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Abstract. This paper investigates the problem of highly imbalanced
time-series classification using shapelets, short patterns that best charac-
terize the target time-series, which are highly discriminative. The current
state-of-the-art approach learns generalized shapelets along with weights
of the classification hyperplane via a classical cost-insensitive loss func-
tion. Cost-insensitive loss functions tend to treat different misclassifica-
tion errors equally and thus, models are usually biased towards exam-
ples of majority class. The rare class (which will be referred to as positive
class) is usually the important class and a false negative is always costlier
than a false positive. Traditional 0–1 loss functions fail to differentiate
between these two types of misclassification errors. In this paper, the gen-
eralized shapelets learning framework is extended and a cost-sensitive
learning model is proposed. Instead of incorporating the misclassifica-
tion cost as a prior knowledge, as was done by other published methods,
we formulate a constrained optimization problem to learn the unknown
misclassification costs along with the shapelets and their weights. First,
we demonstrated the effectiveness of the proposed method on two case
studies, with the objective to detect true alarms from life threatening
cardiac arrhythmia dataset from Physionets MIMIC II repository. The
results show improved true alarm detection rates over the current state-
of-the-art method. Next, we compared to the state-of-the-art learning
shapelet method on 16 balanced dataset from UCR time-series reposi-
tory. The results show evidence that the proposed method outperforms
the state-of-the-art method. Finally, we performed extensive experiments
across additional 18 imbalanced time-series datasets. The results provide
evidence that the proposed method achieves comparable results with
the state-of-the-art sampling/non-sampling based approaches for highly
imbalanced time-series datasets. However, our method is highly inter-
pretable which is an advantage over many other methods.
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1 Introduction

Research on time-series classification has garnered importance among practition-
ers in the data mining community. A major reason behind the ever increasing
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interest among data-miners is the plethora of time-series data available from
a wide range of real-life domains. Temporal ordered data from areas such as
financial forecasting, medical diagnosis, weather prediction etc. provide classifi-
cation challenges more akin to real-world scenarios. Thus, building more robust
time-series classification models is imperative.

One of the key sources of performance degradation in the field of time-series
classification is the class imbalance problem [18] where the minority class (we call
it the positive class) is outnumbered by abundant negative class instances. Mod-
els built using standard classification algorithms on such imbalanced datasets,
which generally have minimum classification error as a criterion for classifier
design often, are biased towards the majority class; and therefore, have higher
misclassification error for the minority class examples. Moreover, in real-world
scenarios such as object detection, medical diagnosis etc., the positive class is
usually the more important class and false negatives are always costlier than false
positives. Traditional 0–1 loss function classifiers fail to differentiate between
these two types of errors and final outcomes are naturally biased towards the
abundant negative class. Thus, a cost-sensitive classifier is preferred when dealing
with datasets where examples from different classes carry different misclassifica-
tion costs.

Recently, in the realm of time-series classification, Grabocka et al. [10] pro-
posed a novel framework known as Learning Time-series Shapelets (LTS) to
directly learn generalized short time-series subsequences known as shapelets [23]
along with weights of a classifier hyperplane to differentiate temporal instances
in a binary classification framework. Shapelets are local discriminative patterns
(or subsequences) that can be used to characterize the target class, for determin-
ing the time-series class membership. Shapelets have been proven to have high
predictive powers as they provide local variation information within the time-
series as well as high interpretability of predictions due to easier visualizations.
LTS formulates an optimization problem where a cost-insensitive 0–1 logistic
loss function is minimized in order to learn generalized shapelets. The minimum
Euclidean distances of the learned shapelets to the time-series can be used to
linearly separate the time-series examples from different classes.

However, LTS uses cost-insensitive loss function that treats false positive and
false negative errors equally, which limits its applicability on balanced datasets.
In this paper, we propose a cost-sensitive time-series classification framework
(henceforth known as CS-LTS) by extending the LTS model. A cost-sensitive
logistic loss function is minimized to enhance the modeling capability of LTS.
The cost-sensitive logistic loss function uses variable misclassification costs for
false positive and false negative errors. Generally, these misclassification cost
values are available from the cost matrix provided by domain experts which
is often a cumbersome procedure. Instead of using fixed cost parameters, this
paper learns the variable misclassification costs from the training data via a
constrained optimization problem. Thus, the main contribution of this paper is
summarized as the following.
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1. The proposed method learns the misclassification costs from the training
data thus nullifying the need for predetermination of cost values for mis-
classification errors. To the best of our knowledge, the proposed model is the
first algorithmic approach to solve highly imbalanced time-series classification
problem.

