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Abstract. A sensor in a sensor network is expected to be able to make
prediction or decision utilizing the models learned from the data observed
on this sensor. However, in the early stage of using a sensor, there may be
not a lot of data available to train the model for this sensor. A solution
is to leverage the observation data from other sensors which have similar
conditions and models with the given sensor. We thus propose a novel
distributed multi-task learning approach which incorporates neighbor-
hood relations among sensors to learn multiple models simultaneously
in which each sensor corresponds to one task. It may be not cheap for
each sensor to transfer the observation data from other sensors; broad-
casting the observation data of a sensor in the entire network is not
satisfied for the reason of privacy protection; each sensor is expected to
make real-time prediction independently from neighbor sensors. There-
fore, this approach shares the model parameters as regularization terms
in the objective function by assuming that neighbor sensors have simi-
lar model parameters. We conduct the experiments on two real datasets
by predicting the temperature with the regression. They verify that our
approach is effective, especially when the bias of an independent model
which does not utilize the data from other sensors is high such as when
there is not plenty of training data available.

Keywords: Sensor network · Multi-task learning
Distributed approach

1 Introduction

Traditional data integration and analysis for sensor data collects the observation
data from all sensors to construct centralized global models at a data center
(Fig. 1(a)). With the advances in the device technology, the computing power
and storage capacity of sensors have been improved. Meanwhile, with the large
scale of sensor network growth, transferring all observation data in the network
and learning the centralized model utilizing them require a huge amount of
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computation. Therefore, a sensor in a sensor network is expected to be able
to make prediction or decision by itself utilizing the decentralized local models
learned from the data observed on this sensor.

Fig. 1. Different types of solutions for learning the models of sensors in sensor network:
(a) Centralized global model, (b) Independent local model, (c) Distributed multi-task
local model (Our proposal).

A näıve solution of learning a local model by a sensor is only utilizing the
observation data on this sensor. We define it as independent model (Fig. 1(b)).
One of the issues that need to be solved for learning such local models is the
limitation of available data for training. In the early stage of using a sensor, there
may be not a lot of data available to train the local model for this sensor. A
solution is to leverage the observation data from other sensors which have similar
conditions and thus may have similar models with the given sensor. However,
sensors can be overloaded to transfer the observation data to other sensors,
and broadcasting the observation data of each sensor in the entire network has
the privacy leakage problem. In addition, in the prediction stage, we hope each
sensor is able to make prediction independently from the observation data from
neighbor sensors.

To overcome these problems, based on the assumption that neighbor sensors
have similar model parameters, we propose sharing the model parameters among
the sensors instead of transferring the observation data. We treat the problems of
learning the local models for a set of sensors as a multitask learning problem in
which each sensor corresponds to one task. In the learning process, the proposed
method incorporates the neighborhood relations among sensors to learn multiple
models simultaneously. We then present a distributed learning algorithm for
our multi-task model. In this algorithm, at each iteration, the local model of
each sensor is computed simultaneously, and then the model parameters are
shared among all the sensors (Fig. 1(c)). The parameters are incorporated in the
regularization terms of the objective function of each sensor, thus we can use
the information from the other sensors to update each local model. Although
a few algorithms for distributed multi-task learning algorithms for client-server
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models have been proposed [6,17], we propose a novel distributed algorithm for
multi-task learning in peer-to-peer models.

In this paper, we focus on the time series regression tasks to verify our app-
roach. We utilize several real datasets collected from real sensor networks in
which the sensors recorded the temperature information for different applica-
tions. The task is to predict the temperature at a given place with a sensor
based on the historical temperature observation data. The experiments show
that our approach is effective, especially when the volume of training data is
small which is one of the reasons of the under-fitting of an independent model
learned based on the data on a sensor.

Furthermore, although a centralized model generally is expected to have bet-
ter performance than local models because it can utilize much more observation
data for learning, in some cases, because the environmental conditions and data
characteristics of the sensors may be somewhat different, a local model for a sen-
sor may be able to provide better presentation of this sensor when the training
data is not a lot.

The contributions of this paper are as follows.

