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Abstract. We consider a semi-supervised learning scenario for regres-
sion, where only few labelled examples, many unlabelled instances and
different data representations (multiple views) are available. For this set-
ting, we extend support vector regression with a co-regularisation term
and obtain co-regularised support vector regression (CoSVR). In addition
to labelled data, co-regularisation includes information from unlabelled
examples by ensuring that models trained on different views make similar
predictions. Ligand affinity prediction is an important real-world prob-
lem that fits into this scenario. The characterisation of the strength of
protein-ligand bonds is a crucial step in the process of drug discovery and
design. We introduce variants of the base CoSVR algorithm and discuss
their theoretical and computational properties. For the CoSVR function
class we provide a theoretical bound on the Rademacher complexity.
Finally, we demonstrate the usefulness of CoSVR for the affinity predic-
tion task and evaluate its performance empirically on different protein-
ligand datasets. We show that CoSVR outperforms co-regularised least
squares regression as well as existing state-of-the-art approaches for affin-
ity prediction. Code and data related to this chapter are available at:
https://doi.org/10.6084/m9.figshare.5427241.
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1 Introduction

We investigate an algorithm from the intersection field of semi-supervised and
multi-view learning. In semi-supervised learning the lack of a satisfactory number
of labelled examples is compensated by the usage of many unlabelled instances
from the respective feature space. Multi-view regression algorithms utilise dif-
ferent data representations to train models for a real-valued quantity. Ligand
affinity prediction is an important learning task from chemoinformatics since
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many drugs act as protein ligands. It can be assigned to this learning scenario
in a very natural way. The aim of affinity prediction is the determination of
binding affinities for small molecular compounds—the ligands—with respect to
a bigger protein using computational methods. Besides a few labelled protein-
ligand pairs, millions of small compounds are gathered in molecular databases as
ligand candidates. Many different data representations—the so-called molecular
fingerprints or views—exist that can be used for learning. Affinity prediction and
other applications suffer from little label information and the need to choose the
most appropriate view for learning. To overcome these difficulties, we propose
to apply an approach called co-regularised support vector regression. We are the
first to investigate support vector regression with co-regularisation, i.e., a term
penalising the deviation of predictions on unlabelled instances. We investigate
two loss functions for the co-regularisation. In addition to variants of our multi-
view algorithm with a reduced number of optimisation variables, we also derive a
transformation into a single-view method. Furthermore, we prove upper bounds
for the Rademacher complexity, which is important to restrict the capacity of
the considered function class to fit random data. We will show that our proposed
algorithm outperforms affinity prediction baselines.

The strength of a protein-compound binding interaction is characterised by
the real-valued binding affinity. If it exceeds a certain limit, the small compound
is called a ligand of the protein. Ligand-based classification models can be trained
to distinguish between ligands and non-ligands of the considered protein (e.g.,
with support vector machines [6]). Since framing the biological reality in a clas-
sification setting represents a severe simplification of the biological reality, we
want to predict the strength of binding using regression techniques from machine
learning. Both classification and regression methods are also known under the
name of ligand-based virtual screening. (In the context of regression, we will use
the name ligands for all considered compounds.) Various approaches like neural
networks [7] have been applied. However, support vector regression (SVR) is the
state-of-the-art method for affinity prediction studies (e.g., [12]).

As mentioned above, in the context of affinity prediction one is typically
faced with the following practical scenario: for a given protein, only few lig-
ands with experimentally identified affinity values are available. In contrast, the
number of synthesizable compounds gathered in molecular databases (such as
ZINC, BindingDB, ChEMBL1) is huge which can be used as unlabelled instances
for learning. Furthermore, different free or commercial vectorial representations
or molecular fingerprints for compounds exist. Originally, each fingerprint was
designed towards a certain learning purpose and, therefore, comprises a char-
acteristic collection of physico-chemical or structural molecular features [1], for
example, predefined key properties (Maccs fingerprint) or listed subgraph pat-
terns (ECFP fingerprints).

The canonical way to deal with multiple fingerprints for virtual screening
would be to extensively test and compare different fingerprints [6] or perform
time-consuming preprocessing feature selection and recombination steps [8].