2. A constrained optimization problem is proposed which jointly learns shapelets
(highly interpretable patterns), their weights, and most importantly misclas-
sification costs, while other cost-sensitive approaches mainly consider mis-
classification costs are given a priori.

3. The effectiveness of the method is demonstrated on life-threatening cardiac
arrhythmia dataset from Physionets MIMIC II repository showing improved
true alarm detection rates over the current state-of-the-art method for false
alarm suppression.

4. Finally, the method is evaluated extensively on 34 real-world time series
datasets with varied degree of imbalances and compared to a large set of
baseline methods previously proposed in the realm of imbalance time-series
classification problems.

In Fig. 1(a), we show all time series examples for the blue and red classes.
The blue class has only 3 time series, while the red class has 10 time series. Since
LTS does not handle imbalance dataset, the learned hyperplane is very biased.
This is clear from Fig. 1(b) that shows the distance between the two learned
shapelets using LTS and the training time series. CS-LTS learns a hyperplane
that is aware about the imbalance in the data, as shown in Fig. 1(c).
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Fig. 1. An illustration of the proposed CS-LTS model (c) compared to LTS (b) using
2 shapelets learned on an imbalanced version of BirdChicken dataset (a). (Color figure
online)

Next, we present a short literature review for time-series classification using
shapelets and cost-sensitive time-series classification.

2 Related Work

Time-Series Classification via Shapelets. In the field of time-series classifi-
cation, the concept of shapelets have received a lot of attention [8,10,16,23,24].
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Shapelets are local discriminative patterns (or subsequences) that characterize
the target class and maximally discriminate instances of time-series from various
classes. Discovering the most discriminative subsequences is crucial for the suc-
cess of time-series classification using shapelets. The primary approach, based
on search-based techniques, proposed by Ye and Keogh [23], exhaustively search
for all possible subsequences and a decision tree was constructed based on infor-
mation gain criterion. The information gain accuracy was ranked based on the
minimum distance of the candidate subsequences to the entire time-series train-
ing set. Hills et al. [15] perceived this minimum distance of the set of shapelets to
a time-series dataset as a data transformation to a shapelet-transformed space
where standard classifiers could be used to achieve high classification accuracy
using the shapelet-transformed data as predictors. Recently, Grabocka et al. [10]
proposed a novel framework known as Learning Time-series Shapelets (LTS)
to jointly learn generalized shapelets along with weights of a logistic regres-
sion model using the minimum Euclidean distances of shapelets to time-series
dataset as predictors. The method discovered optimal shapelets and reported
statistically significant improvements in accuracy compared to other shapelet-
based time-series classification models. However, a major drawback is low true
positive rate in case of highly imbalanced time-series datasets. The logistic loss
used in the LTS framework is a cost-insensitive loss function which treats false
positive and false negative misclassifications errors equally. Classification models
built using such loss functions suffer from the class imbalance problem.

Cost-Sensitive Classification. Classification techniques for handling imbal-
anced data-sets can broadly be divided into two kinds of approaches, data-
level approaches [2–5,12,13,17] and algorithmic-level [22] approaches. Data-level
methods are sampling techniques that act as a pre-processing steps prior to the
learning algorithm to balance the imbalanced datasets either through oversam-
pling of the minority class or under sampling of the majority class or combination
of both. Algorithmic-level approaches directly manipulate the learning algorithm
by incorporating a predefined misclassification cost for each class to the loss func-
tion. These methods have reported excellent performance with good theoretical
guarantees [14]; however, predetermination of optimal class misclassification cost
or data-space weighting is required which can vary on a case-by-case basis among
different datasets and also require domain expertise.

