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Abstract. Domain adaptation (DA) is an important and emerging field
of machine learning that tackles the problem occurring when the distri-
butions of training (source domain) and test (target domain) data are
similar but different. This kind of learning paradigm is of vital impor-
tance for future advances as it allows a learner to generalize the knowl-
edge across different tasks. Current theoretical results show that the
efficiency of DA algorithms depends on their capacity of minimizing the
divergence between source and target probability distributions. In this
paper, we provide a theoretical study on the advantages that concepts
borrowed from optimal transportation theory [17] can bring to DA. In
particular, we show that the Wasserstein metric can be used as a diver-
gence measure between distributions to obtain generalization guarantees
for three different learning settings: (i) classic DA with unsupervised
target data (ii) DA combining source and target labeled data, (iii) mul-
tiple source DA. Based on the obtained results, we motivate the use of
the regularized optimal transport and provide some algorithmic insights
for multi-source domain adaptation. We also show when this theoreti-
cal analysis can lead to tighter inequalities than those of other existing
frameworks. We believe that these results open the door to novel ideas
and directions for DA.
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1 Introduction

Many results in statistical learning theory study the problem of estimating the
probability that a hypothesis chosen from a given hypothesis class can achieve
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a small true risk. This probability is often expressed in the form of general-
ization bounds on the true risk obtained using concentration inequalities with
respect to (w.r.t.) some hypothesis class. Classic generalization bounds make
the assumption that training and test data follow the same distribution. This
assumption, however, can be violated in many real-world applications (e.g., in
computer vision, language processing or speech recognition) where training and
test data actually follow a related but different probability distribution. One
may think of an example, where a spam filter is learned based on the abundant
annotated data collected for one user and is further applied for newly registered
user with different preferences. In this case, the performance of the spam fil-
ter will deteriorate as it does not take into account the mismatch between the
underlying probability distributions. The need for algorithms tackling this prob-
lem has led to the emergence of a new field in machine learning called domain
adaptation (DA), subfield of transfer learning [18], where the source (training)
and target (test) distributions are not assumed to be the same. From a theo-
retical point of view, existing generalization guarantees for DA are expressed
in the form of bounds over the target risk involving the source risk, a diver-
gence between domains and a term A evaluating the capability of the considered
hypothesis class to solve the problem, often expressed as a joint error of the ideal
hypothesis between the two domains. In this context, minimizing the divergence
between distributions is a key factor for the potential success of DA algorithms.
Among the most striking results, existing generalization bounds based on the H-
divergence [3] or the discrepancy distance [15] have also an interesting property
of being able to link the divergence between the probability distributions of two
domains w.r.t. the considered class of hypothesis.

Despite their advantages, the above mentioned divergences do not directly
take into account the geometry of the data distribution. Recently, [6,7] has
proposed to tackle this drawback by solving the DA problem using ideas from
optimal transportation (OT) theory. Their paper proposes an algorithm that
aims to reduce the divergence between two domains by minimizing the Wasser-
stein distance between their distributions. This idea has a very appealing and
intuitive interpretation based on the transport of one domain to another. The
transportation plan solving OT problem takes into account the geometry of the
data by means of an associated cost function which is based on the Euclidean
distance between examples. Furthermore, it is naturally defined as an infimum
problem over all feasible solutions. An interesting property of this approach is
that the resulting solution given by a joint probability distribution allows one to
obtain the new projection of the instances of one domain into another directly
without being restricted to a particular hypothesis class. This independence from
the hypothesis class means that this solution not only ensures successful adap-
tation but also influences the capability term A. While showing very promising
experimental results, it turns out that this approach, however, has no theoreti-
cal guarantees. This paper aims to bridge this gap by presenting contributions
covering three DA settings: (i) classic unsupervised DA where the learner has
only access to labeled source data and unsupervised target instances, (ii) DA
where one has access to labeled data from both source and target domains, (iii)
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multi-source DA where labeled instances for a set of distinct source domains
(more than 2) are available. We provide new theoretical guarantees in the form
of generalization bounds for these three settings based on the Wasserstein dis-
tance thus justifying its use in DA. According to [26], the Wasserstein distance
is rather strong and can be combined with smoothness bounds to obtain con-
vergences in other distances. This important advantage of Wasserstein distance
leads to tighter bounds in comparison to other state-of-the-art results and is
more computationally attractive.