– We focus on the problem of predictive modeling in sensor networks in which
each sensor learns a local model by utilizing its own data and the data from
neighbor sensors. We propose a distributed approach which the sensors learn
multiple models simultaneously.

– We propose a novel approach to solve the problem in a manner of multi-task
learning by treating each sensor as a task. To avoid transferring observation
data of neighbor sensors in the network, our approach only leverages the
model parameters from neighbor sensors.

– We use real datasets to verify that our approach is effective especially when
the bias of an independent model which does not utilize the data from other
sensors is high such as when there is not plenty of training data available.

2 Related Work

We review the existing work on the following four issues, i.e., multi-task learning,
distributed learning, prediction of sensor data and time-series data mining.

Multi-task Learning: Rather than implementing multiple related learning tasks
separately, multi-task learning leverages the information from different tasks to
train these tasks simultaneously so that it can raise the model performance of
each single task [4]. In this paper, because learning the model of each sensor can
be regarded as one learning task, and modeling all sensors can be simultaneously
performed. We thus solve our problem with multi-task learning.

Existing work on multi-task learning models the relatedness and model
parameters of multiple tasks in different manners. Argyriou et al. [2] assumed
the common underlying representation shared across multiple related tasks and
learned a low-dimensional representation. Evgeniou et al. [8] modeled the relation
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between tasks in terms of a kernel function that used a task coupling param-
eter. Evgeniou et al. [7] also leveraged the similarity between tasks as prior
knowledge, assumed that similar tasks have similar parameters and utilized as
regularization. In our work, we model the task relatedness and model parame-
ters of multiple tasks by using the manner proposed in [7]. In our scenario, the
similarity between tasks can be given by the neighborhood graph based on the
physical distance between sensors. In other words, the sensors which are near to
each other are regarded to have similar parameters, and we utilize this similarity
to perform regularization.

Regarding the implementation of multi-task learning in a distributed envi-
ronment, Wang et al. [17] proposed distributed learning method followed the
assumption of the common underlying representation like [2]. The manner of
the common underlying representation requires the distributed learning method
having a client-server manner. Our approach and [17] differ in the regulariza-
tion schemes. [17] incorporated shared-sparsity among local models, while ours
makes local model parameters close to each other. Dinuzzo et al. [6] also proposed
another method of distributed multi-task learning with a client-server manner.
However, the client-server manner is not suitable for our scenario in which a
server does not exist. In contrast, in our distributed approach, the tasks learn
simultaneously in a peer-to-peer manner. In addition, Vanhaesebrouck et al. [16]
proposed asynchronous algorithms for collaborative peer-to-peer network based
on label propagation which jointly learned and propagated their model based on
both their local dataset and the behavior of their neighbors.

Distributed Learning: The idea of conducting learning in a distributed man-
ner has also been used for various areas related to machine learning and data
mining. For example, in the area of reinforcement learning, multi-agent learning
[14] performs learning of agents in distributed cooperative manner. [12] proposed
parallel and distributed learning approach in which a number of processors coop-
erated together for a single learning task. In contrast, our work concentrates on
the area of sensor data and multiple tasks.

Prediction of Sensor Data: With the development of technology such as Inter-
net of Things, sensors have reach miniaturization, high performance, and low
price. The sensor networks in which the sensors can communicate to each other
and have some computation capability have become possible. In this research,
we focus on the prediction tasks for sensor observation data. There are several
previous studies on time series modeling of sensor data, e.g., [15], while they
do not deal with collaborative learning among sensors. [10] is the existing work
which is most similar to our work. It proposed distributed regression model based
on divided local region. However, it needs the observation data from neighbor
sensors in the prediction stage. In addition, Ahmadi et al. [1] proposed a solu-
tion with a centralized clustering on entire area and an independent method for
each cluster. Ceci et al. [5] used neighbor distances as features for a centralized
model. In contrast, in our approach, the predictions of a sensor can be made
independently from the observation data of neighbor sensors.
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Time Series Data Mining: There is much existing work on learning the pre-
diction model from time series data. The regression model is just one of the
alternatives which may be not the best model in the existing work. For example,
the approaches based on RNN with LSTM [9,11,13] may have better prediction
performance on non-stationary time series data. Our work does not exactly focus
on the prediction task for time series data. We focus on the distributed multi-
task learning in a sensor network by utilizing the regression task to illustrate
our idea. Although the sensor datasets we use are time series data, our proposal
can actually also be utilized to the other kinds of regression tasks.

