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Abstract. Urban city environments face the challenge of disturbances,
which can create inconveniences for its citizens. These require timely
detection and resolution, and more importantly timely preparedness on
the part of city officials. We term these disturbances as anomalies, and
pose the problem statement: if it is possible to also predict these anoma-
lous events (proactive), and not just detect (reactive). While significant
effort has been made in detecting anomalies in existing urban data, the
prediction of future urban anomalies is much less well studied and under-
stood. In this work, we formalize the future anomaly prediction problem
in urban environments, such that those can be addressed in a more effi-
cient and effective manner. We develop the Urban Anomaly PreDiction
(UAPD) framework, which addresses a number of challenges, including
the dynamic, spatial varieties of different categories of anomalies. Given
the urban anomaly data to date, UAPD first detects the change point
of each type of anomalies in the temporal dimension and then uses a
tensor decomposition model to decouple the interrelations between the
spatial and categorical dimensions. Finally, UAPD applies an autore-
gression method to predict which categories of anomalies will happen
at each region in the future. We conduct extensive experiments in two
urban environments, namely New York City and Pittsburgh. Experimen-
tal results demonstrate that UAPD outperforms alternative baselines
across various settings, including different region and time-frame scales,
as well as diverse categories of anomalies. Code related to this chapter
is available at: https://bitbucket.org/xianwu9/uapd.

1 Introduction

Timely resolution of urban environment and infrastructure problems is an essen-
tial component of a well-functioning city. Cities have developed various reporting
systems, such as 311 services [1], for the citizens to report, track, and comment
on the urban anomalies that they encounter in their daily lives. These systems
enable the city government institutions to respond on a timely basis to distur-
bances or anomalies such as noise, blocked driveway and urban infrastructure
malfunctions [14]. However, these systems and resulting actions rely on accurate
and timely reporting by the citizens, and are by nature reactive. That leads us to
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Fig. 1. The Urban Anomaly PreDiction (UAPD) Framework.

the question: what if we could predict which regions of a city will observe certain
categories of anomalies in advance? We posit that this would enhance resource
allocation and budget planning, and also result in more timely and efficient res-
olution of issues, thereby minimizing the disruption to the citizens’ lives [19].
However, the development of such an urban anomaly prediction system faces
several challenges:

(1) Anomaly Dynamics: The factors underlying urban anomalies may change
over time. For example, anomalies in the winter may stem from winter related
severe weather (e.g., snow), and it may be infeasible to train the predictive model
by using historical data between spring and fall. (2) Coupled Multi-Dimensional
Correlations: There may exist strong signals among the locations, time, and
categories of occurred anomalies, that is, certain categories of anomalies occur
at specific locations and/or specific time. Traditional time-series based models
such as Autoregressive Moving-Average (ARMA) [28] and Gaussian Processing
(GP) [8] largely rely on heuristic temporal features to make predictions. However,
these approaches fail to capture the spatial-temporal factors that drive different
categories of anomalies occur.

Contributions. To achieve a comprehensive solution that addresses these chal-
lenges and meets the goal of prediction, we develop a unified three-phase
Urban Anomaly PreDiction (UAPD) framework to predict urban anomalies from
spatial-temporal data—urban anomaly reports. As illustrated in Fig. 1, at the
first phase, we propose a probabilistic model, whose parameters are inferred via
Markov chain Monte Carlo, to detect the change point of the historical anomaly
records of a city, such that only most relevant reports are used for the pre-
diction of future anomalies. At the second phase, we model the anomaly data
starting from the detected change point of all regions in the city with a three-
dimensional tensor, where each of three dimensions stands for the regions, time
slots, and categories of occurred anomalies, respectively. We then decompose
the tensor to incorporate the underlying relationships between each dimension
into their corresponding inherent factors in the tensor. Subsequently, the pre-
diction of anomalies in next time slot is furthered to a time-series prediction
problem. At the third phase, we leverage Vector Autoregression to capture the
inter-dependencies of inherent factors among multiple time series, generating the
prediction results.

We evaluate the performance of Urban Anomaly PreDiction (UAPD) by
using two real-world datasets collected from the 311 service in New York City
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and Pittsburgh. The evaluation results with different region scales (i.e., precincts
and regions divided by road segments) and different time-frames of training data
show that our framework can predict different categories of anomalies more
accurately than the state-of-the-art baselines.