The rest of this paper is organized as follows: Sect. 2 is devoted to the pre-
sentation of optimal transport and its application in DA. In Sect. 3, we present
the generalization bounds for DA with the Wasserstein distance for both single-
and multi-source learning scenarios. Finally, we conclude our paper in Sect. 4.

2 Definitions and Notations

In this section, we first present the formalization of the Monge-Kantorovich [13]
optimization problem and show how optimal transportation problem found its
application in DA.

2.1 Optimal Transport

Optimal transportation theory was first introduced in [17] to study the problem
of resource allocation. Assuming that we have a set of factories and a set of mines,
the goal of optimal transportation is to move the ore from mines to factories in
an optimal way, i.e., by minimizing the overall transport cost. More formally, let
2 C R4 be a measurable space and denote by P (§2) the set of all probability
measures over §2. Given two probability measures pg, ur € P (§2), the Monge-
Kantorovich problem consists in finding a probabilistic coupling v defined as a
joint probability measure over §2 x {2 with marginals pug and pr for all x,y € £2
that minimizes the cost of transport w.r.t. some function c: 2 x 2 — Ry:

arg min/ c(z,y)Pdy(x,y)
vy .QlX.QQ

s.t. PYdby = pg, P24ty = pr,

where P*% is the projection over £2; and # denotes the pushforward measure.
This problem admits a unique solution vy which allows us to define the Wasser-
stein distance of order p between pug and pr for any p € [1;400] as follows:

Wh(ps,pr) = inf / c(z,y)’dy(z,y),
YEI(us,pr) Jox 0

where ¢ : £2 x 2 — R¥ is a cost function for transporting one unit of mass « to
y and IT(ug, pr) is a collection of all joint probability measures on {2 x {2 with
marginals pg and prp.
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Remark 1. In what follows, we consider only the case p = 1 but all the obtained
results can be easily extended to the case p > 1 using Holder inequality implying
for every p < g = W, < W,.

In the discrete case, when one deals with empirical measures fig = Nis Zi]\fl 59“3
and jip = NLT Zf\fl 6, represented by the upiformly weighted sums of Ng and
Nr Diracs with mass at locations x'y and z7%. respectively, Monge-Kantorovich
problem is defined in terms of the inner product between the coupling matrix ~y
and the cost matrix C":
Wi(ps, fir) = min _ (C,7)F
YEI (fis,pT)

where (-,-)p is the Frobenius dot product, II(fis, fir) = {7 € RfSXNTh/l =
fs,vI'1 = jr} is a set of doubly stochastic matrices and C' is a dissimilarity
matrix, i.e., Cij.: c(xg,mJT), defining the energy needed to move a probabil-
ity mass from z% to a7.. Figurel shows how the solution of optimal transport
between two point-clouds can look like.

OIS

Fig. 1. Blue points are generated to lie inside a square with a side length equal to
1. Red points are generated inside an annulus containing the square. Solution of the
regularized optimal transport problem is visualized by plotting dashed and solid lines
that correspond to the large and small values given by the optimal coupling matrix ~.
(Color figure online)

It turns out that the Wasserstein distance has been successfully used in vari-
ous applications, for instance: computer vision [22], texture analysis [21], tomo-
graphic reconstruction [12] and clustering [9]. The huge success of algorithms
based on this distance is due to [8] who introduced an entropy-regularized ver-
sion of optimal transport that can be optimized efficiently using matrix scaling
algorithm. We are now ready to present the application of OT to DA below.

2.2 Domain Adaptation and Optimal Transport

The problem of DA is formalized as follows: we define a domain as a pair con-
sisting of a distribution pp on §2 and a labeling function fp : 2 — [0,1]. A
hypothesis class H is a set of functions so that Vh € H,h: 2 — {0,1}.
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Definition 1. Given a convex loss-function [, the probability according to the
distribution pup that a hypothesis h € H disagrees with a labeling function fp
(which can also be a hypothesis) is defined as

€p(h, fp) = Eonpp [l(A(2), fD(2))]-

When the source and target error functions are defined w.r.t. h and fg or fr, we
use the shorthand eg(h, fs) = es(h) and er(h, fr) = er(h). We further denote
by {(us, fs) the source domain and (ur, fr) the target domain. The ultimate
goal of DA then is to learn a good hypothesis h in (ug, fs) that has a good
performance in {ur, f7).

