/
8
/
1
0



Dynamic Ensemble Selection with Probabilistic Classifier Chains 181

T
a
b
le

5
.

M
ea

n
s

a
n
d

st
a
n
d
a
rd

d
ev

ia
ti

o
n
s

o
f

a
cc

u
ra

cy
fo

r
co

m
p
a
re

d
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

d
a
ta

se
ts

w
it

h
th

e
se
co
n
d
en

se
m
bl
e

ge
n
er
a
ti
o
n

st
ra

te
g
y

D
a
ta

se
t

E
N

S
E

M
B

L
E

P
M

-D
E

S
B

R
-D

E
S

L
P

-D
E

S
C

C
-D

E
S

P
C

C
-D

E
S

B
E

S
T

A
d
u
lt

0
.9

5
0
±

0
.0

3
0
.9

4
7
±

0
.0

4
0
.9

5
2
±

0
.0

3
0
.9

4
8
±

0
.0

3
0
.9

5
0
±

0
.0

3
0
.9

5
2
±

0
.0

3
0
.9

5
2
±

0
.0

3

A
u
to

m
o
to

0
.8

7
8
±

0
.0

5
•

0
.8

5
9
±

0
.0

4
•

0
.9

0
5
±

0
.0

4
0
.8

7
9
±

0
.0

5
•

0
.8

9
3
±

0
.0

4
•

0
.9

0
8
±

0
.0

4
0
.8

5
6
±

0
.0

4
•

B
a
se

H
o
ck

0
.8

8
3
±

0
.0

6
•

0
.9

0
4
±

0
.0

3
•

0
.9

2
1
±

0
.0

4
0
.9

0
3
±

0
.0

3
•

0
.8

6
8
±

0
.0

4
•

0
.9

3
0
±

0
.0

3
0
.8

9
8
±

0
.0

4
•

B
re

a
st

-C
a
n
ce

r
0
.9

6
3
±

0
.0

2
0
.9

5
1
±

0
.0

3
•

0
.9

6
6
±

0
.0

2
0
.9

6
4
±

0
.0

2
0
.9

6
3
±

0
.0

2
0
.9

6
4
±

0
.0

2
0
.9

4
2
±

0
.0

3
•

C
o
li
c

0
.8

2
5
±

0
.0

4
•

0
.8

0
8
±

0
.0

5
•

0
.8

3
2
±

0
.0

3
•

0
.8

2
5
±

0
.0

5
•

0
.8

2
3
±

0
.0

4
•

0
.8

4
7
±

0
.0

4
0
.8

0
7
±

0
.0

5
•

C
o
lo

n
0
.7

8
4
±

0
.1

5
•

0
.7

6
5
±

0
.1

4
•

0
.8

4
6
±

0
.1

3
0
.8

5
4
±

0
.1

2
0
.8

4
2
±

0
.1

2
0
.8

4
4
±

0
.1

1
0
.7

9
7
±

0
.1

4
•

C
re

d
it

A
p
p
ro

va
l

0
.8

9
8
±

0
.0

3
0
.8

5
8
±

0
.0

3
•

0
.9

0
2
±

0
.0

2
0
.8

7
7
±

0
.0

3
•

0
.9

0
2
±

0
.0

2
0
.9

0
5
±

0
.0

2
0
.8

7
4
±

0
.0

3
•

E
le

cr
y
p
t

0
.8

9
9
±

0
.0

3
•

0
.8

9
9
±

0
.0

3
•

0
.9

1
7
±

0
.0

3
0
.9

1
1
±

0
.0

2
•

0
.8

9
7
±

0
.0

3
•

0
.9

2
2
±

0
.0

2
0
.9

1
2
±

0
.0

2

G
er

m
a
n

C
re

d
it

0
.7

2
2
±

0
.0

5
•

0
.6

9
6
±

0
.0

4
•

0
.7

4
4
±

0
.0

5
0
.7

3
5
±

0
.0

4
0
.7

3
1
±

0