In summary, our main contributions are as follows:

– We formalize the urban anomaly prediction problem from spatial-temporal
data and develop a unified UAPD framework to predict future occurrences
of different anomalies at different urban areas.

– In UAPD, we propose a change point detection solution to address the chal-
lenge of anomaly dynamics and leverage tensor decomposition to model the
interrelations among multiple dimensions of urban anomaly data.

– We conduct extensive experiments with different scenarios in distinct urban
environments to demonstrate the effectiveness of our presented framework.

2 Related Work

Anomaly Detection. Our work is related to urban sensing-based anomaly
detection [5–7,18,23]. For example, Doan et al. presented a set of new clus-
tering and anomaly detection techniques using a large-scale urban pedestrian
dataset [6]. Chawla et al. used the Principal Component Analysis (PCA) scheme
to discover events which may have caused anomalous behavior to appear in road
traffic flow [5]. Pan et al. developed a novel system to detect anomalies accord-
ing to drivers’ routing behavior [23]. Zheng et al. proposed a probability-based
anomaly detection method to discover collective anomalies from multiple spatial-
temporal datasets [32]. Le et al. proposed an online algorithm to detect anomaly
occurrence probability given the data from various sensors in highly dynamic
contexts [18]. However, all the above solutions identified urban anomalies after
they happen. In contrast, this paper develops a principled approach to predict
urban anomalies in different regions of a city. Although there exists one recent
work on anomaly prediction [15] by considering the dependency of anomaly
occurrence between regions, two significant limitations exist: (i) it ignored the
fact that anomalies of different categories can be correlated; (ii) it assumed that
some portion of ground truth data from the predicted time slot are known.
However, such assumptions do not always hold in the practical scenario for a
couple of reasons. Firstly, dependencies between anomalies with different cat-
egories are ubiquitous in urban sensing. Secondly, it is difficult to know the
ground truth information from the predicted time slot beforehand. To overcome
those limitations, this paper develops a new urban anomaly prediction frame-
work to explicitly explore the inter-category dependencies and model the time-
evolving inherent factors with respect to different categories, without requiring
any ground truth information from the predicted time slot.

Time Series Prediction. Our work is related to the literature that focus on
time series prediction [2,8,25,28]. In particular, Vallis et al. [25] proposed a novel
statistical technique to automatically detect long-term anomalies in cloud data.
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A non-parametric approach Gaussian Processing (GP) has been developed to
solve the general time series prediction problem [8]. Additionally, Wiesel et al.
[28] proposed a time varying Autoregression Moving Average (ARMA) model for
co-variance estimation. Bao et al. [2] proposed a Particle Swarm Optimization
(PSO)-based strategy to determine the number of sub-models in a self-adaptive
mode with varying prediction horizons. Inspired by the work above, we develop a
new scheme to explicitly consider the anomaly distribution dependency between
regions and incorporate it into the time series prediction model.

Bayesian Inference. Bayesian inference has been widely used in the data ana-
lytics communities [20,21,30]. For example, Yang et al. studied the problem of
learning social knowledge graphs by developing a multi-modal Bayesian embed-
ding model [30]. Lian et al. proposed a sparse Bayesian content-aware collabo-
rative filtering approach for implicit feedback recommendation [21]. Lee et al.
proposed a Bayesian nonparametric model for medical risks prediction by explor-
ing phenotype topics from electronic health records [20]. In this paper, we study
the problem of urban anomaly prediction by proposing a Bayesian inference
model to capture the evolving relationships of anomaly sequences.

3 Problem Definition

Given the historical sequences of anomalies within a city’s geographical regions,
the objective is to predict whether certain categories of anomalies will happen
at certain places in the future. We use a three-dimensional tensor X ∈ R

I×J×K

to represent the anomaly sequences of all regions in a city. I, J,K denote the
number of regions (e.g., geographical areas divided by the city’s road network),
time slots, and anomaly categories (e.g., noise, blocked driveway, illegal parking,
etc.) in the data, respectively. Each element Xi,j,k represents the number of the
k-category anomalies that happened at region i at time j.

Urban Anomaly Prediction Problem: Given the historical anomaly data
X ∈ R

I×J×K of a city, the goal is to learn a predictive function f(X ) → X:,J+1,:

to infer future occurrences of each category k of anomalies at each region i at
time J + 1.