In unsupervised DA problem, one usually has access to a set of source data
instances Xg = {z% € R4}YS associated with labels {y%}~s and a set of
unlabeled target data instances X7 = {x} € RY}N% . Contrary to the classic
learning paradigm, unsupervised DA assumes that the marginal distributions of
X and X7 are different and given by pg, ur € P (£2).

For the first time, optimal transportation problem was applied to DA in [6,7].
The main underlying idea of their work is to find a coupling matrix that efficiently
transports source samples to target ones by solving the following optimization
problem:

Yo = argmin (C,v)p.
YEM (jus,fvr)

Once the optimal coupling 7, is found, source samples X g can be transformed

into target aligned source samples Xg using the following equation

X = diag((701) ") 7. X7

The use of Wasserstein distance here has an important advantage over other dis-
tances used in DA (see Sect. 5) as it preserves the topology of the data and admits
a rather efficient estimation as mentioned above. Furthermore, as shown in [6, 7],
it improves current state-of-the-art results on benchmark computer vision data
sets and has a very appealing intuition behind.

3 Generalization Bounds with Wasserstein Distance

In this section, we introduce generalization bounds for the target error when the
divergence between tasks’ distributions is measured by the Wasserstein distance.

3.1 A Bound Relating the Source and Target Error

We first consider the case of unsupervised DA where no labelled data are avail-
able in the target domain. We start with a lemma that relates the Wasserstein
metric with the source and target error functions for an arbitrary pair of hypoth-
esis. Then, we show how the target error can be bounded by the Wasserstein
distance for empirical measures. We first present the Lemma that introduces
Wasserstein distance to relate the source and target error functions in a Repro-
ducing Kernel Hilbert Space.
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Lemma 1. Let pg,ur € P (§2) be two probability measures on RY. Assume
that the cost function c(z,y) = [|¢(x) — d(y)||n,, . where Hy, is a Reproducing
Kernel Hilbert Space (RKHS) equipped with kernel k; : 2% {2 — R induced by ¢ :
2 — Hy, and ki(z,y) = (¢(x), d(y))n,, - Assume further that the loss function
Ihf o — U(W(x), f(x)) is convex, symmetric, bounded, obeys the triangular
equality and has the parametric form |h(z)— f(x)|? for some ¢ > 0. Assume also
that kernel k; in the RKHS Hy, is square-root integrable w.r.t. both pg, pur for
all pg, ur € P(£2) where §2 is separable and 0 < kj(x,y) < K,V x,y € 2. Then
the following holds

er(h,h') < es(h,h') + Wi(us, pr)
for every hypothesis h', h.

Proof. As this Lemma plays a key role in the following sections, we give its
proof here. We assume that I, s : © — [(h(z), f(x)) in the definition of e(h) is
a convex loss-function defined Vh, f € F where F is a unit ball in the RKHS
‘Hj.. Considering that h, f € F, the loss function [ is a non-linear mapping of the
RKHS Hy, for the family of losses I(h(z), f(z)) = |h(x) — f(z)|?}. Using results
from [23], one may show that I, ; also belongs to the RKHS Hj, admitting the
reproducing kernel k; and that its norm obeys the following inequality:

2 2
in, 1., < I1B— FI2,-
This result gives us two important properties of [f; that we use further:

— lp, ¢ belongs to the RKHS that allows us to use the reproducing property;
~ the norm ||l ¢[|n,, is bounded.

For simplicity, we can assume that ||l ¢|[#,, is bounded by 1. This assumption
can be verified by imposing the appropriate bounds on the norms of A and f
and is easily extendable to the case when ||I), fHHkl < M by scaling as explained
in [15, Proposition 2]. We also note that ¢ does not necessarily have to appear
in the final result as we seek to bound the norm of [ and not to give an explicit
expression for it in terms of ||A||x,, || f]|#, and g. Now the error function defined
above can be also expressed in terms of the inner product in the corresponding

Hilbert space, i.e?:

€s(h, fs) = Barps [l(M(2), f5(2))] = Banps (d(2), Dn].