In this paper, an algorithmic approach is followed to directly manipulate
the learning procedure by minimizing a cost-sensitive logistic loss function. An
additive asymmetric learning function is fitted to the training data. In addition
to learning the shapelets and weight parameters of the classification hyperplane,
the cost parameters are also estimated from the training data. A constrained
optimization problem is formulated that is optimized to jointly learn shapelets,
weights of the classification hyperplane and misclassification cost parameters
nullifying the need for predetermination of cost values for misclassification errors.
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3 Model Description

Preliminaries: A binary class time-series dataset composed of I training exam-
ples denoted as T ∈ R

I×Q is considered where, each Ti (1 ≤ i ≤ I) is of length
Q and the label for each time-series instance is a nominal variable Y ∈ {0, 1}I .
Candidate shapelets are segments of length L from a time-series starting from
j-th time point inside the ith time-series. The objective is to learn k shapelets
S, each of length L, that are most discriminative in order to characterize the
target class. The shapelets are denoted as S ∈ R

K×L.
The minimum distance Mi,k between the ith series Ti and the kth shapelet

Sk is the distance between the segment and time-series. This is defined as

Mi,k = min
j=1,...,J

1
L

L∑

l=1

(Ti,j+l−1 − Sk,l)2 (1)

Given a set of I time-series training examples and K shapelets, a shapelet-
transformed matrix [15] M ∈ R

I×K can be constructed which is composed of
minimum distances Mi,k between the ith series Ti and the kth shapelet Sk. The
minimum distance M matrix is a representation in the shapelet transformed
space and acts as predictors for each target time-series. However, the function in
Eq. (3) is not continuous and thus non-differentiable. Grabocka et al. [10] defined
a soft-minimum function (shown in Eq. (2)), which is an approximation for Mi,k.

Mi,k ≈ M̂i,k =

∑J
j=1 Di,k,j exp(αDi,k,j)
∑J

j=1 exp(αDi,k,j)
(2)

where Di,k,j is defined as the distance between the jth segment of series i and
the kth shapelet given by the formula

Di,k,j =
1
L

L∑

l=1

(Ti,j+l−1 − Sk,l)2 (3)

Learning Model: A linear learning model (shown in Eq. (4)) was proposed by
[10] using the minimum distances M as predictors in the transformed shapelet
space.

Ŷi = W0 +
K∑

k=1

Mi,kWk ∀i ∈ {1, . . . , I} (4)

The learning function (Eq. (4)) is extended by incorporating CFN and CFP for
false negative and false positive misclassifications cost respectively. The new
asymmetric learning model is defined as Eq. (5).

Zi =
1

CFN + CFP
ln

σ(Ŷ )CFN

1 − σ(Ŷ )CFP

=
1

CFN + CFP
(Ŷ + ln

CFN

CFP
) (5)
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σ() is the logistic function and σ(Ŷ ) represents the posterior probability of
P (Y = 1 |X).

Additionally, a cost-sensitive loss function (Eq. (6)) is proposed which is a
differential cost-weighted logistic loss between the actual targets Y and the esti-
mated targets Z.

L(Y,Z) = −Y lnσ(CFNZ) − (1 − Y )ln(1 − σ(CFP Z)) (6)

A regularized cost-sensitive logistic loss function defined by Eq. (7) is the regu-
larized objective function denoted by F .

argmin
S,W,C

F(S,W,C) = argmin
S,W,C

I∑

i=1

L(Yi, Zi) + λW ‖W‖2 (7)

where C ∈ {CFN , CFP }. The problem is formulated as a constrained optimiza-
tion problem since the misclassification costs should always be positive. The
misclassification cost denotes the loss incurred when a wrong prediction occurs.
The constraints ensure both costs are positive and also the fact that cost of false
negative is at least θ times greater than cost of false positive. These conditions
ensure the loss function to be penalized more in the event of an error in the
positive class than an error in the negative class.

argmin
S,W,C

F(S,W,C)

subject to CFN > 0, CFP > 0
CFN > θCFP

(8)

Similar to [10], a Stochastic gradient descent (henceforth SGD) approach is
adopted to solve the optimization problem. The SGD algorithm optimizes the
parameters to minimize the loss function by updating through per instance of the
training data. Thus, the per-instance decomposed objective function Fi (denoted
by Eq. (9)) shows the division of Eq. (7) into per-instance losses for each time-
series.

