
Learning TSK Fuzzy Rules from Data Streams

Ammar Shaker(B), Waleri Heldt, and Eyke Hüllermeier

Department of Computer Science, Paderborn University, Paderborn, Germany
{ammar.shaker,eyke}@upb.de, heldt@mail.upb.de

Abstract. Learning from data streams has received increasing attention
in recent years, not only in the machine learning community but also
in other research fields, such as computational intelligence and fuzzy
systems. In particular, several rule-based methods for the incremental
induction of regression models have been proposed. In this paper, we
develop a method that combines the strengths of two existing approaches
rooted in different learning paradigms. Our method induces a set of fuzzy
rules, which, compared to conventional rules with Boolean antecedents,
has the advantage of producing smooth regression functions. To do so,
it makes use of an induction technique inspired by AMRules, a very
efficient and effective learning algorithm that can be seen as the state of
the art in machine learning. We conduct a comprehensive experimental
study showing that a combination of the expressiveness of fuzzy rules
with the algorithmic concepts of AMRules yields a learning system with
superb performance.

1 Introduction

Learning from data streams has been a topic of active research in recent years
[11]. In this branch of machine learning, systems are sought that learn incremen-
tally, and maybe even in real-time, on a continuous and potentially unbounded
stream of data, and which is able to properly adapt themselves to changes of
environmental conditions or properties of the data generating process. Systems
with these properties have already been developed for different machine learning
and data mining tasks, such as clustering and classification.

An extension of machine learning methods to the setting of data streams
comes with a number of challenges. In particular, the standard batch mode of
learning, in which the entire data as a whole is provided as an input to the
learning algorithm, is no longer applicable. Correspondingly, the data must be
processed in a single pass, which implies an incremental mode of learning and
model adaptation.

Domingos and Hulten [9] list a number of properties that an ideal stream
mining system should exhibit, and suggest corresponding design decisions: the
system uses only a limited amount of memory; the time to process a single
record is short and ideally constant; the data is volatile and a single data record
accessed only once; the model produced in an incremental way is equivalent to
the model that would have been obtained through common batch learning (on
c© Springer International Publishing AG 2017
M. Ceci et al. (Eds.): ECML PKDD 2017, Part II, LNAI 10535, pp. 559–574, 2017.
https://doi.org/10.1007/978-3-319-71246-8_34

560 A. Shaker et al.

all data records so far); the learning algorithm should react to concept change
(i.e., any change of the underlying data generating process) in a proper way and
maintain a model that always reflects the current concept.

Rule-based learning is a specifically popular approach in the realm of data
streams, not only in the machine learning but also in the computational intelli-
gence community, where it has been studied under the notion of “evolving fuzzy
systems” [21]. In this paper, we develop a method that combines the strengths
of two existing approaches for regression on data streams rooted in different
learning paradigms. Our method induces a set of fuzzy rules, which, compared
to conventional rules with Boolean antecedents, has the advantage of producing
smooth regression functions. To do so, it makes use of an induction technique
inspired by AMRules, a very efficient and effective learning algorithm that yields
state-of-the-art performance in machine learning.

The rest of the paper is organized as follows. Following a review of related
work, we introduce our method in Sect. 3. A comprehensive experimental study,
in which the method is compared to several competitors, is presented in Sect. 4,
prior to concluding the paper in Sect. 5.

2 Related Work

In the past ten years, learning from data streams has been considered for dif-
ferent learning tasks. Approaches to supervised learning have mostly focused on
classification. Here, the Hoeffding tree method [8] has gained a lot of attention,
and meanwhile, many modifications and improvements of the original method
have been proposed [6]. In addition to the induction of decision trees, the learn-
ing of systems of decision rules is supported by several approaches, such as the
Adaptive Very Fast Decision Rules (AVFDR) classifier [17]. AVFDR can be
seen as an extension of the Very Fast Decision Rules (VFDR) classifier [12] that
incrementally induce a compact set of decision rules from a data stream.

Regression on data streams has gained less attention than classification, with
a few notable exceptions. AMRules [1] can be seen as an extension of AVFDR to
the case of numeric target values. Another approach is based on the induction
of model trees [15]. Besides, regression on data streams has been studied quite
extensively in the computational intelligence and fuzzy systems community [2,
4,21]. Specifically relevant for us is FLEXFIS [20], which learns a system of so-
called Takagi-Sugeno-Kang (TSK) rules [25]. In the following, we describe these
methods in some more detail.

FIMTDD (Fast Incremental Model Trees with Drift Detection) is a tree-based
approach for inducing model trees for regression on data streams. Similar to
Hoeffding trees, it uses Hoeffding’s inequality [14] for choosing the best splitting
attribute. Since FIMTDD tackles regression problems, attributes are evaluated
in terms of the reduction of the target attribute’s standard deviation. Each leaf
node of the induced tree is associated with a linear function, which is learned
(using stochastic gradient descent) in the subspace covering the instances that
fall into that leaf node.