3 Our Approach

We describe our approach in details in this section. Our purpose is to learn
decentralized local models for different sensors in the network. The learning
process thus needs to be carried out at each corresponding sensor, instead of a
data center which collects all observation data from the entire sensor network.
We propose a distributed multi-task learning approach in which each sensor
corresponds to one task to solve this problem.

The type of learning task on a sensor can be diverse based on the practical
requirements. In this paper, we focus on time series regression tasks, in which we
are given observed data in a specific time window and aim to predict the value of
the observations in future timestamps. Such time-series prediction tasks are very
useful and widely required for sensor networks, e.g., predicting the temperature
at a place with a weather sensor. Our proposal is not limited to such specific
prediction task. Our approach can be directly utilized to other kinds of regression
tasks. Our idea of distributed multi-task learning can also be adapted to other
types of learning tasks such as classification.

3.1 Preliminary

For a given sensor network S (|S| = n) which generates observation data based
on time series, we learn a local regression model fk for predicting the value of
observation data at timestamp i on each sensor sk ∈ S based on the observation
data at a time window before i with a fixed window size t. k is the index of
a sensor. The feature data on a sensor sk is Xk = (xk1,xk2, . . . ,xknk

)� which
contains both the observation data in a specific time window on this sensor
and an intercept term with a value of 1, xki = (xk(i−t), . . . , xk(i−2), xk(i−1), 1).
nk is the number of instances on sensore sk. We denote the target value as
yk = (yk1, yk2, . . . , yknk

)� in which yki = xki is the predicted observation value
at timestamp i.

Given feature data {Xk}k and target data {yk}k from a sensor network S =
{sk}k, our task is to learn a local regression model for each sensor sk with model
parameters wk.

The basic linear regression model fk and the object function L0 which are
used for the independent approach in this paper is as follows. Because we focus
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on our idea of the distributed multi-task learning, we thus utilize this funda-
mental regression model without any additional settings such as regularization
to highlight the effectiveness of our proposal.

fk(Xk,wk) = w�
k Xk, L0(wk) = ||w�

k Xk − yk||22, wk = (X �
k Xk)−1X �

k yk. (1)

3.2 Multi-task Model

To learn the local model on a given sensor, one of the problems that need to
be solved is the limited available data for training. In the early stage of using
a sensor, there may be not a lot of data available to train the local model for
this sensor. A solution is to leverage the observation data from other sensors.
The other sensors in the sensor network may have similar but somewhat dif-
ferent models with the given sensor. In the learning process, all these sensors
can communicate with each other to learn multiple models simultaneously. The
problem of learning the local models for a set of sensors can thus be regarded as
a multi-task learning problem in which each sensor corresponds to one task. We
thus propose a multi-task learning approach for learning the decentralized local
models of the sensors.

In the training stage, sensors are allowed to transfer the data with other
sensors. In a sensor network, there may be huge amount of sensors installed in
an immense geographical range. For a given sensor, it costs too much to transfer
the data from all other sensors. It would be better to constrain that each sensor
can only communicate with the neighbor sensors which are physically near to
the given sensor. Considering that the neighbor sensors are more possible to
have more similar conditions with the given sensor because of shorter physically
distance, this settings of using neighbor sensors only is rational and cost-effective.
We denote the set of neighbor sensors of a given sensor sk as Sk.