The urban anomaly prediction solution needs to incorporate additional fac-
tors as noted in Sect. 1. First, there may exist periodic and temporary patterns
in urban anomalies. For example, the temporary road construction serves as
the inherent factors for noise related anomalies. This pattern makes the model
trained using data collected during the construction period ineffective for pre-
dictions over the following time-frame. Second, the urban anomaly data covers
multiple aspects of coupled information—the location, time, and category of
anomalies. It is unclear whether certain types of anomalies occur at correlated
locations or time, and if so, how we can model the multidimensional data. The
key notations are shown in Table 1.
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Table 1. Symbols and definitions

Symbol Interpretation

i, j, k The indices of regions, time slots, anomaly categories

I, J, K The number of regions, time slots, anomaly categories

M The anomaly sequence matrix

Mk
j The element in the k-th category, j-th time slot of the abnormal region matrix

X The anomaly tensor

R, T , C The inherent factor matrix with regions, time slots, anomaly categories, respectively

L The number of inherent factors (i.e., the rank of tensor)

δ The change point

α , β Parameters in Poisson distributions before/after change point

a, b Shape/Scale parameters in Gamma distributions

p Probability of each time slot being the change point

4 The UAPD Framework

Figure 1 illustrates the UAPD framework, with the following steps: (1) UAPD
leverages Bayesian inference to detect the change point in the anomaly sequence;
(2) UAPD incorporates the spatial-temporal anomaly data into a three-
dimensional tensor, which can be decomposed to learn the latent correlations
between all dimensions; (3) UAPD applies the Vector Autoregression model to
predict the occurrence of different categories of anomalies in each region of a
city. We will explain these three steps in detail in the following subsections.

4.1 Change Point Detection

Given an anomaly sequence, conventional prediction methods usually train a
learning model by using all available data between time 0 and J to predict the
future anomalies at time J +1 [22]. However, the occurrence of urban anomalies
can be largely influenced by temporary events and periodic patterns. For exam-
ple, the road construction in a certain area can result in many noise reports
during the construction period. As a result, the anomaly sequence of this area
may be dramatically changed after the construction, i.e., a significant decrease in
noise reports, leading to an ineffective prediction for post-construction anomalies
by training models on the anomaly sequence that covers the construction period.
To address this issue, we propose a Bayesian inference based method to detect
the change point δ in an anomaly sequence between time 0 and J . The sequence
follows two different data distributions before and after the change point. Thus,
UAPD learns the anomaly predictive function, over the time sequences, by lever-
aging the most relevant latent factors that caused the anomalies.

Specifically, we aim to detect the change point of the anomaly sequence
matrix M with regions that have k categories of anomalies. To do so, we first
model Mk

j that reports the k-th category of anomalies at time j as a Poisson dis-
tribution. Before and after the change point δ, Mk

j follows Poisson distributions
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with different parameter configurations, αk and βk, respectively. Following the
standard Bayesian inference, we set the conjugate prior of the Poisson distribu-
tion as the Gamma distribution with a and b as its shape and scale parameters,
respectively. Finally, the change point δ is set to obey a multinomial distribution
with parameters p = (p0, · · · , pj , · · · , pJ ), where pj denotes the probability of
time j to be the change point. The generative process behind our model can be
summarized as follows:

δ ∼ Multinomial(δ;p)
αk ∼ Gamma(αk; aα

k , bα
k )

βk ∼ Gamma(βk; aβ
k , bβ

k) (1)

Mk
j ∼

{
Poisson(Mk

j ;αk), 1 ≤ j ≤ δ

Poisson(Mk
j ;βk), δ + 1 ≤ j ≤ J

where Mk
j is the number of regions which have anomalies of k-th category at

time j. The variable on the left side of the semi-colon is assigned a probability
under the parameter on the right side. The posterior distribution is formally
defined as follow:

Pr(α,β, δ|M1:J ) ∝ Pr(M1:δ|α)Pr(Mδ+1:J |β)Pr(α)Pr(β)Pr(δ) (2)

=
K∏

k=1

( δ∏
j=1

Pr(Mk
j |αk)

J∏
j=δ+1

Pr(Mk
j |βk)Pr(αk)Pr(βk)

)
Pr(δ)

We could estimate the change point δ and distribution parameters α,β by
maximizing the full joint distribution. However, to avoid fine parameter tuning
and make accurate detection on change point, we apply the Markov Chain Monte
Carlo (MCMC) method to infer parameter. In addition, since we have multiple
random variables in this problem, we utilize the Gibbs sampling algorithm to
execute the MCMC method. The basic idea in Gibbs sampling is that we sam-
ple the new value of each variable in each iteration accordingly by fixing other
variables [17,24]. Algorithm 1 presents the outline of Gibbs sampling for change
point detection. The conditional distribution of each variable and parameter
derivations are given in the Appendix.