Learning TSK Fuzzy Rules from Data Streams 561

AMRules (Adaptive Model Rules) learns rules that are specified by a con-
junction of literals on the input attributes in the premise part, and a linear
function of the attributes in the consequent. The latter is chosen so as to maxi-
mize predictive accuracy in the sense of minimizing the root mean squared error.
Adaptive statistical measures are maintained in each rule in order to describe
the instance subspace covered by that rule. Each rule is initialized with a single
literal and successively expanded with new literals. The best literal to be added,
if any, is chosen on the basis of Hoeffding’s bound, in a manner that is similar
to the expansion of a Hoeffding tree. In their paper [1], the authors distinguish
between decision lists and unordered rule sets and, correspondingly, propose two
different update and prediction schemes. The first one sorts the set of rules in
the order in which they were learned. Only the first rule covering an example is
used for prediction and updated afterward. The second strategy updates all the
rules that cover an example, and combines these rules’ predictions by a weighted
sum.1 The authors also show that the latter strategy outperforms the former one,
and hence used it for the rest of their study.

FLEXFIS (Fexible Fuzzy Inference Systems) induces a set of fuzzy rules,
making use of fuzzy logic as a generalization of conventional (Boolean) logic
[20]. Mores specifically, it uses so-called Takagi-Sugeno-Kang (TSK) rules that
are defined by a fuzzy predicate in the premise part and a linear function of
the input features in the consequent. As a result, an instance can be covered
by a rule to a certain degree, reflecting a degree of relevance of the rule in the
corresponding part of the instance space. Correspondingly, the prediction of a
TSK system is produced by a weighted average of the outputs of the individual
rules. The regions covered by the rules in the input space are defined by means
of clustering methods: The instances in the training data are first clustered, and
the fuzzy-logical predicates in the rule antecedents are obtained by projecting
the clusters to the individual dimensions of this space. For learning on data
streams, clustering is done in an incremental way. Moreover, the functions in
the rule consequents are adapted using recursive weighted least squares (RWLS)
estimation [19].

Our approach essentially seeks to combine the increased expressiveness of
fuzzy rules as used by methods such as FLEXFIS, which allows for approximat-
ing a regression function is a smoother and much more flexible way, with the
efficiency and effectivity of rule induction techniques such as AMRules. In fact,
existing methods for learning fuzzy rules, including FLEXFIS and eTS+ [3], are
usually slow and computationally inefficient. The complexity is mainly caused
by the use of clustering methods, which have the additional disadvantage of pro-
ducing rules that always contain all input attributes, as well as costly matrix
operations (such as inversion) required by RWLS.

1 In their paper [1], it is not mentioned how the weight of a rule is derived. Based
on the delivered implementation, it seems a rule is weighted by the errors it has
committed in the past.

562 A. Shaker et al.

3 The TSK-Streams Learning Algorithm

Our method, called TSK-Streams, is an adaptive incremental rule induction
algorithm for regression on data streams. The model produced by TSK-Streams
is a so-called Takagi-Sugeno-Kang (TSK) fuzzy system [25], a type of rule-based
system that is widely used in the fuzzy logic community.

3.1 TSK Fuzzy Systems

A TSK rule Ri is a fuzzy rule of the following form:

IF (x1 IS Ai,1) AND . . . AND (xd IS Ai,d)
THEN li(x) = wi,0 + wi,1x1 + wi,2x2 + . . . + wi,dxd, (1)

where (x1, . . . , xd)� is the feature representation of an instance x ∈ R
d, and Ai,j

defines the jth antecedent of Ri in terms of a soft constraint. The coefficients
wi,0, . . . , wi,d ∈ R in the consequent part of the rule specify an affine function of
the features (input attributes).

Modeling the soft constraint Ai,j in terms of a fuzzy set with membership
function μ

(i)
j : R −→ [0, 1], the truth degree of the predicate (xj IS Ai,j) is given

by μ
(i)
j (xj), that is, the degree of membership of xj in μ

(i)
j . Moreover, modeling

the logical conjunction in terms of a triangular norm � [16], i.e., an associative,
commutative, non-decreasing binary operator � : [0, 1]2 −→ [0, 1] with neutral
element 1 and absorbing element 0, the overall degree to which an instance x
satisfies the premise of the rule Ri is given by

μi(x) = �
(
μ
(i)
1 (x1), . . . , μ

(i)
d (xd)

)
. (2)

In the following, we will adopt the simple product norm, i.e., �(u, v) = uv. Note
that Ai,j could be an empty constraint, which is modeled by μ

(i)
j ≡ 1; this means

that the jth attribute xj does effectively not occur as part of the premise of the
rule (1).

Now, consider a TSK system consisting of C rules RS = {R1, . . . , RC}.
Given an instance x as an input, each rule Ri is supposed to “fire” with the
(activation) degree (2). Correspondingly, the output produced by the system is
defined in terms of a weighted average of the outputs produced by the individual
rules:

ŷ =
C∑
i=1

Ψi(x) · li(x), (3)

where

Ψi(x) =
μi(x)∑C
j=1 μj(x)

. (4)

Learning TSK Fuzzy Rules from Data Streams 563

3.2 Online Rule Induction

TSK-Streams learns rules incrementally, starting with a default rule. This rule
has an empty premise and covers the entire input space.

For each rule Ri, TSK-Streams continuously checks whether one of its exten-
sions may improve the performance of the current system. Here, expanding a rule
Ri means splitting it into two new rules, which are obtained by adding, respec-
tively, a new predicate (xj IS Ai,j) and (xj IS ¬Ai,j) as an additional antecedent.
Considering the current rule as the default, the former defines a specialization,
while the latter can be seen as what remains of this default. Ai,j is modeled in
terms of a fuzzy set with membership function μ

(i)
j,l , which is chosen from a fuzzy

partition {μj,1, . . . , μj,k} of the domain of feature xj (cf. Sect. 3.3 below), and
its negation ¬Ai,j is characterized by the membership function μ̄

(i)
j,l = 1 − μ

(i)
j,l .