.0

5
•

0
.7

4
8
±

0
.0

4
0
.7

1
7
±

0
.0

5
•

G
u
n
m

id
0
.7

4
7
±

0
.0

5
•

0
.7

4
7
±

0
.0

4
•

0
.8

0
7
±

0
.0

5
0
.7

7
2
±

0
.0

4
•

0
.7

8
0
±

0
.0

5
•

0
.8

0
6
±

0
.0

4
0
.7

7
6
±

0
.0

5
•

H
ep

a
ti

ti
s

0
.8

1
5
±

0
.1

1
0
.7

9
0
±

0
.1

1
•

0
.8

2
3
±

0
.1

0
0
.8

1
8
±

0
.1

0
0
.8

1
2
±

0
.1

1
0
.8

3
1
±

0
.0

9
0
.7

8
8
±

0
.1

5
•

Io
n
o
sp

h
er

e
0
.9

1
0
±

0
.0

6
•

0
.8

9
1
±

0
.0

5
•

0
.9

1
0
±

0
.0

6
•

0
.9

0
7
±

0
.0

6
•

0
.9

1
0
±

0
.0

6
•

0
.9

2
0
±

0
.0

5
0
.8

9
1
±

0
.0

7
•

K
rv

sk
p

0
.9

5
2
±

0
.0

3
•

0
.9

5
4
±

0
.0

2
0
.9

6
0
±

0
.0

2
0
.9

5
6
±

0
.0

2
0
.9

5
3
±

0
.0

2
0
.9

5
9
±

0
.0

3
0
.9

5
8
±

0
.0

2

M
a
d
el

o
n

0
.5

4
8
±

0
.0

5
•

0
.5

4
0
±

0
.0

5
•

0
.5

9
2
±

0
.0

4
0
.5

6
3
±

0
.0

5
•

0
.5

7
3
±

0
.0

5
•

0
.5

9
9
±

0
.0

4
0
.5

5
3
±

0
.0

5
•

O
va

ri
a
n

0
.7

6
2
±

0
.1

5
•

0
.7

4
0
±

0
.1

5
•

0
.8

4
1
±

0
.0

8
0
.7

3
8
±

0
.1

5
•

0
.8

2
0
±

0
.0

8
•

0
.8

4
5
±

0
.0

7
0
.7

6
4
±

0
.1

4
•

P
cM

a
c

0
.8

2
8
±

0
.0

3
•

0
.8

4
7
±

0
.0

3
•

0
.8

8
6
±

0
.0

2
0
.8

3
6
±

0
.0

3
•

0
.8

5
9
±

0
.0

4
•

0
.8

9
4
±

0
.0

2
0
.8

4
7
±

0
.0

4
•

R
el

a
th

e
0
.8

1
5
±

0
.0

5
•

0
.8

5
0
±

0
.0

3
•

0
.8

6
3
±

0
.0

4
•

0
.8

4
4
±

0
.0

4
•

0
.8

3
0
±

0
.0

5
•

0
.8

7
9
±

0
.0

3
0
.8

6
7
±

0
.0

5

S
o
n
a
r

0
.3

2
3
±

0
.1

3
•

0
.4

7
7
±

0
.1

1
◦

0
.3

8
2
±

0
.0

9
•

0
.3

9
2
±

0
.0

8
0
.3

4
0
±

0
.1

2
•

0
.4

1
5
±

0
.0

8
0
.4

6
7
±

0
.1

3
◦

S
p
a
m

b
a
se

0
.9

0
0
±

0
.0

2
0
.8

8
6
±

0
.0

3
•

0
.9

0
3
±

0
.0

2
0
.9

0
0
±

0
.0

2
0
.8

9
8
±

0
.0

2
0
.9

0
6
±

0
.0

2
0
.8

8
2
±

0
.0

3
•

V
o
te

0
.9

5
0
±

0
.0

3
0
.9

4
7
±

0
.0

4
0
.9

5
2
±

0
.0

3
0
.9

4
8
±

0
.0

3
0
.9

5
0
±

0
.0

3
0
.9

5
2
±

0
.0

3
0
.9

5
2
±

0
.0

3

(W
in

/
ti

e/
lo

ss
)