We define the target error in the same manner:

er(h, fr) = Byepur [1(0(Y), fr ()] = Eympur [(6(y), D2l

YIf h, f € H then h— f € H implying that I(h(z), f(z)) = |h(z) — f(2)|? is a nonlinear
transform for h — f € H.
2 For the sake of simplicity, we will further write H meaning Hx, and ! meaning Iy p.
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With the definitions introduced above, the following holds:

er(h,h') = er(h, k') +es(h,h’) —es(h,h')
=es(h, 1) + Eyopr [(6(y), D] — Eomps [(0(2), D]
= es(h, h,) < Yy~ pur [¢(y)] EINMS[ ( )], >H
< es(hy h) + U Eympr [0(9)] — Exnpus [0(2)] |2
< esul)+ 1 [ da(us = )

Second line is obtained by using the reproducing property applied to [, third line
follows from the properties of the expected value. Fourth line here is due to the
properties of the inner-product while fifth line is due to ||l s||# < 1. Now using
the definition of the joint distribution we have the following:

H /Q od(us — )l = | /Q (6@~ o) (w3
< / |6(@) — 6()lndr(. ).
2x 802

As the last inequality holds for any =y, we obtain the final result by taking the
infimum over v from the right-hand side, i.e.:

/ bd(ps — pr)lp < inf / 16(x) — &) iy (e, v).
(9] 02x 0

YEHI (ps,pT)
which gives
6T(h7 h/) < €S<h’? h’/) + Wl (/’LSa :U/T)
[l

Remark 2. We note that the functional form of the loss-function I(h(z), f(z)) =
|h(z)— f(x)]? is just an example that was used as the basis for the proof. Accord-
ing to [23, Appendix 2], we may also consider more general nonlinear transfor-
mations of A and f that satisfy the assumption imposed on I ¢ above. These
transformations may include a product of hypothesis and labeling functions and
thus the proposed results is valid for hinge-loss too.

This lemma makes use of the Wasserstein distance to relate the source and
target errors. The assumption made here is to specify that the cost function
c(x,y) = ||¢(x) — ¢(y)||%. While it may seem too restrictive, this assumption
is, in fact, not that strong. Using the properties of the inner-product, one has:

lp(x) — oY)l = V(d(x) — d(y), p(x) — d(y))n
= \/k(w, x) — 2k(x,y) + k(z,y).

Now it can be shown that for any given positive-definite kernel k there is a
distance ¢ (used as a cost function in our case) that generates it and vice versa
(see Lemma 12 from [24]).
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In order to prove our next theorem, we present first an important result show-
ing the convergence of the empirical measure i to its true associated measure
w.r.t. the Wasserstein metric. This concentration guarantee allows us to pro-
pose generalization bounds based on the Wasserstein distance for finite samples
rather than true population measures. Following [4], it can be specialized for the
case of W7 as follows3.

Theorem 1 ([4], Theorem 1.1). Let j1 be a probability measure in R? so that
for some a > 0, we have that fle eaHzHQdu < oo and i = % Zf\; 0z, be its asso-
ciated empirical measure defined on a sample of independent variables {z;}Y
drawn from p. Then for any d' > d and ¢’ < /2 there exists some constant Ny
depending on d' and some square exponential moment of p such that for any
£>0 and N > Nymax(e~(@+2) 1)

!/
PW%WJU>d§em(—ZN¥),

where d', ¢’ can be calculated explicitly.

The convergence guarantee of this theorem can be further strengthened as shown
in [11] but we prefer this version for the ease of reading. We can now use it in
combination with the previous Lemma to prove the following theorem.

Theorem 2. Under the assumptions of Lemma 1, let Xg and X be two sam-
ples of size Ng and NT drawn i.i.d. from ps and pp respectively. Let fis =

Nis fol 0,1 and fip = N ZNT 0, e the associated empirical measures. Then

for any d' > d and ¢' < /2 there emsts some constant No depending on d' such
that for any 6 > 0 and min(Ng, Np) > Nomax(6~@+2) 1) with probability at
least 1 — 9 for all h the following holds:

w@gww+wwmmo,m@<)k(¢%¢)+A

where A is the combined error of the ideal hypothesis h* that minimizes the
combined error of eg(h) + er(h).