We denote the corresponding expansions by Ri ⊕μ
(i)
j,l and Ri ⊕ μ̄

(i)
j,l , respectively.

We distinguish between features xj that are included by a positive literal
(xj ∈ μ

(i)
j,l) and those included by a negative literal (xj ∈ μ̄

(i)
j,l), collecting the

indices of the former in the index set I and those of the latter in Ī. In a single
rule, each attribute is only allowed to occur in a single positive literal. Negative
literals are allowed to be added as long as the conjunction of the constraints
on xj does not become too restrictive, thus suggesting a kind of inconsistency
(there is not a single value of xj satisfying the rule premise to a high degree).
Details of the rule expansion procedure in pseudocode are given in Algorithm1.

3.3 Online Discretization and Fuzzification

As a basis for rule expansion, TSK-Streams maintains a fuzzy partition for each
feature xj , i.e., a discretization of the domain of xj into a finite number of
(overlapping) fuzzy sets {μj,1, . . . , μj,k}.

The discretization process is based on the Partition Incremental Discretiza-
tion (PID) proposed by Gama and Pinto [13]. PID is a technique that builds
histograms on data streams in an adaptive manner. In a first layer, continuous
input values produced by the data stream are grouped into intervals. A sec-
ond layer then uses the intervals of the first layer to build histograms, using
either equal frequency or equal width binning. In this work, we extend the PID
approach as follows:

– Layer 1: This layer discretizes and summarizes the values observed for one
input feature into an intial set of intervals.

– Layer 2: This layer merges or splits intervals of the first layer, with the goal
to create intervals of equal frequencies.

– Layer 3: This layer transforms the second layer’s intervals, which are of the
form Xj,l = [b, c], into fuzzy sets μj,l. We employ fuzzy sets with a core [b, c],
in which the degree of membership is 1, and support [a, d] ⊃ [b, c]; outside the
support, the membership is 0. The boundary of the fuzzy set μj,l is modeled in
terms of a smooth “S-shaped” transition between full and zero membership:

564 A. Shaker et al.

Algorithm 1. GenerateExtendedRules
Input: R = (I, M, Ī, M̄ , ω):
I the index set of the features considered in the premise.
M the set of fuzzy sets conjugated in premise.
Ī the index set of the features negated in the premise.
M̄ the set of fuzzy sets whose negated form is conjugated in premise.
ω the vector of coefficients of the linear function.
P = {μi,j}: the set of all available fuzzy sets. μi,j is the jth fuzzy set on the ith
feature.
υ the overlapping threshold.
Result: S = {(R1, R2)}: Set of expanded rules

1 for i ∈ {1, . . . , d} \ I do
2 for μi,j ∈ P do
3 if i /∈ Ī then
4 R1 = (I ∪ {i}, M ∪ {μi,j}, Ī, M̄ , ω)
5 R2 = (I, M, Ī ∪ {i}, M̄ ∪ {μi,j}, ω})
6 S ∪ {(R1, R2)}
7 else
8 find mi. ∈ M
9 if μi,j ∩ mi. < υ then

10 R1 = (I ∪ {i}, M ∪ {μi,j}, Ī \ {i}, M̄ \ {mi.}, ω)
11 m′i. = mi. ∪ μi,j

12 R2 = (I, M, Ī, M̄ ∪ {m′i. ∪ μi,j} \ {mi.}, ω})
13 S ∪ {(R1, R2)}

μj,l(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < a

2
(

x−a
b−a

)2

if a ≤ x < (a + b)/2

1 − 2
(

x−b
b−a

)2

if (a + b)/2 ≤ x < b

1 if b ≤ x ≤ c

1 − 2
(

c−x
d−c

)2

if c < x ≤ (c + d)/2

2
(

d−x
d−c

)2

if (c + d)/2 < x ≤ d

0 if x > d

. (5)

For the fuzzy set μj,l associated with Xj,l, we set a = b − α · |Xj,l−1| and
d = c + α · |Xj,l+1|, where |Xj,l−1| and |Xj,l+1| denote, respectively, the lengths
of the left and right neighbor interval of Xj,l, and α ∈]0, 1[is an overlap degree.
For the leftmost (rightmost) interval of the partition, we set a = b (d = c).

3.4 Learning Rule Consequents

FLEXFIS fits linear functions in the consequent parts of the rules via recursive
weighted least squares estimation (RWLS) [19]. Since this approach requires

Learning TSK Fuzzy Rules from Data Streams 565

Algorithm 2. First Layer: Discretization
Input: x: newly observed value
k: the initial number of intervals
λ: exponential weighting factor, λ ∈ [0, 1]
Result: L1Intervals, L1Counts, L1Time: arrays for the produced intervals,

their counts and timestamps of the last update
1 if first call then
2 initialize L1Intervals with k intervals of equal width

3 sum =
∑

i L1Counts[i]
4 let t be the current time
5 let i be the index s.t x ∈ L1Intervals[i]
6 sum = sum ∗ λ + 1

7 L1Counts[i] = L1Counts[i] ∗ λt−L1Time[i] + 1
8 L1Time[i] = t
9 if (L1Counts[i]/sum) > threshold then

10 Split(L1Intervals[i], L1Counts[i])

multiple matrix inversions, it is computationally expensive. Therefore, inspired
by AMRules, we instead apply a gradient method to learn consequents more
efficiently.