Fi = L(Yi, Zi) +
λW

I

K∑

k=1

W 2
k (9)

The objective of the learning algorithm is to learn the optimal shapelet Sk,
the weights W for the hyperplane and the misclassification costs C which mini-
mizes the loss function (Eq. (7)).

The SGD algorithm requires definitions of gradients of the objective function
with respect to shapelets, hyperplane weights and misclassification costs. Eq. (10)
shows the point gradient of objective function for the ith time-series with respect
to shapelet Sk.

∂Fi

∂Sk,l
=

∂L(Yi, Zi)
∂Zi

∂Zi

∂Ŷi

∂Ŷi

∂M̂i,k

J∑

j=1

∂M̂i,k

∂Di,k,j

∂Di,k,j

∂Sk,l
(10)
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Furthermore, the gradient of the cost-sensitive loss function with respect to
the learning function Zi is defined in Eq. (11). Also the gradient of the cost-
sensitive learning function with respect to the estimated target variable Ŷi is
shown in Eq. (12)

∂L(Yi, Zi)
∂Zi

= (1 − Yi)σ(CFP Zi)CFP − Yi(1 − σ(CFNZi))CFN (11)

∂Zi

∂Ŷi

=
1

CFN + CFP
(12)

Equation (13) shows the gradient of the estimated target variable with respect
to the minimum distance. The gradient of the over all minimum distance with
respect to the segment distance and the gradient of the segment distance with
respect to a shapelet point is defined by Eqs. (14) and (15) respectively.

∂Ŷi

∂M̂i,k

= Wk (13)

∂M̂i,k

∂Di,k,j
=

exp(αDi,k,j(1 + α(Di,k,j − M̂i,k))
∑J

j=1 exp (αDi,k,j)
(14)

∂Di,k,j

∂Sk,l
=

2
L

(Sk,l − Ti,j+l−1) (15)

The hyperplane weights W are learned by minimizing the objective function
7 via SGD. The gradients for updating the weights Wk is shown in Eqs. (16) and
(17) shows the gradient for update of the bias term W0.

∂Fi

∂Wk
=

∂L(Yi, Zi)
∂Zi

∂Zi

∂Ŷi

M̂i,k +
2λW

I
Wk (16)

∂Fi

∂W0
=

∂L(Yi, Zi)
∂Zi

∂Zi

∂Ŷi

(17)

The learning procedure for estimating the misclassification cost values in the
proposed framework is a constrained optimization problem because we need to
guarantee that CFN > 0, CFP > 0 and CFN > θCFP , where θ ∈ Z. How-
ever, Stochastic Gradient Descent algorithm can only be applied to solve uncon-
strained optimization problems. Thus, we convert the constrained optimization
into an unconstrained optimization similar to [19] and apply SGD algorithm to
solve the optimization problem for learning the optimal misclassification costs.

CFN = θCFP + D (18)

The false negative misclassification cost (CFN ) is first written in terms of
false positive misclassification cost as shown in Eq. (18) and replaced in Eq. (6)
changing the optimization problem to Eq. (19).



502 S. Roychoudhury et al.

Algorithm 1. Cost-sensitive learning time-series shapelets
1: procedure CS-LTS
2: Input: T ∈ RI×Q, Number of shapelets K, length of a shapelet L, Regularization

parameter λW , Learning rate η, maxIter
3: Initialize: Shapelets S ∈ R

K×L, classification hyperplane weights W ∈ R
K , Bias

W0 ∈ R, Misclassification cost CFP ∈ R, θ ∈ Z, D ∈ R

4: for iterations = N
maxIter
1 do

5: for i = 1, ..., I do
6: for k = 1, ..., K do
7: W new

k ← W old
k − η ∂Fi

∂Wk

8: for l = 1, ..., L do
9: Snew

k,l ← Sold
k,l − η ∂Fi

∂Sk,l

10: W new
0 ← W old

0 − η ∂Fi
∂W0

11: log Cnew
FP ← log Cold

FP − η ∂Fi
∂ log CFP

12: Dnew ← Dold − η ∂Fi
∂D

Return S, W, W0, CFP

argmin
S,W,CFP ,D

F(S,W,CFP ,D)

subject to CFP > 0
(19)

D is a regularization term for the misclassification cost. The objective function
is then minimized with respect to log CFP instead of CFP . As a result, the new
optimization problem becomes unconstrained. Derivatives of objective function
with respect to log CFP and D in gradient descent are computed as:

∂Fi

∂ log cFP
= cFP

∂L(Yi, Zi)
∂cFP

(20)

∂L(Yi, Zi)
∂cFP

=
∂L(Yi, Zi)

∂Zi

∂Zi

∂cFP
(21)

∂L(Yi, Zi)
∂D =

∂L(Yi, Zi)
∂Zi

∂Zi

∂D (22)

The steps of the proposed cost-sensitive time-series classification method (CS-
LTS, henceforth) are shown in Algorithm1. The pseudocode shows that the
procedure updates all K shapelets and the weights W , W0, false positive cost
CFP and parameter D by a learning rate η.

4 Experimental Evaluation

In this section, we evaluate the effectiveness of the proposed method on different
setting represented by different datasets. The objective function in Eq. (7) is a
non-convex function with respect to parameters and solving it via SGD requires
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a good initialization of the parameters. The initialization step is very important
in this scenario as it influences whether the optimization reaches the region of
global minimum.

Model Parameter Initializations: Shapelets were initialized using K-means
centroids of all segments similar to [10]. First we set the minimum length (Lmin)
of a shapelet to be 10% of the length of the time-series examples. Then the total
number of shapelets was computed as Lmin multiplied by number of training
time series. The number of shapelets used as input for the optimization func-
tion was determined using K = log(total number of segments). Three scales
{Lmin, 2 × Lmin, 3 × Lmin} of subsequence lengths were investigated.

The weight parameters Wk and W0 were initialized randomly around 0. CFP

was initially set to 1. The values for θ and initial value of D were determined
through a grid search approach using internal cross-validations over the training
data. The values for θ were searched from the set {1, 5, 10, 25, 50, 100} and the
initial values for D was chosen from {0.001, 0.01, 0.1, 10, 100, 1000}. The best
parameter value was identified via internal cross-validation on training data.
Once the best parameter value was identified, the methods were trained on the
entire training set using the best chosen parameters, and the learned model was
tested on the test set which was completely separate from the training procedure.
The learning rate η was initialized to a small value of 0.01. The maxIter for the
optimization was set to 5000 iterations.

Evaluation Measures: We report Fβ score for β ∈ {1, 2, 3} since this is a
commonly used performance metric for imbalanced learning. These are simple
functions of the precision and recall. The traditional F-score or F1 score is the
harmonic mean of precision and recall that is considered a balanced measure
between precision and recall. For β > 1 the evaluation metric rewards higher
true positive rates. We also consider the sensitivity and specificity evaluation
metrics, as the objective is to achieve lower false negative with minimum increase
in false positive rates.

4.1 Cost Sensitive Cardiac Arrhythmia Alarms Detection

In this set of experiments, we demonstrate the effectiveness of the proposed
method on two cost-sensitive applications from PhysioNets MIMIC II version 3
repository [9,21]. The objective is to detect true alarms while suppressing false
alarms, where missing true alarms (positive class) is more severe than miss-
ing false alarms (negative class), since missing true alarm could lead to serious
consequences and risk patients’ lives.

The database is a multi-parameter ICU repository containing patients’
records of up to eight signals from bedside monitors in Intensive Care Units
(ICU). The extracted datasets contain human-annotated true and false cardiac
arrhythmia alarms. We extracted a subset of patients’ records that contained
signal from lead ECG II, because it was identified as the sensor that contained
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the least number of missing values across the patients. For each alarm event, a
20-s window prior to the alarm event was extracted similar to [20].

We partition the dataset into four distinct cross-validation datasets, where
we train the model on 3 folds and test on the fourth one. In addition to the cross
validation experiment, we repeat the entire process of cross-validation for 10
independent trials (each trial has 4 distinct partitions on true alarm instances)
which results in 40 different combination of training data. The mean and stan-
dard deviation of the evaluation metrics is then reported.

The two datasets selected are VTACH and CHALLENGE. VTACH con-
sists of true and false Ventricular Tachycardia alarms from the ICU patients.
CHALLENGE dataset is a mixture of different true and false arrhythmia alarms.
The alarms categories are Asystole, Extreme Bradycardia, Extreme Tachycar-
dia, Ventricular Tachycardia and Ventricular Flutter/Fibrillation. This dataset
was presented at a competition in 2015 organized by PhysioNet to encourage
the development of algorithms to reduce the incidence of false alarms in the
Intensive Care Unit (ICU).