Proof.

>
*

=
FETTT
%%

/\
\_/

[VANVAN I/\
’ﬂ

+er(h*, h) = ep(h*) + es(h, h*) + ep(h*, h) — es(h,h*)
s@hﬂ+Wmmwﬂ
(h

es(h) +es(h™) + Wi(us, pr)

I
()
wn

'ﬂ
>
*

1(#57/1‘T) + A
1(ps, frs) + Wilfis, pr) + X

IN
(5]
n

=

3 We present the original version of this Theorem in the Supplementary material.
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<eg(h)+/2log ( > [Ns<" + Wijis, fir) + Wi(fir, pr) + A

<es(h)+W1(ﬂSaﬂT)+>‘+\/W(\/Nis \/7>

Second and fourth lines are obtained using the triangular inequality applied
to the error function. Third inequality is a consequence of Lemma 1. Fifth line
follows from the definition of A, sixth, seventh and eighth lines use the fact that
Wasserstein metric is a proper distance and Theorem 1. O

A first immediate consequence of this theorem is that it justifies the use of
the optimal transportation in DA context. However, we would like to clarify
the fact that the bound does not suggest that minimization of the Wasserstein
distance can be done independently from the minimization of the source error
nor it says that the joint error given by the lambda term becomes small. First,
it is clear that the result of W7 minimization provides a transport of the source
to the target such as W; becomes small when computing the distance between
newly transported sources and target instances. Under the hypothesis that class
labeling is preserved by transport, i.e. Psource(y|Zs) = Prarget (y|Transport(z,)),
the adaptation can be possible by minimizing W; only. However, this is not
a reasonable assumption in practice. Indeed, by minimizing the W; distance
only, it is possible that the obtained transformation transports one positive and
one negative source instance to the same target point and then the empirical
source error cannot be properly minimized. Additionally, the joint error will be
affected since no classifier will be able to separate these source points. We can
also think of an extreme case where the positive source examples are transported
to negative target instances, in that case the joint error A will be dramatically
affected. A solution is then to regularize the transport to help the minimization
of the source error which can be seen as a kind of joint optimization. This idea
was partially implemented as a class-labeled regularization term added to the
original optimal transport formulation in [6,7] and showed good empirical results
in practice. The proposed regularized optimization problem reads

min <Ca7>F_*E +nZZIIWIc, |G-

YEH (fs,pr)

Here, the second term E(y) = —ZNS’ T i jlog(vi,;) is the regulariza-
tion term that allows one to solve optlmal transportation problem efficiently
using Sinkhorn-Knopp matrix scaling algorithm [25]. Second regularization term
n>2; 2 I7v(Le, )% is used to restrict source examples of different classes to be
transported to the same target examples by promoting group sparsity in the
matrix v thanks to | - ||# with ¢ = 1 and p = 5. In some way, this regularization
term influences the capability term by ensuring the existence of a good hypoth-
esis that will be able to be discriminant on both source and target domains
data. Another recent paper of [28] also suggests that transport regularization
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is important for the use of OT in domain adaptation tasks. Thus, we conclude
that the regularized transport formulations such as the one of [6,7] can be seen
as algorithmic solutions for controlling the trade-off between the terms of the
bound.

Assuming that eg(h) is properly minimized, only A and the Wasserstein dis-
tance between empirical measures defined on the source and target samples have
an impact on the potential success of adaptation. Furthermore, the fact that the
Wasserstein distance is defined in terms of the optimal coupling used to solve
the DA problem and is not restricted to any particular hypothesis class directly
influences A as discussed above. We now proceed to give similar bounds for the
case where one has access to some labeled instances in the target domain.

3.2 A Learning Bound for the Combined Error

In semi-supervised DA, when we have access to an additional small set of labeled
instances in the target domain, the goal is often to find a trade-off between min-
imizing the source and the target errors depending on the number of instances
available in each domain and their mutual correlation. Let us now assume that
we possess On instances drawn independently from pr and (1 — 8)n instances
drawn independently from pg and labeled by fs and fr, respectively. In this
case, the empirical combined error [2] is defined as a convex combination of errors
on the source and target training data:

¢a(h) = aér(h) + (1 —a)és(h),

where « € [0, 1].