Upon arrival of a new training instance (xt, yt), the squared error of the
prediction ŷt produced by TSK-Streams can be computed as follows:

Et = (yt − ŷt)2 =

⎛
⎝yt −

⎛
⎝ ∑

Ri∈RS

Ψi(xt)∑
Rk∈RS Ψk(xt)

d∑
j=0

ωi,jxt,j

⎞
⎠

⎞
⎠

2

(6)

Invoking the principle of stochastic gradient descent, the coefficients ωi,j are
then shifted into the negative direction of the gradient:

ω ← ω − η∇Et, (7)

where η is the learning rate. Component-wise, this yields the following update
rule:

ωi,j ← ωi,j − 2 η(yt − ŷt)

(∑
Ri∈RS

Ψi(xt)∑
Rk∈RS Ψk(xt)

xt,j

)
(8)

The process of updating the rule consequents is summarized in Algorithm4.

3.5 Adaptation of the Model Structure

As outlined above, TSK-Streams continuously adapts the rule system through
the adaptation of fuzzy sets used as rule antecedents and linear functions in the
rule consequents. While these are adaptations of the system’s parameters, the
decision to replace a rule by one of its expansions can be seen as a structural
change.

566 A. Shaker et al.

Algorithm 3. Second Layer: Histograms
Input:
L1Intervals, L1Counts: arrays for the Layer1’s intervals and their counts
k: number of intervals
Result: L2Intervals: the resulting intervals of the 2nd Layer

1 sum =
∑

i L1Intervals[i]
2 maxCap = sum/k
3 currentCap = 0
4 interval.min = L1Intervals[1].min
5 while i <= length(L1Intervals) do
6 while currentCap + L1Counts[i] < maxCap do
7 currentCap = currentCap + L1Counts[i]
8 interval.max = intervalsL1[i].max
9 i + +

10 newMax = L1Intervals[i].min + maxCap−currentCap
L1Counts[i]

.L1Intervals[i].width

11 interval.max = newMax
12 L2Intervals.add(interval)
13 L1Intervals[i].min = newMax

14 L1Counts[i] = L1Counts[i] − maxCap−currentCap
L1Counts[i]

15 interval.min = newMax
16 currentCap = 0

17 if length(L1Intervals) > 1.5K then
18 L1Intervals = L2Intervals
19 for i ∈ {1, . . . , k} do
20 L1Counts[i] = maxCap

Needless to say, structural changes should generally be handled with care,
especially when increasing the complexity of the model. Therefore, learning
methods typically stick to the current model until being sufficiently convinced
of a potential improvement through an expansion; to this end, the estimated
difference in performance needs to be significant in a statistical sense.

Similar to Hoeffding trees [8], AMRules [10], and FIMT-DD [15], we apply
Hoeffding’s inequality in order to support these decisions. The Hoeffding inequal-
ity probabilistically bounds the difference between the expected value E(X) of
a random variable X with support [a, b] ⊂ R and its empirical mean X̄ on an
i.i.d. sample of size n in terms of

P
(
|X̄ − E(X)| > ε

)
≤ exp

(
− 2nε2

(b − a)2

)
. (9)

More specifically, we decide to split a rule Ri, i.e., to replace the rule with
two rules Ri ⊕ μ

(i)
j,l and Ri ⊕ μ̄

(i)
j,l , by considering the reduction in the sum of

squared errors (SSE). To this end, the SSE of the current system (rule set RS) is
compared to the SSE of all alternative systems (RS\Ri) ∪ {Ri ⊕ μ

(i)
j,l , Ri ⊕ μ̄

(i)
j,l}.

Learning TSK Fuzzy Rules from Data Streams 567

Algorithm 4. UpdateConsequent
Input: RS = {(R, S)}: the set of all rules and their extensions
(xt, yt): the new instance to train on
/* A rule takes the form R = (I, M, Ī, M̄ , ω) */

/* A rule extension is S = {(R1, R2, SSE)}, where SSE is the sum of

squared errors committed by this extension */

1 m1 =
∑

Ri∈RS μi(xt)

2 m2 =
∑

Ri∈RS μi(xt)li(xt)

3 for Ri ∈ RS do
4 μi(xt) = �(

⊗
µ∈Mi

μ(xt),
⊗

µ∈M̄i
1 − μ(xt))

5 if μi(xt) > 0 then
6 for (R1, R2, SSE) ∈ Si do
7 μi1(xt) = �(

⊗
µ∈M1

μ(xt),
⊗

µ∈M̄1
1 − μ(xt))

8 μi2(xt) = �(
⊗

µ∈M2
μ(xt),

⊗
µ∈M̄2

1 − μ(xt))

9 m1′ = m1 − μi(xt) + μ1(xt) + μ2(xt)
10 m2′ = m2 − μi(xt)li(xt) + μ1(xt)l1(xt) + μ2(xt)l2

11 ω1 = ω1 + η(yt − m2′
m1′)

(
µ1(xt)
m1′ x

)

12 ω2 = ω2 + η(yt − m2′
m1′)

(
µ2(xt)
m1′ x

)

13 ωi = ωi + η(yt − m2
m1

)
(

µi(xt)
m1

x
)

Let SSEbest and SSE2ndbest denote, respectively, the expansion with the lowest
and the second lowest error. The best expansion is then adopted whenever

SSEbest

SSE2ndbest
< 1 − ε, (10)

or when ε becomes smaller than a tie-breaking constant τ . The constant ε is
derived from (9) by setting the probability to a desired degree of confidence
1 − δ, i.e., setting the righ-hand side to 1 − δ and solving for ε; noting that the
ratio (10) is bounded in]0, 1], b − a is set to 1.2 Refer to Algorithm 5 for details.