4.2 Tensor Decomposition

The inherent factors of anomalies among different regions, time slots and
anomaly categories are revealed by tensor decomposition on a three dimen-
sional tensor representing the anomaly records. Since the anomaly distributions
of regions are often subject to changes in different time periods, the objective of
tensor decomposition is to model the temporal effects of anomalies distribution
in each region by learning the inherent factors as well as adopting these factors
to different time periods.
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Algorithm 1. Gibbs Sampling for Change Point
Initialize model parameter { α(1), β(1), δ(1) };
for itr = 1, ..., iterations do

for k = 1, ..., K do

Sample the α
(itr+1)
k according to Pr(αk|δ, βitr, M1:J) in Eq. (7);

end
for k = 1, ..., K do

Sample the β
(itr+1)
k according to Pr(βk|δ, α(itr+1), M1:J) in Eq. (8);

end
for δ′ = 1, ..., J do

Calculate parameter p
(itr+1)

δ′ according to Eq. (9);
end

Sample the δ according to Pr(δ|α(itr+1), β(itr+1), M1:J);
end

We use the CANDECOMP/PARAFAC (CP) decomposition approach [3] to
factorize the tensor into three different matrices R ∈ R

I×L, T ∈ R
J×L and

C ∈ R
K×L. Here L is the number of inherent factors and is indexed by l. R, T

and C are the inherent factor matrices with respect to I regions, J time slots
and K anomaly categories, respectively. We can express the three-way tensor
factorization of X as:

X ≈
L∑

l=1

R:,l ◦ T:,l ◦ C:,l (3)

where R:,l, T:,l and C:,l represent the l-th column of R, T and C. ◦ denotes
the vector outer product. Each entry Xi,j,k in tensor X can be computed as the
inner-product of three L-dimensional vectors as follows:

Xi,j,k ≈< Ri, Tj , Ck >≡
L∑

l=1

Ri,lTj,lCk,l (4)

Although many techniques can be applied to CP decomposition, we utilize the
Alternative Least Square (ALS) algorithm [4,12], which has been shown to out-
perform other algorithms in terms of solution quality [9].

4.3 Vector Autoregression

Using the tensor decomposition model discussed above, we can learn the inherent
factors of anomalies from different time slots. Based on the three matrices gen-
erated by CP decomposition, we formulate the anomaly prediction problem as
the time series prediction task on T ∈ R

J×L, since the inherent factors in other
two dimensions remain constant. We use Vector Autoregression (VAR) [11] to
capture the linear inter dependencies of inherent factors among multiple time
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series. In particular, VAR model formulates the evolution of a set of L inherent
factors over the same sample period (i.e., time slot j = 1, 2, ..., J) as a linear
function of their past values. We define the order S of VAR to represent the
time series in the previous S time slots. Formally, it can be expressed as follows:

TJ+1 = d +
S∑

s=1

BsTJ−s + εj (5)

where d is a L×1 vector of constants, Bs is a time-invariant L×L matrix and εj

is a L × 1 vector of errors. Many techniques have been proposed for VAR order
selection, such as Bayesian Information Criterion (BIC) [27], Final Prediction
Error (FPE) [26] and Akaike information criteria (AIC) [10]. In this paper, we
utilize the lowest AIC value to decide the order of VAR. Hence, the number
of anomalies with the k-th category in region Ri in the next time slot can be
derived as:

Xi,J+1,k =< Ri, TJ+1, Ck >≡
L∑

l=1

Ri,lTJ+1,lCk,l (6)

5 Evaluation

In this section, we conduct experiments on two real-world datasets collected from
311 Service in New York City (NYC) and Pittsburgh, respectively. In particular,
we answer the following research questions:

– Q1: How does UAPD perform as compared to the state-of-the-art solutions
in predicting different categories of urban anomalies?