1 zinc.docking.org, www.bindingdb.org, www.ebi.ac.uk/chembl.

http://zinc.docking.org
www.bindingdb.org
www.ebi.ac.uk/chembl


340 K. Ullrich et al.

Other attempts to utilise multiple views for one prediction task can be found
in the literature. For example, Ullrich et al. [13] apply multiple kernel learn-
ing. However, none of these approaches include unlabelled compounds in the
affinity prediction task. The semi-supervised co-regularised least squares regres-
sion (CoRLSR) algorithm of Brefeld et al. [4] has been shown to outperform
single-view regularised least squares regression (RLSR) for UCI datasets2. Usu-
ally, SVR shows very good predictive results having a lower generalisation error
compared to RLSR. Aside from that, SVR represents the state-of-the-art in
affinity prediction (see above). For this reason, we define co-regularised support
vector regression (CoSVR) as an ε-insensitive version of co-regularisation. In
general, CoSVR—just like CoRLSR—can be applied on every regression task
with multiple views on data as well as labelled and unlabelled examples. How-
ever, learning scenarios with high-dimensional sparse data representations and
very few labelled examples—like the one for affinity prediction—could benefit
from approaches using co-regularisation. In this case, unlabelled examples can
contain information that could not be extracted from a few labelled examples
because of the high dimension and sparsity of the data representation.

A view on data is a representation of its objects, e.g., with a particular choice
of features in IRd. We will see that feature mappings are closely related to the
concept of kernel functions, for which reason we introduce CoSVR theoretically
in the general framework of kernel methods. Within the research field of multi-
view learning, CoSVR and CoRLSR can be assigned to the group of co-training
style [16] approaches that simultaneously learn multiple predictors, each related
to a view. Co-training style approaches enforce similar outcomes of multiple
predictor functions for unlabelled examples, measured with respect to some loss
function. In the case of co-regularisation for regression the empirical risks of
multiple predictors (labelled error) plus an error term for unlabelled examples
(unlabelled error, co-regularisation) are minimised.

The idea for mutual influence of multiple predictors appeared in the paper
of Blum and Mitchell [2] on classification with co-training. Wang et al. [14]
combined the technique of co-training with SVR with a technique different from
co-regularisation. Analogous to CoSVR, CoRLSR is a semi-supervised and multi-
view version of RLSR that requires the solution of a large system of equations
[4]. A co-regularised version for support vector machine classification SVM-2K
already appeared in the paper of Farquhar et al. [5], where the authors define
a co-regularisation term via the ε-insensitive loss on labelled examples. It was
shown by Sindhwani and Rosenberg [11] that co-regularised approaches applying
the squared loss function for the unlabelled error can be transformed into a
standard SVR optimisation with a particular fusion kernel. A bound on the
empirical Rademacher complexity for co-regularised algorithms with Lipschitz
continuous loss function for the labelled error and squared loss function for the
unlabelled error was proven by Rosenberg and Bartlett [9].

A preliminary version of this paper was published at the Data Mining in
Biomedical Informatics and Healthcare workshop held at ICDM 2016. There, we

2 UCI machine learning repository, http://archive.ics.uci.edu/ml.

http://archive.ics.uci.edu/ml
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considered only the CoSVR special case ε-CoSVR and its variants with reduced
numbers of variables (for the definitions consult Definitions 1 –3 below) focusing
the application of ligand affinity prediction. The �2-CoSVR case (see below) with
its theoretical properties (Lemmas 1(ii) - 3(ii), 6(ii)) and practical evaluation,
as well as the faster Σ-CoSVR (Sect. 3.3) variant are novel contributions in the
present paper.

In the following section, we will present a short summary of kernels and
multiple views, as well as important notation. We define CoSVR and variants of
the base algorithm in Sect. 3. In particular, a Rademacher bound for CoSVR will
be proven in Sect. 3.5. Subsequently, we provide a practical evaluation of CoSVR
for ligand affinity prediction in Sect. 4 and conclude with a brief discussion in
Sect. 5.

2 Kernels and Multiple Views

We consider an arbitrary instance space X and the real numbers as label space
Y. We want to learn a function f that predicts a real-valued characteristic of the
elements of X . Suppose for training purposes we have sets X = {x1, . . . , xn} ⊂ X
of labelled and Z = {z1, . . . , zm} ⊂ X of unlabelled instances at our disposal,
where typically m � n holds true. With {y1, . . . , yn} ⊂ Y we denote the respec-
tive labels of X. Furthermore, assume the data instances can be represented
in M different ways. More formally, for v ∈ {1, . . . , M} there are functions
Φv : X → Hv, where Hv is an appropriate inner product space. Given an
instance x ∈ X , we say that Φv(x) is the v-th view of x. If Hv equals IRd

for some finite dimension d, the intuitive names (v-th) feature mapping and fea-
ture space are used for Φv and Hv, respectively. If in the more general case Hv

is a Hilbert space, d can even be infinite (see below). For view v the predictor
function fv : X → IR is denoted with (single) view predictor. View predictors
can be learned independently for each view utilising an appropriate regression
algorithm like SVR or RLSR. As a special case we consider concatenated predic-
tors fv in Sect. 4 where the corresponding view v results from a concatenation of
finite dimensional feature representations Φ1, . . . , ΦM . Having different views on
the data, an alternative is to learn M predictors fv : X → IR simultaneously that
depend on each other, satisfying an optimisation criterion involving all views at
once. Such a criterion could be the minimisation of the labelled error in line with
co-regularisation which will be specified in the following subsection. The final
predictor f will then be the average of the predictors fv.