Instead of looking for a global improvement of the entire system, an alterna-
tive is to monitor the performance of individual rules and to base decisions about
rule expansion on this performance. In this case, Hoeffding’s bound is applied to
the sum of weighted squared errors (SWSE), where the weighted squared error
of a rule Ri on a training example (xt, yt) is given by

WSEt = Ψ(x)(yt − ŷt)2 =

(
μ(xt)∑

Rj∈RS μj(xt)

)
(yt − ŷt)2.

2 We are aware of theoretical issues caused by the use of the Hoeffding bound, the
assumptions of which are normally not all satisfied [23]. Yet, the bound is commonly
applied, in spite of these problems, and proved very useful in practice.

568 A. Shaker et al.

This error is then compared with the weighted error of the system in which the
rule is replaced by extensions Ri ⊕ μ

(i)
j,l and Ri ⊕ μ̄

(i)
j,l . The usefulness of such

extensions can be checked using the same kind of hypothesis testing as above.
To avoid an excessive increase in the number of rules, also coming with a dan-

ger of overfitting, we propose a penalization mechanism that consists of adding
a complexity term C to ε. For the global variant, we set C = 1−log(2)/ log(|RS|)√

d
,

where RS is the current set of rules and d the number of features. For the local
variant, we use C = 1−log(2)/ log(|I∪Īe|)√

d
when comparing the extensions of a rule

R = (I,M, Ī, M̄ ,ω).

Algorithm 5. ExpandSystem
Input: RS = {(R, S)}: the set of all rules and their extensions
δ: confidence level
τ : tie-breaking constant
n: number of examples seen so far by the current system
/* A rule takes the form R = (I, M, Ī, M̄ , ω) */

/* A rule extension is S = {(R1, R2, SSE)}, where SSE is the sum of

squared errors committed by this extension */

1 n = n + 1
2 let SSEcurrent be the sum of squared errors for the current system
3 let (R, S)best be the best performing extension with the lowest achieved sum of

squared errors SSEbest

/* Sbest = {(R1, R2, SSE)best} */

4 let (R, S)2ndbest be the second best performing extension with SSE2ndbest

/* S2ndbest = {(R1, R2, SSE)2ndbest} */

5 ε =

√
ln(1

δ)(R)2

2n

6 X = 1
n
(SSEbest/SSE2ndbest)

7 Y = 1
n
(SSEbest/SSEcurrent)

8 if ((Y + ε) < 1) AND ((X + ε) < 1 OR ε < τ) then
9 RS = RS \ {(R, S) : R = Rbest}

10 RS = RS ∪ {(Rbest,1, GenerateExtendedRules(Rbest,1)),
11 (Rbest,2, GenerateExtendedRules(Rbest,2))}
12 n = 0, SSEcurrent = 0
13 for R ∈ RS do
14 reinitialize R

3.6 Change Detection

To detect a drop in a rule’s performance, possibly caused by a concept drift,
we employ the adaptive windowing (ADWIN) [5] drift detection method. The
advantage of this technique, compared to the Page-Hinkely test (PH) [22] used by
AMRules, is that ADWIN is non-parametric (it makes no assumptions about the
observed random variable). Moreover, it has only one parameter δadwin, which

Learning TSK Fuzzy Rules from Data Streams 569

represents the tolerance towards false alarms. We apply this change detection
method locally in each rule on the absolute error committed by a rule on an
example, given that the example is covered by this rule.

Upon detecting a drift in the rule Rp = (Ip,Mp, Īp, M̄p,ωp), we find its
sibling rule Rq = (Iq,Mq, Īq, M̄q,ωq), from which it differs by only one single
literal, i.e., there is a fuzzy set μi,j that satisfies one of the following criteria:
(μi,j ∈ Mp) ∧ (i ∈ Ip) ∧ (μ̄i,j ∈ M̄q) ∧ (i ∈ Īq) or (μ̄i,j ∈ M̄p) ∧ (i ∈ Īp) ∧ (μi,j ∈
Mq) ∧ (i ∈ Iq). Removing the rule Rp can simply be achieved by removing it
from the rule set and accordingly updating its sibling Rq by either removing
(i, μi,j) from (Iq,Mq) or removing (i, μ̄i,j) from (Īq, M̄q), depending on which of
the previous criteria was satisfied. If the sibling rule Rq was already extended
before detecting the drift, one simply applies the same procedure to its children.

4 Empirical Evaluation

In this section, we conduct experiments in order to study the performance of
TSK-Streams in comparison to other algorithms. More precisely, we analyze
predictive accuracy and runtime of the algorithms, the size of the models they
produce, as well as their ability to recover in the presence of a concept drift.

4.1 Setup

Our proposed fuzzy learner, TSK-Streams, is implemented under the MOA3

(Massive Online Analysis) [7] framework, an open source software for mining
and analyzing large data sets in a stream-like manner.