– Q2: How does UAPD perform in anomaly prediction with respect to different
geographical region scales?

– Q3: How does UAPD perform in anomaly prediction with respect to different
time-frames (i.e., #time-slots J)?

– Q4: Can UAPD effectively capture the change point of an anomaly sequence?
Is change point detection effective for urban anomaly prediction?

– Q5: Is UAPD stable with regard to the rank of tensor L (i.e., the number of
inherent factors)?

5.1 Experimental Setup

Datasets. We evaluated UAPD on real-world urban anomaly reports datasets
collected from New York City (NYC) OpenData portal1 and Pittsburgh Open-
Data portal2, respectively. Those datasets are collected from 311 Service that is
an urban anomaly report platform, which allows citizens to report complaints
about urban anomalies such as blocked driveway by texting, phone call or mobile
1 https://data.cityofnewyork.us/.
2 http://www.wprdc.org/.

https://data.cityofnewyork.us/
http://www.wprdc.org/
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Table 2. Data statistics

City Anomaly category Number of instances

New York city Noise 151, 174

Blocked driveway 92, 335

Illegal parking 69, 100

Building/Use 27, 724

Pittsburgh Potholes 3, 361

Snow/Ice removal 2, 504

Building maintenance 2, 352

Weeds/Debris 2, 023

Refuse violations 1, 196

Abandoned vehicle 924

Replace/Repair a sign 620

(a) Noise (b) Blocked driveway (c) Illegal parking (d) Building/Use

Fig. 2. Geographical distribution of anomalies with different categories.

app. Each complaint record contains the timestamp, coordinates and category
of anomaly. Different cities may have different anomaly categories due to differ-
ent urban properties [29]. For the New York City datasets, we focus on 4 key
anomaly categories (e.g., Blocked Driveway, Illegal Parking) which are selected
in [15,31,32]. For the Pittsburgh datasets, we select the top frequently reported
anomaly categories (e.g., Potholes, Refuse Violations) as the target predictive
anomaly categories. The New York city data was collected from Jan 2014 to Dec
2014 and the Pittsburgh data was collected from Jan 2016 to Dec 2016.

The statistics of these datasets are summarized in Table 2. Due to space limit,
we only show the geographical distribution of different categories of anomalies
in NYC in Fig. 2. In those figures, firstly for the same anomaly category, we can
observe that different regions have different number of anomalies. Secondly for
the same region, we can observe that different anomaly categories have different
distributions, which is the main motivation to use tensor decomposition model
to identify the inherent factors by considering the correlations between differ-
ent regions and different categories. Similar geographical distributions can be
observed in Pittsburgh datasets.
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Baselines and Evaluation Metrics. We compare our proposed scheme to the
following state-of-the-art techniques:

– CUAPS : it predicts the anomaly by exploring the dependency of anomaly
occurrence between different regions and use some portion of ground truth
data from the predicted time slot [15].

– Random Forest (RF): it incorporates the spatial-temporal features of anomaly
sequence into the classification model.

– Adaptive Boosting (AdaBoost): it predicts the anomaly occurrence of each
region by maintaining a distribution of weights over the training examples.

– Gaussian Processing (GP): it is a nonparametric approach that predicts the
abnormal state of each region by exploring temporal features [8].

– Autoregressive Moving-Average Model (ARMA): it is a time varying model
that predicts the abnormal state of each region by exploring anomaly traces
features [28].

– Logistic Regression (LR): it is a regression model that estimates the abnormal
state of each region by exploring temporal features [13].

5.2 Performance Validation

We use the following metrics to evaluate the estimation performance of the
UAPD scheme: F1-measure, Precision and Recall.

Effectiveness of UAPD (Q1, Q2, Q3). In this subsection, we present the
performance of UAPD on two real-world datasets with different geographical
region scales and different time slots J . The source code of UAPD is publicly
available3. In our evaluation, we consider two versions of our scheme: (i) UAPD-
CP : a simplified version of UAPD framework which does not include the change
point detection step; (ii) UAPD : the full version of the proposed scheme. We
compare the UAPD scheme and its variant with the state-of-the-art algorithms.

Results on New York City Dataset. To investigate the effect of geographical
scale, we partition the New York City into different geographical regions using
the following methods:

– High-Level Region: New York City is divided into 76 geographical areas based
on the political and administrative districts information4. We refer to each
geographical region as a high-level region.