The use of the combined error is motivated by the fact that if the number of
instances in the target sample is small compared to the number of instances in
the source domain (which is usually the case in DA), minimizing only the target
error may not be appropriate. Instead, one may want to find a suitable value of
a that ensures the minimum of é,(h) w.r.t. a given hypothesis h. We now prove
a theorem for the combined error similar to the one presented in [2].

Theorem 3. Under the assumptions of Theorem 2 and Lemmal, let D be a
labeled sample of size n with fn points drawn from pup and (1—5)n from pg with
8 € (0,1), and labeled according to fs and fr. IfiL is the empirical minimizer of
€a(h) and b} = m}jn er(h) then for any § € (0,1) with probability at least 1 — §

(over the choice of samples),

er(h) < ep(hi) + 1 +2(1 — @) (Wi (fis, ir) + X + ¢2),

where

2K (“;‘};2 + %) log(2/6) a (1-a)
“ :2$ n +4m(nﬁ\/ﬁ+n(lfﬁ)m)’
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P (5) e (V)

er(h) < ea(h) + (1 = @)(Wi(ps, ur) +A)

QK(“ Q) | a )10g(2/5)

< éa(h) + - + (1 = a)(Wi(ps, pr) + )
- «@ (1-a)
VR (s )
2K (< a2 %) log(2/6)
< éal(hr) + - + (1 = a)(Wi(ps, pur) + )

”m( TN (h)%)

2K (< a2 %) log(2/6)
o )

HIVE/ (nWB - HVI=B 5)

2K ((1:22 + %) log(2/9)

(I1-a)
VT (5t vt
<ep(hy) +e +2(1 — ) (Wi (s, ir) + A+ c2).

+ (1= a)(Wi(ps, pr) +A)

+2(1 — ) (Wi(ps, pr) + )

The proof follows the standard theory of uniform convergence for empirical risk
minimizers where lines 1 and 5 are obtained by observing that |e,(h) —er(h)| =
aer(h) + (1 — a)es(h) — en(h)] = [(1 — a)(es(h) — ex(h))] < (1 — ) (Wi (pr,
ws) + A) where the last inequality comes from line 4 of the proof of Theo-
rem 2, line 3 follows from the definition of & and h% and line 6 is a consequence
of Theorem 1. Finally, lines 2 and 4 are obtained based on the concentration
inequality obtained for €, (h). Due to the lack of space, we put this result in the
Supplementary material. (I

This theorem shows that the best hypothesis that takes into account both
source and target labeled data (i.e., 0 < a < 1) performs at least as good as
the best hypothesis learned on target data instances alone (a = 1). This result
agrees well with the intuition that semi-supervised DA approaches should be at
least as good as unsupervised ones.
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4 Multi-source Domain Adaptation

We now consider the case where not one but many source domains are available
during the adaptation. More formally, we define N different source domains
(where T' can either be or not a part of this set). For each source j, we have a

labelled sample S; of size n; = §n (Zjv 1B =1 Z;V 1Ny = n) drawn from
the associated unknown distribution ug; and labelled by f;. We now consider the

empirical weighted multi-source error of a hypothesis h defined for some vector
a={ag,...,an} as follows:

h) = Z ajés, (h)

where Z _, oj = 1 and each a; represents the weight of the source domain S;.

In What follows, we show that generalization bounds obtained for the
weighted error give some interesting insights into the application of the Wasser-
stein distance to multi-source DA problems.

Theorem 4. With the assumptions from Theorem 2 and Lemma 1, let S be a
sample of size n, where for each j € {1,...,N}, B;n points are drawn from
ws; and labelled according to f;. If he is the empirical minimizer of éo (h) and
h = mgn er(h) then for any fized a and 6 € (0, 1) with probability at least 1 —§

(over the choice of samples),

N
er(ha) < er(hp) +c1 42 a; Wiy, fir) + A + ¢2)
j=1
where
2
2K Y700, 5 log(2/9)
c1 =2 5 +2
n
”2log /g (1/ U >
where \; = m}in (€s,(h) + er(h)) represents the joint error for each source
1
domain j.