Achieving high true alarm detection rate (TAD) or high sensitivity is impor-
tant when suppressing high false alarm rates from bedside monitors in ICU.
High false alarm rates cause desensitization among care providers, thus risking
patients’ lives [7]. The objective of the prediction task is to provide high false
alarms suppression (FAS) rates (achieve high specificity) while keeping TAD
(sensitivity) high. In the two datasets, (Fig. 2) CS-LTS (circle) achieves higher
TAD (Y-axis) than LTS (diamond) and the current state-of-the-art baseline
BEHAR [1] (star) in the field of critical alarm detection. FAS (X-axis) is bet-
ter for LTS (diamond) on both datasets compared to CS-LTS (circle). However,
improving TAD by decreasing FAS is acceptable as missing true alarms may
result in patient fatality. CS-LTS (circle) beats BEHAR (star) in terms of true
alarm detection rate on both the datasets. In terms of false alarm suppression,
CS-LTS achieves comparable performance on VTACH dataset. BEHAR (star)
achieves 100% FAS for CHALLENGE dataset, however, true alarm detection
rate is 0%. Figure 3 shows the comparison of Fβ scores for VTACH and CHAL-
LENGE datasets. In both datasets CS-LTS outperforms LTS with respect to
β = 2 and β = 3. This proves that CS-LTS improves the TAD score on both
datasets when compared to LTS.

4.2 Balanced Time Series Datasets

In this set of experiments, we highlight that the proposed model attains com-
parable or better classification accuracy when compared to state-of-the-art LTS
on balanced datasets. So, incorporating cost sensitive learning does not hurt the
optimization algorithm because it automatically learns the cost sensitive param-
eters. This is very useful if the intrinsic sensitivity of the data is not known a
priori.

Sixteen binary-class datasets were selected from UCR time-series repository
[6]. In order to ensure fair comparison with LTS, the default train and test
splits were used. Ten independent runs (with different initialization for both
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Fig. 2. CS-LTS[•] vs. LTS[�] vs. BEHAR[�] in terms of true alarm detection (TAD)
and false alarm suppression (FAS) rates over 2 critical alarm datasets. CS-LTS achieves
higher TAD on both datasets compared to LTS and BEHAR.

Fig. 3. Comparison of CS-LTS vs. LTS in terms F1, F2 and F3 scores over 2 false alarm
suppression datasets.

LTS and CS-LTS) were conducted and the average and standard deviation of
the evaluation metric are reported.

The results of comparing CS-LTS to LTS on the 16 datasets are shown in
Fig. 4. It is observed that CS-LTS outperforms or comparable to LTS on all 16
datasets. This set of experiments highlights the fact that the CS-LTS model
provides a good alternative to LTS as it can handle balanced datasets quite
effectively. The proposed method attains higher sensitivity with little loss of
specificity when compared to LTS.

4.3 Imbalanced Time Series Datasets

In order to highlight the advantage of cost-sensitive learning over cost-insensitive
learning, in this set of experiments, we extensively evaluate the model on
18 highly imbalanced datasets and compare it with LTS and different over-
sampling and under-sampling methods. The imbalanced time series datasets were
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Fig. 4. F2 and F3 scores between CS-LTS and LTS for 16 balanced time-series datasets.
(Left) In terms of F2 score CS-LTS outperforms or is comparable to LTS in all 16
datasets. (Right) In terms of F3 score CS-LTS outperforms or is comparable to LTS in
all 16 datasets.

Table 1. Imbalanced datasets constructed from UCR Repository [6] where ∗ is the
index of the original class that is assumed as the positive class

Dataset Training Test Length

#Positive #Negative IM ratio #Positive #Negative

FaceAll* 80–150 1000 6.7–12.5 91–123 977–1079 131

SLeaf* 35 450 12.9 40 600 128

TwoPatterns* 200 180 9 1001–1106 1894–1999 128

Wafer* 200 380–3000 1.9–15 562–6220 392–3402 152

Yoga* 200 800–900 4–4.5 1300–1570 730–870 426

constructed by Cao et al. [4] from 5 multi-class datasets from the UCR time-
series repository and the details are shown in Table 1.