A function k : X × X → IR is said to be a kernel if it is symmetric and
positive semi-definite. Indeed, for every kernel k there is a feature mapping
Φ : X → H such that H is a reproducing kernel Hilbert space (RKHS) and
k(x1, x2) = 〈Φ(x1), Φ(x2)〉H holds true for all x1, x2 ∈ X (Mercer’s theorem).
Thus, the function k is the corresponding reproducing kernel of H, and for
x ∈ X the mappings 〈Φ(x), Φ(·)〉 = k(x, ·) are functions defined on X . Choosing
RKHSs Hv of multiple kernels kv as candidate spaces for the predictors fv, the
representer theorem of Schölkopf et al. [10] allows for a parameterisation of the
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optimisation problems for co-regularisation presented below. A straightforward
modification of the representer theorem’s proof leads to a representation of the
predictors fv as finite kernel expansion

fv(·) =
n∑

i=1

πvikv(xi, ·) +
m∑

j=1

πv(j+n)kv(zj , ·) (1)

with linear coefficients πv ∈ IRn+m, centered at labelled and unlabelled instances
xi ∈ X and zj ∈ Z, respectively.

The kernel matrices Kv = {kv(xi, xj)}n+m
i,j=1 are the Gram matrices of

the v-th view kernel kv over labelled and unlabelled examples and have
decompositions into an upper and a lower part Lv ∈ IRn×(n+m) and
Uv ∈ IRm×(n+m), respectively. We will consider the submatrices k(Z, x) :=
(k(z1, x), . . . , k(zm, x))T and k(Z,Z) := {k(zj , zj′)}m

j,j′=1 of a Gram matrix with
kernel k. If H1 and H2 are RKHSs then their sum space HΣ is defined as
HΣ := {f : f = f1 + f2, f1 ∈ H1, f2 ∈ H2}. With Y = (y1, . . . , yn)T ∈ IRn we
denote the vector of labels. We will abbreviate v ∈ {1, . . . , M} with v ∈ [[M ]].
And finally, we will utilise the squared loss �2(y, y′) = ‖y − y′‖2 and the ε-
insensitive loss �ε(y, y′) = max{0, |y − y′| − ε}, y, y′ ∈ Y.

3 The CoSVR Algorithm: Variants and Properties

3.1 Base CoSVR

In order to solve a regression task in the presence of multiple views v = 1, . . . , M ,
the approach of co-regularisation is to jointly minimise two error terms involving
M predictor functions f1, . . . , fM . Firstly, every view predictor fv is intended to
have a small training error with respect to labelled examples. Secondly, the differ-
ence between pairwise view predictions over unlabelled examples should prefer-
ably be small. We introduce co-regularised support vector regression (CoSVR)
as an ε-insensitive loss realisation of the co-regularisation principle.

Definition 1. For v ∈ {1, . . . , M} let Hv be RKHSs. The co-regularised empir-
ical risk minimisation

min
fv∈Hv

M∑

v=1

(
νv

2
‖fv‖2 +

n∑

i=1

�L(yi, fv(xi))

)
(2)

+ λ
M∑

u,v=1

m∑

j=1

�U (fu(zj), fv(zj)),

where νv, λ ≥ 0 is called co-regularised support vector regression (CoSVR) if �L =
�εL , εL ≥ 0, and �U is an arbitrary loss function for regression. Furthermore,
we define ε-CoSVR to be the special case where �U = �εU , εU ≥ 0, as well as
�2-CoSVR to satisfy �U = �2.
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The minimum in (2) is taken over all fv, v = 1, . . . , M . For reasons of simpli-
fication we will abbreviate minf1∈H1,...,fM ∈HM

with minfv∈Hv
. Note that the

loss function parameters εL and εU can have different values. The parameters νv

and λ are trade-off parameters between empirical risk and co-regularisation term.
The added norm terms ‖fv‖ prevent overfitting. We will also refer to the empir-
ical risk term with loss function �L as labelled error and to the co-regularisation
term with �U as unlabelled error. In the case of �L = �U = �2, the optimisation in
(2) is known as co-regularised least squares regression (CoRLSR). Brefeld et al.
[4] found a closed form solution for CoRLSR as linear system of equations in
M(n + m) variables. In the following, we present a solution for ε-CoSVR and
�2-CoSVR.