Which kinds of data are transferred with neighbor sensors and used for learn-
ing models is another issues needs to be solved. Intuitively, we can transfer and
use the observation data. However, there are three main problems in this manner.
First, it may be not cheap for each sensor to keep transferring the observation
data with a number of other sensors; Second, broadcasting the observation data
of an sensor in the entire network have the privacy leakage problem; Third, each
sensor needs to be able to make computation in the prediction stage without
waiting for using the observation data from neighbor sensors. To overcome these
problems, instead of transferring the observation data in the network, our dis-
tributed approach in the network transfers the model parameters with neighbor
sensors. This solution is based on the assumption that neighbor sensors have sim-
ilar model parameters. To leverage the model parameters from neighbor sensors,
our approach shares them as the regularization terms in the objective function.
Note that all sensors are not necessary to have the same model.

Based on the above discussion, we propose a novel distributed multi-task
learning approach which incorporates neighborhood relations among sensors to
learn multiple models simultaneously in which each sensor corresponds to one
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task. Following [7], the overall object function of all local regression models for
all sensors can be written as follows.

L({wk}k) =
n∑

k=1

||w�
k Xk − yk||22 + λ

n∑

k=1

∑

sk′∈Sk

||wk − wk′ ||22 (2)

λ is the hyperparameter to control the regularization term in the object
function. In this paper, we use same λ to all neighbor sensors. An option is to
set or learn different λ for a different pair of sensors. For the purpose of clarifying
our proposal of distributed multi-task learning of our problem settings, we use
this simpler solution with single λ hyperparameter.

The object function Lk(wk) of a local regression model for a sensor sk can
thus be written as follows.

Lk(wk) = ||w�
k Xk − yk||22 + λ

∑

sk′∈Sk

||wk − wk′ ||22 (3)

We can utilize formulation (3) for each sensor respectively instead of utilizing
formulation (2) for all sensors. Because this formulation (3) for the original for-
mulation (2) can be regarded as a block-coordinate descent for a convex function,
the convergence of the formulation (2) can be guaranteed [3].

The parameters wk in our multi-task model which minimizes this object
functions can be computed as follows, in which mk is the size of Sk.

wk = (X �
k Xk + mkλI)−1(X �

k yk + λ
∑

sk′∈Sk

wk′) (4)

3.3 Distributed Learning

This multi-task formulation in the previous sub-section shows that it requires
integrating the wk for the given sensors sk and its neighbor sensors Sk to compute
together for solving the optimal values of {wk}k. Generally, it can be imple-
mented at a data center which collects the observation data from all sensors.
However, based on our scenario discussed in this paper, we need to distribute
the computation to each sensor. We thus propose a distributed approach for our
multi-task model.

In our distributed approach, the local model parameters of the sensors are
computed on multiple sensors simultaneously. On a given sensor sk, in each
iteration r, the model parameter w(r)

k is updated based on the values of model
parameters w(r−1)

k′ of other neighbor sensors sk′ ∈ Sk at iteration r − 1. The
formulation of the multi-task model can be revised in the following manner.

w(r)
k = (X �

k Xk + mkλI)−1(X �
k yk + λ

∑

sk′∈Sk

w(r−1)
k′ ) (5)

In the distributed computation, a sensor sk sends w(r−1)
k to other neighbor

sensors sk′ with sk ∈ Sk′ , and waits for receiving the current model parameters
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Algorithm 1: Distributed Multi-Task Learning

Input: Feature Data {Xk}k; Target Data {yk}k

Output: Model Parameters {wk}k;
// Initialization

1 forall the sk ∈ S do

2 w
(0)
k = (X �

k Xk)
−1X �

k yk;
3 end
4 r = 1;

// Learning

5 forall the sk ∈ S do
6 while r ≤ rmax do

// broadcast the parameters to neighbor sensors

7 forall the sk′ , sk ∈ Sk′ do

8 Send(w
(r−1)
k );

9 end
// collect the parameters from neighbor sensors

10 forall the sk′ ∈ Sk do

11 Receive(w
(r−1)

k′ );
12 end

// update parameters at iteration r based on the parameters of

neighbor sensors at iteration r-1

13 w
(r)
k = (X �

k Xk + mkλI)−1(X �
k yk + λ

∑
sk′ ∈Sk

w
(r−1)

k′ );

14 r = r + 1;