The main advantage of CS-LTS over LTS is its superior performance in case of
imbalanced datasets. In Fig. 5, it is shown that CS-LTS comfortably outperforms
LTS on all 18 imbalanced datasets in terms of both F1 and F2 scores.

Moreover, in comparison to the state-of-the-art methods for imbalanced time-
series classification, CS-LTS is very competitive. As shown in Table 2 in terms of
F1 score. The best method per dataset is shown in bold. The proposed CS-LTS
method attains the highest number of absolute wins (5.86 wins) where a point
is awarded to a method if it attains the highest F1 score among the rest of the
baseline methods for that particular dataset. In case of draws, the point is split
into equal fractions and awarded to each method having the highest F1 for a
particular dataset.
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Fig. 5. F1 and F2 score between CS-LTS and LTS for 18 imbalanced time-series
datasets. (Left) In terms of F1 score CS-LTS achieves very high accuracy compared
to LTS on 15 datasets and is comparable to LTS in 3. (Right) In terms of F2 score
CS-LTS outperforms or is comparable to LTS in all 18 datasets.

5 Discussion

Amongst the baselines, SPO [2], SMOTE [5], BORSMOTE [12], ADASYN [13],
DB [11] and MoGT [4] are over-sampling techniques which mostly act as a
preprocessing technique to over sample the rare class examples in order to con-
struct balanced datasets. Easy [17] and Balanced [17] are under-sampling meth-
ods which reduces the number of examples from the majority class via under-
sampling the majority class to balance the datasets.

From Table 2, we can infer that CS-LTS beats LTS and Easy across all
datasets except 1 dataset (TwoPatterns3) in case of LTS which is a draw.
Comparing with other baseline methods we see that CS-LTS has achieved sim-
ilar accuracy as baseline methods on more than one datasets (such as wafer0
and wafer1). CS-LTS achieves comparable results with almost all of the over-
sampling methods except for sleaf1 and TwoPatterns3 dataset. Results of CS-
LTS on Sleaf1 and TwoPatterns3 certainly outperform LTS by huge margins;
however, due to overlapping data-points in the feature space, it is hard for a
linear model to achieve high classification accuracy in these two datasets. Com-
pared to under-sampling methods (Easy and Balanced), CS-LTS is better than
these baseline methods on most of the datasets. Another comparable method is
the 1-Nearest Neighbor method (1-NN) which is known to be a good classifier
for time-series classification problems. However, 1-NN computationally suffers
from high dimensionality, hence it is time consuming compared to our method.
Moreover, CS-LTS is an easier-to-interpret method as compared to 1-NN which
makes it more desirable to domain experts. CS-LTS is an algorithmic approach to
solve the imbalanced time-series classification problem whereas the state-of-the-
art methods in this field are data manipulation methods that use over-sampling
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and under-sampling techniques, which act as a preprocessing step to solve the
high imbalance time-series classification problem. Figure 6 shows the critical dif-
ference diagram amongst all the baseline methods and CS-LTS.

CD
13 12 11 10 9 8 7 6 5 4 3 2 1

SPO
1MoGT
CS-LTS
2MoGT
ADASYN
BORSMOTE
SMOTE

DB
1NN

REPEAT
LTS

Balanced
EASY

Fig. 6. Critical difference diagram showing average rank of CS-LTS against all baseline
methods on 18 imbalanced datasets.

6 Conclusion

In this paper, we adapt the novel perspective of learning generalized shapelets for
time-series classification via a logistic loss minimization, and extend the time-
series classification framework to a cost-sensitive framework that can handle
highly imbalanced time-series datasets. In contrast to the baseline model, whose
prediction accuracy is biased towards the abundant negative class, the proposed
CS-LTS does not suffer from class imbalance problem. Extensive experiments
on 36 real-world time-series datasets reveal the proposed method is a good
alternative to the baseline model. It can handle both balanced and imbalanced
time-series datasets and achieve better or comparable results against the cur-
rent state-of-the-art methods. In future, we plan to extend the cost-sensitive
learning framework for multivariate time-series datasets in order to improve the
performance of the model.
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