In the following evaluations, we compare TSK-Streams with the three meth-
ods introduced before: AMRules, FIMTDD, and FLEXFIS. Both AMRules and
FIMTDD are implemented in MOA’s distribution, and we use them in their
default settings with δ = 0.01 and τ = 0.05 for the Hoeffding bound. Regarding
the parametrization of TSK-Streams, we use the same values δ, τ , so as to assure
maximal comparability with AMRules and FIMTDD. For the discretization, we
use the following parameters: the number of intervals k = 5, the overlapping
threshold υ = 0.2, the exponential weighting factor λ = 0.999, and the overlap-
ping degree α = 0.15. FLEXFIS is implemented in Matlab and offers a function
for finding optimal parameter values. We used this function to tune all param-
eters except the so-called “forgetting parameter”, for which we manually found
the value 0.999 to perform best.

All experiments are conducted using the test-then-train evaluation procedure;
this procedure uses each instance for both training and testing. First, the model
is evaluated on the instance, and then a single incremental learning step is carried
out.

3 http://moa.cms.waikato.ac.nz.

http://moa.cms.waikato.ac.nz

570 A. Shaker et al.

4.2 Results

In the first part of the evaluation, we preform experiments on standard synthetic
and real benchmark data sets collected from the UCI repository4 [18] and other
repositories5; Table 1 provides a summary of the type, the number of attributes
and instances of each data set.6 Table 2 shows the average RMSE and the cor-
responding standard error on ten rounds for each data set. In this table, the
winning approach on each data set is highlighted in bold font, and our app-
roach is marked with an asterisk whenever it outperforms the three competitors.
As can be seen, our fuzzy rule learner, both in its global and local variant, is
superior to the other methods in terms of generalization performance. In a pair-
wise comparison, the global variant of TSK-Streams outperforms AMRules and
FLEXFIS on 11 of the 14 data sets, and performs better than FIMTDD on 13;
the local variant outperforms AMRules, FLEXFIS, and FIMTDD on 8, 11, and
13 data sets, respectively. Using a Wilcoxon signed-rank test, the global variant
of our method thus outperforms AMRules, FLEXFIS, and FITDD with p-values
0.067, 0.041 and 0.0008, and the local variant outperforms FITDD with p-value
0.0008.

Table 1. Data sets

Name Synthetic Instances Attributes

1 2dplanes yes 40768 11

2 ailerons no 13750 41

3 bank8FM yes 8192 9

4 calHousing no 20640 8

5 elevators no 8752 19

6 fried yes 40769 11

7 house16H no 22784 16

8 house8L no 22784 8

9 kin8nm - 8192 9

10 mvnumeric yes 40768 10

11 pol no 15000 49

12 puma32H yes 8192 32

13 puma8NH yes 8192 9

14 ratingssweetrs - 17903 2

4 http://archive.ics.uci.edu/ml/.
5 https://github.com/renatopp/arff-datasets/tree/master/regression, http://tunedit.

org/repo/UCI/numeric.
6 These are the same data sets as those used in the AMRules paper [1].

http://archive.ics.uci.edu/ml/
https://github.com/renatopp/arff-datasets/tree/master/regression
http://tunedit.org/repo/UCI/numeric
http://tunedit.org/repo/UCI/numeric

Learning TSK Fuzzy Rules from Data Streams 571

Table 2. Performance of the algorithms in terms of RMSE.

AMRules FIMTDD FLEXFIS TSK-streams

(global)

TSK-streams

(local)

2dplanes 1.40E+00(0) 2.67E+00(0) 2.39E+00(0) 1.04E+00∗(0) 1.05E+00∗(0)
ailerons 5.83E−04(0) 8.00E−04(0) 1.91E−04(0) 1.81E−04∗(0) 1.77E−04∗(0)
bank8FM 3.81E−02(0) 1.25E−01(0) 3.64E−02(0) 4.44E−02(0) 4.29E−02(0)

calhousing 7.00E+04(97) 8.44E+04(121) 6.72E+04(71) 7.28E+04(90.8) 7.26E+04(10.3)

elevators 5.80E−03(0) 7.94E−03(0) 3.64E−03(0) 3.79E−03(0) 3.42E−03∗(0)
fried 2.43E+00(0) 3.55E+00(0.02) 2.64E+00(0) 2.33E+00∗(0.01) 2.29E+00∗(0)
house16h 4.74E+04(427) 5.39E+04(435) 4.84E+04(15) 4.46E+04∗(104) 4.44E+04∗(52.3)
house8 4.07E+04(118) 4.67E+04(97.8) 4.04E+04(249) 4.02E+04∗(142) 4.13E+04(106)

kin8nm 2.05E−01(0) 2.84E−01(0) 2.02E−01(0) 1.96E−01∗(0) 1.96E−01∗(0)
mvnumeric 2.73E+00(0.02) 4.91E+00(0.01) 3.35E+00(0.05) 1.03E+00∗(0.01) 9.19E−01∗(0.01)
pol 1.96E+01(0.17) 3.40E+01(0.24) 5.87E+01(0.23) 1.90E+01∗(0.11) 2.02E+01(0.11)

puma32H 2.17E−02(0) 4.81E−02(0) 2.98E−02(0) 1.89E−02∗(0) 1.86E−02∗(0)
puma8NH 4.18E+00(0.01) 6.30E+00(0) 4.47E+00(0) 4.07E+00∗(0.01) 4.27E+00(0)

sweetrs 1.54E+00(0) 1.53E+00(0) 1.61E+00(0) 1.60E+00(0) 1.61E+00(0)

Average rank 2.85 4.64 3.28 2.14 2.07

Table 3. Performance of the algorithms in terms of the runtime and model size.