15 if ||w(r)
k − w

(r−1)
k ||22 < θ then

16 break;
17 end

18 end

19 end
20 return {wk}k

at iteration r − 1 from the neighbor sensors sk ∈ Sk. After that, it updates the
model parameters w(r)

k at iteration r based on its own observation data (Xk,
yk) and the model parameters from neighbor sensors. When all updated model
parameters from neighbor sensors in Sk have reached the sensor sk, it starts the
iteration r + 1 of computation. There are two stop criteria of the iterations, i.e.,
the difference of model parameters between two continue iterations are smaller
than a threshold θ or the maximum number of iterations has been reached.
Algorithm 1 lists the computation of our distributed approach.

4 Experiments

In this section, we verify our approach with data collected from real sensor
networks. All these data are time-series temperature observation data, while the
sensor networks are from different applications. We utilize our approach to solve
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the problem of temperature prediction of a given place with a sensor in a sensor
network at a timestamp.

4.1 Dataset: Weather

The weather observation data such as temperature, precipitation, sunshine dura-
tion, wind and so on are collected by the sensors installed at specific places by
the national meteorological agency. These collected data then can be used for
various purposes of data analysis such as predicting the weather in the future,
analyzing weather conditions in the past and so on. These sensors construct a
huge weather sensor network around a country.

In this paper, we collect the weather observation data from the official website
of Japan Meteorological Agency1. We select 11 places in a local region in the
area of Gifu province. The geographical coordinates of these places are listed
in Table 1. The temperature observation data is provided hour by hour. The
number of timestamps is thus 24 in one day. The range of days is from the year
2005 to the year 2014 (ten years) and September 1 to September 30th (one
month in each year). There are 7200 timestamps in total.

We set the location of the place s0 as (0,0) and create a Cartesian coordinate
system, and assign the locations of the nearby places by converting the latitude
and longitude into geometric distances in the coordinate system. The converted
coordinates system is shown in Fig. 2. The neighborhood relation is decided by
a distance threshold (i.e., 30000) and is also shown in Fig. 2. Table 2 lists the
number of neighbor sensors of each sensor.

Table 1. Weather dataset: geographical coordinates of places

ID City name (North latitude, East longitude)

s0 Kanayama (35◦39.7′,137◦9.6′)

s1 Hagiwara (35◦53.5′,137◦12.4′)

s2 Miyachi (35◦45.8′,137◦17.3′)

s3 Kurogawa (35◦35.9′,137◦19.1′)

s4 Nakatsugawa (35◦28.6′,137◦29.2′)

s5 Ena (35◦26.8′,137◦24.2′)

s6 Tajimi (35◦20.8′,137◦6.5′)

s7 Minokamo (35◦26.7′,137◦0.3′)

s8 Mino (35◦33.3′,136◦54.6′)

s9 Yawata (35◦45.4′,136◦58.7′)

s10 Nagataki (35◦55.4′,136◦49.9′)

1 http://www.data.jma.go.jp/gmd/risk/obsdl/index.php.

http://www.data.jma.go.jp/gmd/risk/obsdl/index.php
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Fig. 2. Weather dataset: places and neighborhood relations

Table 2. Weather dataset: number of neighbor sensors

Sensors s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Number of neighbors 6 3 4 4 2 3 3 3 4 5 1

4.2 Dataset: HVACS Evaluation House

This dataset is collected from the House-type HVACS (Heating, Ventilation and
Air Conditioning System) Evaluation Facility built by Mitsubishi Electric R&D
Centre Europe2. As one aspect of the smart house technology, we can install
the sensors with various functions in a house. Figure 3 shows the outside and
inside view of the smart house from which we collect the data. We install many
temperature sensors in the whole house. In this paper, we use two groups of
temperature sensors in the living room as two separated subsets, i.e. the sensors
in the floor (HEH-Floor) and the sensors in the ceiling (HEH-Ceiling). There are
eight sensors in each subset. The sensors record the temperature every 10 s. The
data is collected in one day. There are 8619 records in the HEH-Floor dataset and
8618 records in the HEH-Ceiling dataset. Figure 4 shows the positions of sensors
and the neighborhood relations among the sensors. The related positions of the
sensors in the floor or ceiling are same (Table 3).