Proof. The proof of this Theorem is very similar to the proof of Theorem 4.
The final result is obtained by applying the concentration inequality for €4 (h)
(instead of those used for eq(h) in the proof of Theorem4) and by using the
following inequality that can be obtained easily by following the principle of the
proof of [2, Theorem 4]:

N
lea(h) — er(h Z (Wi(pj, pr) + A,
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where \; = mgn (€s,(h) + er(h)). For the sake of completness, we present the

concentration inequality for €, (h) in the Supplementary material. (]

While the results for multi-source DA may look like a trivial extension of the
theoretical guarantees for the case of two domains, they can provide a very
fruitful implication on their own. As in the previous case, we consider that the
potential term that should be minimized in this bound by a given multi-source
DA algorithm is the term Zjvzl a; Wi (i, for).

Assume that /i is an arbitrary unknown empirical probability measure on R?.
Using the triangle inequality and bearing in mind that a; <1 for all j, we can
bound this term as follows:

N N
> aWiliy, ir) < (Y a;Waliy, @) + NWi(i, fir).
j=1

j=1

Now, let us consider the following optimization problem

N
1
inf — a ;Wi (fg, o) + Wi, fi). 1
MMN;Jmmm (i i) (1)
In this formulation, the first term + Z;vzl a; Wi (g, ft) corresponds exactly to
the problem known in the literature as the Wasserstein barycenters problem [1]
that can be defined for W7 as follows.

Definition 2. For N probability measures p1, po,...,un € P(£2), an empir-
ical Wasserstein barycenter is a minimizer ph € P(§2) of JIn(p) =
min,, % Zf\il a;W1(u, p;), where for all i, a; > 0 and Zf\;1 a; = 1.

The second term W7y (f, fir) of Eq.1 finds the probability coupling that trans-
ports the barycenter to the target distribution. Altogether, this bound suggests
that in order to adapt in the multi-source learning scenario, one can proceed by
finding a barycenter of the source probability distributions and transport it to
the target probability distribution.

On the other hand, the optimization problem related to the Wasserstein
barycenters is closely related to the Multimarginal optimal transportation prob-
lem [19] where the goal is to find a probabilistic coupling that aligns N distinct
probability measures. Indeed, as shown in [1], for a quadratic Euclidean cost
function the solution pj of the barycenter problem in the Wasserstein space is
given by the following equation:

BN = Z Ve Ay ()
k}E{k‘l,..A,kJN}

where Ag(x) = Zjvzl VT, and vy € RILZ ™ is an optimal coupling solving for
all k € {1,..., N} the multimarginal optimal transportation problem with the
following cost:

Qs
Cr = Z E]H.I'kj — Ak(a:)HQ
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We note that this reformulation is particularly useful when the source distri-
butions are assumed to be Gaussians. In this case, there exists a closed form
solution for the multimarginal optimal transportation problem [14] and thus for
Wasserstein barycenters problem too. Finally, it is also worth noticing that the
optimization problem Eq.1 has already been introduced to solve the multiview
learning task [12]. In their formulation, the second term is referred to as an a
priori knowledge about the barycenter which, in our case, is explicitly given by
the target probability measure simultaneously.

5 Comparison to Other Existing Bounds

As mentioned in the introduction, there are numerous papers that proposed DA
generalization bounds. The main difference between them lies in the distance
used to measure the divergence between source and target probability distribu-
tions. The seminal work of [3] considered a modification of the total variation
distance called H-divergence given by the following equation:

du(p,q) = 2222 Ip(h(x) = 1) — q(h(z) = 1)|.

On the other hand, [5,15] proposed to replace it with the discrepancy distance:

: _ "N /
disc(p, q) = Jnax lep(h, h') — eq(h, ).

The latter one was shown to be tighter in some plausible scenarios. A more
recent work on generalization bounds using integral probability metric

Dr(p.0) = sup) / fdp— / fdg|

and Rényi divergence

Daplla) = ——1og [ 3" 2
«(pllg) = og o
a—1 i=1qi 1

were presented in [16,27], respectively. [27] provides a comparative analysis of
discrepancy and integral metric based bounds and shows that the former are
less tight. [16] derives the domain adaptation bounds in multisource scenario by
assuming that the good hypothesis can be learned as a weighted convex com-
bination of hypothesis from all the sources available. Considering a reasonable
amount of previous work on the subject, a natural question about the tightness
of the DA bounds based on the Wasserstein metric introduced above arises in
spite of the Theorem 3.