AMRules FIMTDD FLEXFIS TSK-Streams

(global)

TSK-Streams

(local)

Execution time in seconds

2dplanes 4.80 (0) 0.621 (0) 54.2 (0.13) 5.25 (0.03) 4.49 (0.02)

ailerons 3.23 (0) 0.814 (0) 28.6 (0.04) 18.7 (0.50) 16.3 (0.28)

bank8FM 1.70 (0) 0.321 (0) 14.5 (0.17) 0.829 (0) 1.05 (0)

calhousing 2.93 (0.01) 0.501 (0) 30.8 (0.79) 2.05 (0.01) 1.85 (0.01)

elevators 2.89 (0) 0.544 (0) 25.0 (0.03) 6.64 (0.20) 5.81 (0.03)

fried 4.85 (0.01) 1.13 (0) 56.6 (1.42) 6.54 (0.05) 8.18 (0.12)

house16h 3.67 (0) 0.881 (0) 33.4 (0.74) 9.05 (0.22) 6.05 (0.04)

house8 3.19 (0.01) 0.614 (0) 40.4 (2.35) 2.77 (0.04) 3.23 (0.02)

kin8nm 1.60 (0) 0.318 (0) 15.9 (0.36) 0.854 (0) 1.12 (0)

mvnumeric 5.04 (0) 0.885 (0) 89.4 (5.9) 7.24 (0.12) 13.3 (0.24)

pol 3.51 (0) 0.860 (0) 37.3 (0.39) 75.6 (1.2) 49.7 (0.65)

puma32H 2.47 (0) 0.724 (0) 19.8 (0.07) 8.08 (0.08) 8.89 (0.17)

puma8NH 1.63 (0) 0.308 (0) 21.0 (3.13) 0.745 (0) 1.04 (0)

sweetrs 2.35 (0.01) 0.338 (0) 45.5 (10.3) 0.384 (0) 0.819 (0.01)

Average rank 2.85 1 4.85 3.07 3.21

Model size

2dplanes 31.9 (0.19) 140.9 (0.23) 1 (0) 3 (0) 2 (0)

ailerons 5.4 (0.05) 24 (0.25) 1 (0) 3.3 (0.04) 3.1 (0.06)

bank8FM 8.1 (0.10) 26.8 (0.16) 1 (0) 2.9 (0.02) 2 (0)

calhousing 10 (0.06) 64.5 (0.26) 1.7 (0.12) 3 (0) 1.1 (0.02)

elevators 5.1 (0.02) 40.4 (0.39) 1 (0) 3.4 (0.04) 2.1 (0.02)

fried 18.1 (0.12) 119.6 (0.46) 1.6 (0.25) 3.6 (0.05) 3.2 (0.11)

house16h 6 (0.03) 64.9 (0.40) 1 (0) 5.1 (0.13) 2.1 (0.02)

house8 6.4 (0.05) 71.8 (0.29) 3.1 (0.67) 4.8 (0.11) 2.2 (0.03)

kin8nm 4.9 (0.02) 24 (0.22) 1.6 (0.22) 3 (0) 2 (0)

mvnumeric 24.5 (0.17) 130.2 (0.34) 3.6 (0.47) 6.1 (0.10) 6.5 (0.09)

pol 7.8 (0.08) 43 (0.28) 1 (0) 4.8 (0.06) 4.1 (0.07)

puma32H 11.1 (0.12) 28.3 (0.11) 1 (0) 3.3 (0.04) 3.9 (0.10)

puma8NH 6.7 (0.09) 28.1 (0.17) 1.1 (0.08) 3.1 (0.02) 2.2 (0.03)

sweetrs 9.9 (0.06) 63.2 (0.31) 7.8 (4.20) 3 (0) 2 (0)

572 A. Shaker et al.

0 10000 20000 30000 40000 500000.
0

1.
0

AMRules

R
M
SE

0 10000 20000 30000 40000 500000.
0

1.
0

FIMTDD

R
M
SE

0 10000 20000 30000 40000 500000.
0

1.
0

FLEXFIS

R
M
SE

0 10000 20000 30000 40000 500000.
0

1.
0

TSK−Streams (global)

R
M
SE

stream1 stream2 stream1==>stream2

Fig. 1. Performance curves (RMSE, averaged over ten runs) on the distance to hyper-
plane data, with a drift from squared (red curve) to the cubed distance (green curve)
in the middle of the episode. The recovery curve is plotted in blue. Ideally, this curve
quickly reaches the performance level of the second stream (green curve). (Color figure
online)

Table 3 shows the performance in terms of runtime and model size. TSK-
Streams often remains a bit slower than AMRules and FIMTDD. At the same
time, however, it is significantly faster than FLEXFIS, reducing runtime by a
factor of around 10. Regarding the model size, we report the number of rules
(leaves for FITDD) just to give an indicator of model complexity and without
implying specific claims.

In the second part of the evaluation, we study the ability of our approach
to recover from a performance drop in the presence of a concept drift. To this
end, we make use of so-called recovery analysis as introduced in [24]. Recovery
analysis aims at assessing a learner’s ability to maintain its generalization per-
formance in the presence of concept drift; it provides an idea of how quickly
a drift is recognized, to what extent it affects the prediction performance, and

Learning TSK Fuzzy Rules from Data Streams 573

how quickly the learner manages to adapt its model to the new condition. The
main idea of recovery analysis is to employ three streams in parallel, two “pure
streams” and one “mixture”, instead of using a single data stream. The mixture
stream resembles the first pure stream at the beginning and the second stream
at the end, thus it contains a concept drift as a result of modeling the sampling
probability as a sigmoidal function. Due to lack of space, we refer the reader to
[24] for details of the methodology.