Table 3. HVACS evaluation house dataset: number of neighbor sensors

Dataset Sensors s1 s2 s3 s4 s5 s6 s7 s8

HEH-Floor Number of neighbors 3 4 5 7 4 3 5 3

Dataset Sensors s1 s2 s3 s4 s5 s6 s7 s8

HEH-Ceiling Number of neighbors 3 4 5 7 4 3 5 3

2 http://www.mitsubishielectric.com/brief/randd/index.html.

http://www.mitsubishielectric.com/brief/randd/index.html
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Fig. 3. Outside and inside view of the HVACS evaluation house

Fig. 4. HVACS evaluation house datasets (floor or ceiling): positions and neighborhood
relations

4.3 Experimental Settings

We utilize the following two evaluation metrics for evaluating the performance,
i.e., Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The
formulas of these two metrics for a sensor sk are as follows. We evaluate the
average RMSE and MAE on all sensors. ŷki is the estimated value.

RMSEk =

√
1
nk

∑

i

(yki − ŷki)2, MAEk =
1
nk

∑

i

|yki − ŷki|

We compare our multitask approach with the independent approach which
is based on formulation (1) and only utilizes its own observation data as the
features for learning, in the scenario of learning decentralized local models. In
addition, we also show the performance of an ideal centralized approach as a
reference. It is also based on formulation (1) but utilizes the observation data of
all sensors as the features for learning.

We verify the performance of our approach on different window sizes. The
window size t is set as {2,3,5,11,23} respectively for all datasets. Especially, for
the weather dataset, t = 23 means using the observation data of previous hours
in the length of one day to predict the temperature.

For our approach, the regularization hyperparameter λ is tuned by grid search
with five-fold cross validation on the training set; the candidate values is in
{0, 10−6, 10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2}. The stop criterion θ is set
to 10−6. The maximum iteration number is set to 100.

The feature and target data of each instance is generated with overlap which
can increase the number of instances and avoid the learned model overfitting
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Table 4. Experimental results of each dataset; (10% training, 90% testing)

Win. RMSE MAE

Size t Independ Multitask Improve Central Independ Multitask Improve Central

(a). Weather dataset

2 0.029693 0.029684 0.0312% 0.024120 0.021661 0.021631 0.1401% 0.017166

3 0.029296 0.029273 0.0779% 0.024309 0.021745 0.021709 0.1662% 0.017242

5 0.030002 0.029955 0.1578% 0.024574 0.022568 0.022508 0.2653% 0.017549

11 0.030982 0.030927 0.1748% 0.025636 0.023448 0.023384 0.2728% 0.018689

23 0.026703 0.026678 0.0924% 0.027869 0.019213 0.019179 0.1781% 0.020831

(b). HEH-Floor dataset

2 0.002112 0.002065 2.2689% 0.067664 0.001678 0.001640 2.2672% 0.053601

3 0.001965 0.001942 1.1907% 0.060207 0.001555 0.001537 1.1463% 0.047720

5 0.001904 0.001899 0.2744% 0.055196 0.001489 0.001486 0.2439% 0.043977

11 0.002088 0.002084 0.2027% 0.058846 0.001569 0.001567 0.1391% 0.047019

23 0.002821 0.002819 0.0603% 0.060079 0.002004 0.002003 0.0396% 0.047240

(c). HEH-Ceiling dataset

2 0.004019 0.003937 2.0369% 0.084777 0.003162 0.003095 2.1184% 0.065068

3 0.003765 0.003727 1.0020% 0.075965 0.002947 0.002916 1.0325% 0.058240

5 0.003615 0.003612 0.0718% 0.064683 0.002807 0.002805 0.0751% 0.049914

11 0.003770 0.003769 0.0110% 0.065543 0.002865 0.002865 −0.0009% 0.050197

23 0.004500 0.004490 0.2242% 0.064775 0.003280 0.003274 0.1743% 0.050013

to a chronological cycle. For example, assuming that window size t = 2, an
instance is (xki = (xk(i−2), xk(i−1), 1), yki = xki), then the next instance is
(xk(i+1) = (xk(i−1), xk(i), 1), yk(i+1) = xk(i+1)).