Lemma 1. Let νv, λ, εL, εU ≥ 0. We use the notation introduced above. In par-
ticular, πv ∈ IRn+m denote the kernel expansion coefficients of the single view
predictors fv from (1), whereas αv, α̂v ∈ IRn and γuv ∈ IRm are dual variables.

(i) The dual optimisation problem of ε-CoSVR equals

max
αv,α̂v∈IRn,γuv∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (αv − α̂v)T Y

−(αv + α̂v)T εL1n −
M∑

u=1

γT
uvεU1m

)

s.t.
{
0n ≤ αv, α̂v ≤ 1n

0m ≤ γuv ≤ λ1m

}

v∈[[M ]], (u,v)∈[[M ]]2
,

where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = (αv − α̂v | ∑M

u=1(γuv − γvu))T .

(ii) The dual optimisation problem of �2-CoSVR is

max
αv,α̂v∈IRn,γuv∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (αv − α̂v)T Y

−εL(αv + α̂v)T1n − 1
4λ

M∑

u=1

γT
uvγuv

)

s.t.
{
0n ≤ αv, α̂v ≤ 1n

γuv = 2λ
νu

Uu

(
α
γ

)
u

− 2λ
νv

Uv

(
α
γ

)
v

}

v∈[[M ]], (u,v)∈[[M ]]2

,

where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = (αv − α̂v | ∑M

u=1(γuv − γvu))T .

Remark 1. The proofs of Lemma 1 as well as Lemmas 2 and 3 below use standard
techniques from Lagrangian dualisation (e.g., [3]). They can be found in our
CoSVR repository (see footnote 3).

We choose the concatenated vector representation (α | γ)T
v ∈ IRn+m in order to

show the correspondence between the two problems ε-CoSVR and �2-CoSVR and
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further CoSVR variants below. Additionally, the similarities with and differences
to the original SVR dual problem are obvious. We will refer to the optimisation
in Lemma 1 as the base CoSVR algorithms.

3.2 Reduction of Variable Numbers

The dual problems in Lemma 1 are quadratic programs. Both depend on
2Mn+M2m variables, where m � n. If the number of views M and the number
of unlabelled examples m are large, the base CoSVR algorithm might cause prob-
lems with respect to runtime because of the large number of resulting variables.
In order to reduce this number, we define modified versions of base CoSVR. We
denote the variant with a modification in the labelled error with CoSVRmod and
in the unlabelled error with CoSVRmod.

Modification of the Empirical Risk. In base CoSVR the empirical risk is
meant to be small for each single view predictor individually using examples and
their corresponding labels. In the CoSVRmod variant the average prediction, i.e.,
the final predictor, is applied to define the labelled error term.

Definition 2. The co-regularised support vector regression problem with modi-
fied constraints for the labelled examples (CoSVRmod) is defined as

min
fv∈Hv

M∑

v=1

νv

2
‖fv‖2 +

n∑

i=1

�εL(yi, f
avg(xi))

+ λ
M∑

u,v=1

m∑

j=1

�U (fu(zj), fv(zj)) ,

where favg := 1
M

∑M
v=1 fv is the average of all single view predictors. We denote

the case �U = �εU , εU ≥ 0, with ε-CoSVRmod and the case �U = �2 with �2-
CoSVRmod.

In the following lemma we present solutions for ε-CoSVRmod and �2-CoSVRmod.

Lemma 2. Let νv, λ, εL, εU ≥ 0. We utilise dual variables α, α̂ ∈ IRn and γuv ∈
IRm.

(i) The ε-CoSVRmod dual optimisation problem can be written as

max
α,α̂∈IRn, γuv∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (α − α̂)T Y

−(α + α̂)T εL1n −
M∑

u=1

γT
uvεU1m

)

s.t.
{
0n ≤ α, α̂ ≤ 1n

0m ≤ γuv ≤ λ1m

}

v∈[[M ]]

,
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where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = ( 1

M (α − α̂) | ∑M
u=1(γuv − γvu))T .