In general, we find that TSK-Streams recovers quite well in comparison to
the other methods. As an illustration, we plot the recovery curves (blue lines)
for the distance to hyperplane data set in Fig. 1. As can be seen, FLEXFIS
exhibits a relatively large drop in performance. FIMTDD does not even manage
to recover completely till the end of the stream. Compared to this, TSK-Streams
and AMRules recover quite well.

5 Conclusion

In this paper, we proposed TSK-Streams, an evolving fuzzy rule learner for
regression that meets the requirements of incremental and adaptive learning
on data streams. Our method combines the expressivity and flexibility of TSK
fuzzy rules with the efficiency and effectivity of concepts for rule induction as
implemented in algorithms such as AMRules.

In an experimental study, we compared TSK-Streams with AMRules,
FIMTDD, and FLEXFIS, the state-of-the-art regression algorithms for learn-
ing from data streams, on real and synthetic data. The results we obtained show
that our learner compares very favorably and achieves superior performance.
Moreover, it manages to adapt and recover well after a concept drift.

In future work, we plan to elaborate on extensions and variants of TSK-Rules
that may lead to further improvements in performance. These developments will
be accompanied by additional experiments and case studies.

Acknowledgments. This work was supported by the Competence Center for Cyber
Physical Systems (CPS.HUB NRW).

References

1. Almeida, E., Ferreira, C., Gama, J.: Adaptive model rules from data streams. In:
Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8188, pp. 480–492. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40988-2 31

2. Angelov, P.P.: Evolving Rule-based Models: A Tool for Design of Flexible Adaptive
Systems. Springer, London (2002). https://doi.org/10.1007/978-3-7908-1794-2

3. Angelov, P.P.: Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+).
In: Angelov, P.P., Filev, D.P., Kasabov, N. (eds.) Evolving Intelligent Systems:
Methodology and Applications. Wiley, Hoboken (2010)

4. Angelov, P.P., Filev, D.P., Kasabov, N. (eds.): Evolving Intelligent Systems:
Methodology and Applications. Wiley, Hoboken (2010)

https://doi.org/10.1007/978-3-642-40988-2_31
https://doi.org/10.1007/978-3-642-40988-2_31
https://doi.org/10.1007/978-3-7908-1794-2

574 A. Shaker et al.

5. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of 7th SIAM International Conference on Data Mining, Minneapo-
lis, MN, USA, pp. 443–448 (2007)

6. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: Proceed-
ings of IDA 2009, 8th International Symposium on Intelligent Data Analysis, Lyon,
France, pp. 249–260 (2009)

7. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

8. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of
6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Boston, MA, USA, pp. 71–80 (2000)

9. Domingos, P., Hulten, G.: A general framework for mining massive data streams.
J. Comput. Graph. Stat. 12(4), 945–949 (2003)

10. Duarte, J., Gama, J., Bifet, A.: Adaptive model rules from high-speed data streams.
ACM Trans. Knowl. Discov. Data 10(3), 30:1–30:22 (2016)

11. Gama, J.: A survey on learning from data streams: current and future trends. Prog.
Artif. Intell. 1(1), 45–55 (2012)

12. Gama, J., Kosina, P.: Learning decision rules from data streams. In: Proceedings
of 22nd International Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain (2011)

13. Gama, J., Pinto, C.: Discretization from data streams: applications to histograms
and data mining. In: Proceedings of 2006 ACM Symposium on Applied Computing,
Dijon, France, pp. 662–667 (2006)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

15. Ikonomovska, E., Gama, J., Dzeroski, S.: Learning model trees from evolving data
streams. Data Min. Knowl. Discov. 23(1), 128–168 (2011)

16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publish-
ers, Dordrecht (2000)

17. Kosina, P., Gama, J.: Handling time changing data with adaptive very fast decision
rules. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS
(LNAI), vol. 7523, pp. 827–842. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33460-3 58

18. Lichman, M.: UCI machine learning repository (2013)
19. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR,

Upper Saddle River (1999)
20. Lughofer, E.: FLEXFIS: a robust incremental learning approach for evolving

Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 16(6), 1393–1410 (2008)
21. Lughofer, E.: Evolving Fuzzy Systems: Methodologies, Advanced Concepts and

Applications. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-18087-3
22. Page, E.S.: Continuous inspection schemes. Biometrika 41(1–2), 100–115 (1954)
23. Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining

data streams based on the McDiarmid’s bound. IEEE Trans. Knowl. Data Eng.
25(6), 1272–1279 (2013)

24. Shaker, A., Hüllermeier, E.: Recovery analysis for adaptive learning from non-
stationary data streams: experimental design and case study. Neurocomputing 141,
97–109 (2014)

25. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

https://doi.org/10.1007/978-3-642-33460-3_58
https://doi.org/10.1007/978-3-642-33460-3_58
https://doi.org/10.1007/978-3-642-18087-3

	Learning TSK Fuzzy Rules from Data Streams
	1 Introduction
	2 Related Work
	3 The TSK-Streams Learning Algorithm
	3.1 TSK Fuzzy Systems
	3.2 Online Rule Induction
	3.3 Online Discretization and Fuzzification
	3.4 Learning Rule Consequents
	3.5 Adaptation of the Model Structure
	3.6 Change Detection

	4 Empirical Evaluation
	4.1 Setup
	4.2 Results

	5 Conclusion
	References