– Fine-Grained Region: we use major roads (road segments with levels from L1

to L5) to partition the entire city, which results in 862 geographical area [32].
We refer to each geographical area as a fine-grained region.

Based on the above region partition methods, each anomaly can be mapped into
a particular region.
3 https://bitbucket.org/xianwu9/uapd.
4 https://data.cityofnewyork.us/Public-Safety/Police-Precincts/78dh-3ptz/data.

https://bitbucket.org/xianwu9/uapd
https://data.cityofnewyork.us/Public-Safety/Police-Precincts/78dh-3ptz/data
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Table 3. Prediction results on June with high-level region in NYC

Anomaly Noise Blocked driveway Illegal parking Building/Use

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.966 0.944 0.989 0.878 0.838 0.923 0.867 0.776 0.980 0.679 0.602 0.779

UAPD-CP 0.952 0.940 0.964 0.837 0.809 0.867 0.867 0.776 0.982 0.628 0.549 0.733

CUAPS 0.930 0.941 0.920 0.824 0.826 0.825 0.808 0.794 0.822 0.576 0.620 0.539

RF 0.958 0.956 0.960 0.841 0.864 0.819 0.822 0.807 0.837 0.594 0.65 0.547

AdaBoost 0.950 0.947 0.953 0.841 0.827 0.856 0.812 0.783 0.843 0.584 0.572 0.596

GP 0.926 0.936 0.916 0.793 0.814 0.774 0.778 0.782 0.774 0.588 0.550 0.631

ARMA 0.926 0.962 0.892 0.818 0.946 0.720 0.688 0.866 0.571 0.408 0.804 0.274

LR 0.913 0.942 0.886 0.771 0.902 0.673 0.837 0.794 0.886 0.646 0.665 0.628

Table 4. Prediction results on Dec with high-level region in NYC

Anomaly Noise Blocked driveway Illegal parking Building/Use

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.892 0.838 0.954 0.894 0.880 0.908 0.873 0.779 0.992 0.724 0.639 0.836

UAPD-CP 0.893 0.834 0.962 0.894 0.891 0.898 0.873 0.779 0.992 0.733 0.655 0.833

CUAPS 0.881 0.826 0.945 0.869 0.904 0.837 0.805 0.762 0.853 0.613 0.642 0.587

RF 0.875 0.866 0.885 0.855 0.868 0.842 0.810 0.819 0.8 0.607 0.673 0.552

AdaBoost 0.880 0.849 0.914 0.848 0.853 0.844 0.833 0.828 0.839 0.623 0.625 0.621

GP 0.795 0.819 0.772 0.834 0.855 0.814 0.802 0.805 0.798 0.583 0.567 0.599

ARMA 0.823 0.897 0.761 0.817 0.959 0.712 0.708 0.861 0.601 0.454 0.813 0.315

LR 0.773 0.844 0.714 0.805 0.891 0.734 0.834 0.786 0.887 0.605 0.710 0.527

The evaluation results on NYC datasets with high-level region are shown
in Tables 3 (June) and 4 (Dec), respectively. The evaluation results on NYC
datasets with fine-grained region are shown in Tables 5 (June) and 6 (Dec),
respectively. To investigate the effect of the number of time slots J , we study
the performance of all compared schemes with different values of J . In Tables 3
and 4, we set J to be 150 (from January to May). In Tables 5 and 6, we set
J to 330 (from January to November). The evaluation results are the average
across the 10 consecutive days for prediction. From the results, we can observe
that UAPD consistently outperforms the state-of-the-art baselines in most cases
on different categories of anomalies. For example, UAPD outperforms the best
baseline (AdaBoost) for high-level region-Building/Use case by 16.2% on F1-
Score and the best baseline (RF) for fine-grained region-Blocked Driveway case
by 34.7% on F1-Score. In the occasional case that UAPD misses the best per-
formance, it still generates very competitive results. The results are consistent
with different geographical region scales and historical time slots.