0
/
6
/
1
4

1
/
3
/
1
6

0
/
1
6
/
4

0
/
9
/
1
1

0
/
8
/
1
2

1
/
5
/
1
4



182 A. Narassiguin et al.

For a better understanding of the behavior of PCC-DES in comparison with
the others DES approaches, we explored in the sequel the relation between the
diversity-accuracy of the ensemble and the performance of the dynamic ensemble
selection. To measure the diversity within the ensemble, we consider the kappa
metric (κ) used in [15]. κ evaluates the level of agreement between two clas-
sifier outputs. The plots in Fig. 2 are representative examples of the effects of
individual classifier average error and diversity (respectively) on the ability of
DES methods for accuracy improvement under the first generation and second
generation strategies.

Fig. 2. Gain in accuracy of PCC-DES over the other DES methods vs. individual
classifier average error (top plots) and diversity (1 − κ, lower plots) with the first and
second ensemble generation strategies.
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Fig. 3. Histogram of the number of classifiers selected per instance, by each DES
method with the first and second ensemble generation strategies.

Fig. 4. Accuracy averaged over 20 data sets, as a function of the ensemble size.

A closer inspection of plots in this figure reveals the following: (1) not sur-
prisingly, as the individual classifiers become less accurate (respectively more
diverse), the dynamic ensemble selection becomes crucial for ensemble learn-
ing, (2) a significant accuracy gain was obtained with large values of errors
(respectively diversity) with PCC-DES compared to the others MLC-based DES
techniques, especially for ensemble models obtained using the first generation
strategy.

In Table 6, the average number of models selected by BR-DES, LP-DES,
CHADE and PCC-DES across all test instances and for all data sets is displayed.
Our prime conclusion is that PCC-DES is a promising approach to DES. Concen-
trating on the actual DES task loss pays off in terms of performance. Compared
to all others DES approaches, it appears that PCC-DES selects a far smaller num-
ber of models on average, especially with the first ensemble generation strategy
containing weaker models as well (c.f. Fig. 3). We also plotted in Fig. 4 the over-
all accuracy on the 20 data sets as a function of the size of the ensemble, varying
from 100 to 500. This confirms that our conclusions are rather insensitive to
the size of the original ensemble. The running times are not shown here due to
space restrictions. We would like to stress again that the MC inference step with
PCC-DES requires O(n2

MC) calls to the loss function. On Madelon, for instance,
PCC-DES takes about 90 s to label as single test example. This computational
overhead prevents PCC-DES from being used in real-time.
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4 Conclusion

In this work, we reformulated the dynamic ensemble selection (DES) problem as
a multi-label classification problem and derived the actual multi-label loss asso-
ciated to the DES problem. Contrary to other approaches that use state-of-art
multi-label classification methods, we addressed the problem of optimizing the
non-standard actual loss directly, since an analytic expression (or characteriza-
tion) of the Bayes classifier that minimizes the actual DES loss is missing. We
showed that the dependencies of the errors made by each model in the ensem-
ble have to be exploited to optimize this loss. As the problem is intractable for
realistic ensemble sizes, we discussed a more sophisticated multi-label procedure
based on Probabilistic Classifier Chains and Monte Carlo sampling capable that
allows to minimize the actual loss function directly. The experimental results on
20 benchmark data sets demonstrated the effectiveness of the proposed method
against competitive alternatives using standard “off-the-shelf” multi-label learn-
ing techniques. Our experimental results show that optimizing the actual DES
loss pays off in terms of performance. Compared to all others DES approaches,
the proposed method was found to select a significantly smaller number of mod-
els, especially in the presence of many weak models. Future work should aim
to characterize the Bayes classifier for the actual DES loss in order to reduce
the computational burden of the training phase and to increase the performance
further.
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