We split the training and testing sets with different rates of the entire data.
In this paper, because we especially focus on the scenario that there is not
lots of training data available, when using the testing data, we ignore the real
timestamp of the instances. In other words, for an instance in the testing data,
even if there are some observation data in the time interval between the training
data and this instance, we do not use the data in this time interval to improve
the model.

4.4 Experimental Results

Table 4 lists the experimental results. To facilitate the presentation and highlight
our contribution, we separately show the experimental results with the 10% split
rate for the training set in the table. Considering the comparison between our
multi-task approach and the independent approach, the improve column shows
the improvement of our multi-task approach to the independent approach. It
shows that out approach has better performance than the independent one on
all three datasets when the split rate for training set is low, which means that
there is not lots of training data available.
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(a) Weather Dataset

(b) HEH-Floor Dataset

(c) HEH-Ceiling Dataset

Fig. 5. Performance of each sensor. Window size t = 3; (10% training, 90% testing)

Figure 5 shows the performance of each sensor respectively when the split rate
for training is set to 10%. The window size is set to 3. It shows the robustness
of our approach on each sensor, i.e., our approach not only improves the average
performance of all sensors but also improves the performance of each sensor.
Therefore, each sensor can obtain profits by using our approach.

Table 5 shows the experimental results on other split rate for training and
testing sets. One of the observations is that in the cases of the high split rate for
training set, e.g., 90% split rate for the training set, there are somewhat differ-
ences between the performance results of the weather dataset and the HVACS
Evaluation House datasets. In the weather dataset, our approach still always
outperforms the independent approach; while our approach is not better than
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Table 5. Experimental results with different split rates of training data

Win. RMSE MAE

Size t Independ Multitask Improve Central Independ Multitask Improve Central

(a). Weather dataset

50% Train 2 0.029746 0.029744 0.0065% 0.023633 0.020934 0.020929 0.0230% 0.016556

3 0.028881 0.028880 0.0048% 0.023585 0.020407 0.020403 0.0173% 0.016513

5 0.028874 0.028872 0.0060% 0.023535 0.020453 0.020449 0.0198% 0.016482

11 0.028719 0.028717 0.0066% 0.023420 0.020401 0.020397 0.0204% 0.016510

23 0.026070 0.026069 0.0018% 0.022627 0.018233 0.018231 0.0135% 0.016044

90% Train 2 0.028348 0.028345 0.0130% 0.021877 0.020699 0.020695 0.0223% 0.016116

3 0.027548 0.027545 0.0082% 0.021866 0.020094 0.020091 0.0153% 0.016142

5 0.027578 0.027566 0.0414% 0.021823 0.020125 0.020109 0.0773% 0.016119

11 0.027554 0.027542 0.0438% 0.021629 0.020198 0.020181 0.0860% 0.016091

23 0.024576 0.024575 0.0035% 0.020461 0.017745 0.017743 0.0093% 0.015139

(b). HEH-Floor dataset

50% Train 2 0.001967 0.001966 0.0776% 0.005801 0.001568 0.001567 0.0777% 0.005297

3 0.001865 0.001865 0.0278% 0.005098 0.001488 0.001488 0.0267% 0.004624

5 0.001793 0.001793 0.0055% 0.004175 0.001431 0.001431 0.0053% 0.003734

11 0.001795 0.001782 0.7256% 0.003554 0.001432 0.001422 0.7018% 0.003110

23 0.001826 0.001779 2.5525% 0.002644 0.001461 0.001423 2.5784% 0.002217

90% Train 2 0.002011 0.002011 −0.0004% 0.002066 0.001608 0.001608 −0.0003% 0.001651