Results on Pittsburgh Dataset. We repeated the same experiments on Pitts-
burgh dataset. Considering the space limit, we only present the evaluation results
for high-level regions in June. In particular, we partition the Pittsburgh city
based on its council districts information5. The evaluation results on different
categories of anomalies are shown in Table 7. The reported results are also the
5 http://pittsburghpa.gov/council/maps.

http://pittsburghpa.gov/council/maps
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Table 5. Prediction results on June with fine-grained region in NYC

Anomaly Noise Blocked driveway Illegal parking Building/Use

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.630 0.534 0.768 0.555 0.491 0.639 0.421 0.404 0.441 0.262 0.268 0.257

UAPD-CP 0.635 0.593 0.684 0.511 0.550 0.478 0.373 0.468 0.310 0.122 0.367 0.073

CUAPS 0.486 0.599 0.409 0.415 0.478 0.366 0.220 0.187 0.268 0.170 0.118 0.309

RF 0.553 0.582 0.526 0.412 0.466 0.369 0.306 0.357 0.267 0.166 0.221 0.133

AdaBoost 0.528 0.522 0.535 0.397 0.370 0.429 0.301 0.264 0.350 0.183 0.155 0.222

GP 0.551 0.500 0.613 0.393 0.349 0.452 0.326 0.271 0.409 0.216 0.181 0.269

ARMA 0.404 0.787 0.272 0.199 0.631 0.118 0.104 0.517 0.058 0.028 0.412 0.014

LR 0.607 0.630 0.587 0.382 0.615 0.278 0.275 0.453 0.197 0.098 0.346 0.057

Table 6. Prediction results on Dec with fine-grained region in NYC

Anomaly Noise Blocked driveway Illegal parking Building/Use

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.521 0.466 0.589 0.558 0.570 0.546 0.403 0.455 0.362 0.171 0.406 0.109

UAPD-CP 0.373 0.366 0.380 0.530 0.537 0.522 0.373 0.389 0.359 0.210 0.247 0.183

CUAPS 0.423 0.437 0.410 0.452 0.508 0.407 0.242 0.270 0.218 0.111 0.096 0.133

RF 0.438 0.545 0.366 0.429 0.522 0.364 0.293 0.384 0.237 0.116 0.198 0.082

AdaBoost 0.380 0.338 0.433 0.393 0.367 0.422 0.290 0.257 0.332 0.160 0.124 0.227

GP 0.415 0.346 0.517 0.453 0.415 0.499 0.355 0.297 0.441 0.219 0.188 0.262

ARMA 0.358 0.715 0.239 0.253 0.663 0.156 0.151 0.641 0.086 0.023 0.286 0.012

LR 0.520 0.641 0.438 0.504 0.598 0.435 0.338 0.516 0.251 0.077 0.286 0.044

Table 7. Prediction results on June with high-level regions in pittsburgh

Anomaly Potholes Weeds/Debris Building maintenance

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.848 0.736 1.000 0.909 0.844 0.984 0.624 0.531 0.756

UAPD-CP 0.839 0.769 0.923 0.887 0.851 0.926 0.698 0.577 0.882

CUAPS 0.772 0.736 0.811 0.724 0.730 0.718 0.523 0.466 0.595

RF 0.793 0.842 0.750 0.794 0.862 0.735 0.585 0.649 0.533

AdaBoost 0.760 0.754 0.766 0.596 0.739 0.500 0.558 0.585 0.533

GP 0.733 0.716 0.750 0.812 0.800 0.824 0.615 0.542 0.711

ARMA 0.560 0.778 0.437 0.631 0.813 0.514 0.451 0.615 0.616

LR 0.778 0.790 0.766 0.821 0.833 0.808 0.494 0.525 0.467

Anomaly Refuse violations Abandoned vehicle Replace/Repair a sign

Algorithm F1 Precision Recall F1 Precision Recall F1 Precision Recall

UAPD 0.615 0.522 0.750 0.642 0.515 0.854 0.622 0.509 0.800

UAPD-CP 0.535 0.451 0.657 0.628 0.551 0.730 0.487 0.404 0.613

CUAPS 0.076 0.500 0.041 0.394 0.441 0.357 0.133 0.666 0.074

RF 0.490 0.522 0.462 0.560 0.618 0.512 0.364 0.526 0.278

AdaBoost 0.490 0.522 0.462 0.624 0.558 0.707 0.382 0.406 0.361

GP 0.393 0.342 0.461 0.494 0.478 0.512 0.459 0.447 0.472

ARMA 0.133 0.500 0.077 0.280 0.533 0.195 0.052 0.500 0.027

LR 0.324 0.545 0.231 0.500 0.543 0.463 0.217 0.500 0.139
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average across the 10 consecutive days for prediction. In Table 7, we can observe
that our scheme UAPD still outperforms other baselines in most of the evalua-
tion metrics. Additionally, we can observe that UAPD outperforms UAPD-CP
(without detecting any change point on anomaly sequence) in most cases. Since
there do not exist reports of Snow/Ice removal category of anomaly on June, we
do not consider this category in this evaluation.