The answer to this question is partially given by the Csiszar-Kullback-Pinsker
inequlity [20] defined for any two probability measures p,q € P({2) as follows:

Wi(p,q) < diam(2)[[p — gllrv < v/2diam(2)KL(p]lq),
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where diam(§2) = sup, ,co{d(z,y)} and KL(p||q) is the Kullback-Leibler diver-
gence.

A first consequence of this inequality shows that the Wasserstein distance
not only appears naturally and offers algorithmic advantages in DA but also
gives tighter bounds than total variation distance (L1) used in [2, Theorem
1]. On the other hand, it is also tighter than bounds presented in [16] as the
Wasserstein metric can be bounded by the Kullback-Leibler divergence which
is a special case of Rényi divergence when o — 1 as shown in [10]. Regard-
ing the discrepancy distance and omitting the hypothesis class restriction, one
has dpindisc(p, q) < Wi(p, q), where dpi, = mingxyco{d(x,y)}. This inequal-
ity, however, is not very informative as minimum distance between two distinct
points can be dramatically small thus making it impossible to compare the con-
sidered distances directly.

Regarding computational guarantees, we note that the H-divergence used in
[3] is defined as the error of the best hypothesis distinguishing between the source
and target domain samples pseudo-labeled with 0’s and 1’s and thus presents an
intractable problem in practice. For the discrepancy distance, authors provided a
linear time algorithm for its calculation in 1D case and showed that in other cases
it scales as O(N2d*® + Npd?) when the squared loss is used [15]. In its turn, the
Wasserstein distance with entropic regularization can be calculated based on the
linear time Sinkhorn-Knopp algorithm regardless the choice of the cost function
c that presents a clear advantage over the other distances considered above.

Finally, none of the distances previously introduced in the generalization
bounds for DA take into account the geometry of the space meaning that the
Wasserstein distance is a powerful and precise tool to measure the divergence
between domains.

6 Conclusion

In this paper, we studied the problem of DA in the optimal transportation con-
text. Motivated by the existing algorithmic advances in domain adaptation, we
presented the generalization bounds for both single and multi-source learning
scenarios where the distance between source and target probability distribu-
tions is measured by the Wasserstein metric. Apart from the distance term that
taken alone justifies the use of optimal transport in domain adaptation, the
obtained bounds also included the capability term depicting the existence of a
good hypothesis for both source and target domains. A direct consequence of
its appearance in the bounds is the need to regularize optimal transportation
plan in a way that allows to ensure efficient learning in the source domain once
the interpolation was done. This regularization, achieved in [6,7] by the means
of the class-based regularization, thus can be also viewed as an implication of
the obtained results. Furthermore, it explains the superior performance of both
class-based and Laplacian regularized optimal transport in domain adaptation
compared to it simple entropy regularized form. On the other hand, we also
showed that the use of the Wasserstein distance leads to tighter bounds com-
pared to the bounds based on the total variation distance and Rényi divergence
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and is more computationally attractive than some other existing results. From
the analysis of the bounds obtained for the multi-source DA, we derived a new
algorithmic idea that suggests the minimization of two terms: first term corre-
sponds to the Wasserstein barycenter problem calculated on the empirical source
measures while the second one solves the optimal transport problem between this
barycenter and the empirical target measure.

Future perspectives of this work are many and concern both the derivation
of new algorithms for domain adaptation and the demonstration of new theo-
retical results. First of all, we would like to study the extent to which the cost
function used in the derivation of the bounds can be used on actual real-world
DA problems. This distance, defined as a norm of difference between two feature
maps, can offer a flexibility in the calculation of the optimal transport metric
due to its kernel representation. Secondly, we aim to produce new concentration
inequalities for the A term that will allow to bound the true best joint hypoth-
esis by its empirical counter-part. These concentration inequalities will allow to
access the adaptability of two domains from the given labelled samples while
the speed of convergence may show how many data instances from the source
domains is needed to obtain a reliable estimate of A. Finally, the introduction
of the Wasserstein distance to the bounds means that new DA algorithms can
be designed based on the other optimal coupling techniques. These include, for
instance, Knothe-Rosenblatt coupling and Moser coupling.
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