3 0.001895 0.001895 −0.0089% 0.001932 0.001517 0.001518 −0.0074% 0.001547

5 0.001822 0.001823 −0.0469% 0.001833 0.001457 0.001458 −0.0659% 0.001469

11 0.001781 0.001786 −0.2562% 0.001746 0.001424 0.001428 −0.2930% 0.001397

23 0.001764 0.001768 −0.2804% 0.001739 0.001410 0.001414 −0.2854% 0.001393

(c). HEH-Ceiling dataset

50% Train 2 0.003647 0.003647 0.0124% 0.006317 0.002905 0.002905 0.0145% 0.005473

3 0.003459 0.003459 0.0000% 0.006060 0.002756 0.002756 0.0000% 0.005238

5 0.003336 0.003336 0.0000% 0.005793 0.002655 0.002655 0.0000% 0.004986

11 0.003298 0.003284 0.4034% 0.005135 0.002627 0.002617 0.3951% 0.004364

23 0.003264 0.003243 0.6477% 0.004621 0.002602 0.002585 0.6407% 0.003859

90% train 2 0.003494 0.003494 −0.0022% 0.003411 0.002776 0.002776 −0.0029% 0.002727

3 0.003277 0.003277 0.0000% 0.003247 0.002603 0.002603 0.0000% 0.002595

5 0.003160 0.003160 0.0000% 0.0031 30 0.002516 0.002516 0.0000% 0.002508

11 0.003105 0.003126 −0.6876% 0.003034 0.002478 0.002494 −0.6426% 0.002430

23 0.003087 0.003160 -2.3520% 0.002991 0.002460 0.002520 -2.4356% 0.002395

the independent approach in the HVACS Evaluation House datasets. The rea-
son is that the weather dataset is collected from a very large time period (ten
years), while the HVACS Evaluation House datasets are collected from a short
time period (one day). The time series data in the weather dataset is thus pos-
sible to be much more non-stationary. Even the split rate of the training set
is high, the independent regression model is still under-fitting to the weather
data. In contrast, the independent regression model can fit the HVACS Evalu-
ation House datasets well when there are many training data. In other words,
our approach can outperform the independent approach when the bias of the
independent model is high. Lack of enough training data is one of the reasons
which can cause the under-fitting of the independent model.
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The centralized approach is ideal and can use all observation data from all
sensors for learning the models. Therefore, when there are plenty of training data,
generally we expect that it can reach better performance than the independent
approach and our distributed multi-task approach (e.g., weather dataset results
in Tables 4 and 5). The advantages and disadvantages of the centralized approach
and the reasons for proposing decentralized approaches have been discussed at
the beginning of the introduction section. In addition, because the candidate
sensors are not selected and the model is not specialized for a given sensor, it is
possible to have worse performance than our approach when the training data
is not large enough for it. (e.g., HVACS Evaluation House datasets results in
Tables 4 and 5).

5 Conclusion

In this paper, we focus on the problem of learning decentralized local models for
each sensor in a sensor network. We propose a novel distributed multi-task learn-
ing approach which incorporates neighborhood relations among sensors learn
multiple models simultaneously in which each sensor corresponds to one task.
Instead of broadcasting the observation data of a sensor in the entire network
which is not satisfied for the reason of cost and privacy protection, this approach
shares the model parameters as regularization terms in the objective function
by assuming that neighbor sensors have similar model parameters. We conduct
the experiments on three real datasets by predicting the temperature with the
regression. They verify that our approach is effective, especially when the bias
of an independent model which does not utilize the data from other sensors is
high such as when there is not plenty of training data available.

In this paper, we select linear prediction because it is commonly used in
practical cases. It would be useful to consider the solution for other types of
complex models rather than linear prediction. On one hand, for many complex
models which solve an optimization problem, we can add a regularization term
of parameters in the object function like our approach. On the other hand, for
complex models which cannot be solved in such manner, other specific topics
need to be proposed, e.g., for clustering task and so on. We will address them
in the future work. We assume that neighbor sensors have similar model param-
eters. If some neighbor sensors show a significant different behavior, e.g., the
regularization term is high. It can be a useful clue for detecting fault sensors or
unordinary places. These issues can be separated topics in the future work.
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