The performance improvements of UAPD are achieved by (i) carefully con-
sidering dynamic causes of anomalies; (ii) explicitly exploiting inherent factors
of different categories of anomalies; (iii) carefully handling the evolving relation-
ship among different anomaly categories and regions, with Bayesian inference
and tensor decomposition, which are missing from the state-of-the-art solutions.

Analysis of Change Point Detection (Q4). Additionally, we conducted
experiments to analyze the results of change point detection (i.e., the first com-
ponent of the proposed framework) and further visualize the result. The detec-
tion results on Pittsburgh datasets are shown in Fig. 3. We kept the value of J
the same as the above experiments. In Fig. 3, we can observe that the detected
starting point of anomaly sequences is Feb 18, 2016 instead of the actual begin-
ning time (i.e., Jan 1, 2016). Moreover, the supplementary figures in both left
and right side show that the anomaly distributions before the detected change
point significantly differs from that after the change point, which demonstrates
the effectiveness of our change point detection on anomaly sequences.

Impact of Rank Parameter (Q5). To investigate the effect of the only param-
eter (i.e., rank parameter L) in our framework, we studied the performance of
our proposed scheme by varying the value of L. Particularly, we vary the value
of rank from 2 to 9. The evaluation results on NYC datasets are shown in Figs. 4
and 5. We can observe that the performance of UAPD is stable with the value
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Fig. 4. Performance w.r.t rank parameter L on Jun. with high-level regions in NYC
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Fig. 5. Performance w.r.t rank parameter L on Dec. with high-level regions in NYC

of rank from 5 to 8 which satisfy the value selection rubric of rank parameter
L in tensor decomposition [16]. In our experiments, we set the value of rank to
8. Considering the space limit, we only present the results on NYC datasets. In
the results on Pittsburgh datasets, similar results can be observed.

6 Conclusion

In this paper, we develop a Urban Anomaly PreDiction(UAPD) framework to
predict urban anomalies from spatial-temporal data. UAPD enables the accurate
prediction of the occurrences of different anomalies at each region of a city in
the future. UAPD explicitly detects the change point of the anomaly sequences
and also explores the time-evolving inherent factors and their relationships with
each dimension tensor (i.e., regions and anomaly categories). We evaluate our
presented framework on two sets of urban anomaly reports collected from 311
Service in New York City and Pittsburgh, respectively. The results show that
UAPD significantly outperforms state-of-the-art baselines, and provides a frame-
work for being predictive about disturbances, enabling the city officials to be
more proactive in their preparation and response.

7 Appendix

In this section, we give the specific form of conditional posterior functions used
in Algorithm 1. According to the posterior function in Eq. (3), we can obtain the
full conditional posterior of α given β, δ as follows:
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Pr(αk|δ,β,M1:J ) = Gamma(αk; ∗aα
k , ∗bα

k )

∗aα
k = aα

k +
δ∑

j=1

Mk
j ; ∗bα

k = δ + bα
k (7)

The update of parameters in Gamma distribution of k-th category anomaly
before the change point is given by ∗ak, ∗bk. Since we utilize the conjugate prior
for the α, the conditional distribution of α follows the Gamma distribution.
Similarly, the conditional posterior of β given α, δ has the same form as:

Pr(βk|δ,α,M1:J ) = Gamma(βk; ∗aβ
k , ∗bβ

k)

∗aβ
k = aβ

k +
J∑

j=δ+1

Mk
j ; ∗bβ

k = J − δ + bβ
k (8)

Finally, the full conditional posterior distribution of δ is a Multinomial
distribution:

Pr(δ|α,β,M1:J ) = Multinomial(δ;p)

pδ′ = exp
( K∑

k=1

( δ′∑
j=1

Mk
j logαk +

J∑
j=δ′

Mk
j logβk − δ′αk − (J − δ′)βk

)
+ logσ

)
(9)

where σ is the normalization constant of pδ′ . p = (p1, ..., pδ′ , ..., pJ ).
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