(ii) The �2-CoSVRmod dual optimisation problem equals

max
α,α̂∈IRn, γuv∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (αv − α̂v)T Y

−(αv + α̂v)T εL1n − 1
4λ

M∑

u=1

γT
uvγuv

)

s.t.
{
0n ≤ α, α̂ ≤ 1n

γuv = 2λ
νu

Uu

(
α
γ

)
u

− 2λ
νv

Uv

(
α
γ

)
v

}

v∈[[M ]]

,

where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = ( 1

M (α − α̂) | ∑M
u=1(γuv − γvu))T .

We can also reduce the number of variables more effectively using modified
constraints for the co-regularisation term. Whereas the CoSVRmod algorithm
is rather important from a theoretical perspective (see Sect. 3.3), the variant
presented in the next section is very beneficial from a practical perspective if the
number of views M is large.

Modification of the Co-regularisation. The unlabelled error term of base
CoSVR bounds the pairwise distances of view predictions, whereas now in
CoSVRmod only the disagreement between predictions of each view and the
average prediction of the residual views will be taken into account.

Definition 3. We consider RKHSs H1, . . . ,HM as well as constants
εL, εU , νv, λ ≥ 0. The co-regularised support vector regression problem with mod-
ified constraints for the unlabelled examples (CoSVRmod) is defined as

min
fv∈Hv

M∑

v=1

(
νv

2
‖fv‖2 +

n∑

i=1

�εL(yi, fv(xi))

)
(3)

+ λ

M∑

v=1

m∑

j=1

�U (favg
v (zj), fv(zj)) ,

where now favg
v := 1

M−1

∑M,u �=v
u=1 fu is the average of view predictors besides view

v. We denote the case �U = �εU , εU ≥ 0, with ε-CoSVRmod and the case �U = �2
with �2-CoSVRmod.

Again we present solutions for ε-CoSVRmod and �2-CoSVRmod.

Lemma 3. Let νv, λ, εL, εU ≥ 0. We utilise dual variables αv, α̂v ∈ IRn and
γv, γ̂v ∈ IRm, as well as γavg

v := 1
M−1

∑M,u �=v
u=1 γu and γ̂avg

v := 1
M−1

∑M,u �=v
u=1 γ̂u

analogous to the residual view predictor average.
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(i) The ε-CoSVRmod dual optimisation problem can be written as

max
αv,α̂v∈IRn, γv,γ̂v∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (α − α̂)T Y

−(αv + α̂v)T εL1n − (γv + γ̂v)εU1m

)

s.t.
{
0n ≤ αv, α̂v ≤ 1n

0m ≤ γv, γ̂v ≤ λ1m

}

v∈[[M ]]

,

where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = (αv −α̂v | (γv −γavg

v )−(γ̂v − γ̂avg
v ))T .

(ii) The �2-CoSVRmod dual optimisation problem equals

max
αv,α̂v∈IRn, γv∈IRm

M∑

v=1

(
− 1

2νv

(
α

γ

)T

v

Kv

(
α

γ

)

v

+ (αv − α̂v)T Y

−(αv + α̂v)T εL1n − 1
4λ

M∑

u=1

γT
v γv

)

s.t.

{
0n ≤ αv, α̂v ≤ 1n

γv = 1
M−1

∑M,u �=v
u=1

2λ
νu

Uu

(
α
γ

)
u

− 2λ
νv

Uv

(
α
γ

)
v

}

v∈[[M ]]

,

where πT
v = 1

νv
(α | γ)T

v and (α | γ)T
v = (αv − α̂v | γv − γavg

v )T .

Remark 2. If we combine the modifications in the labelled and unlabelled error
term we canonically obtain the variants ε-CoSVRmod

mod and �2-CoSVRmod
mod.

In the base CoSVR versions the semi-supervision is realised with proximity con-
straints on pairs of view predictions. We show in the following lemma that the
constraints of the closeness of one view prediction to the average of the residual
predictions implies a closeness of every pair of predictions.

Lemma 4. Up to constants, the unlabelled error bound of CoSVRmod is also an
upper bound of the unlabelled error of base CoSVR.

Proof. We consider the settings of Lemmas 1(i) and 3(i). For part (ii) the proof
is equivalent with εU = 0. In the case of M = 2, modified and base algorithm fall
together which shows the claim. Now let M > 2. Because of the definition of the
ε-insensitive loss we know that |fv(zj)−favg

v (zj)| ≤ εU +cvj , where cvj ≥ 0 is the
actual loss value for fixed v and j. We denote cj := maxv∈{1,...,M}{c1j , . . . , cMj}
and, hence, |fv(zj)−favg

v (zj)| ≤ εU +cj for all v ∈ {1, . . . , M}. Now we conclude
for j ∈ {1, . . . , m} and (u, v) ∈ {1, . . . , M}2

|fu(zj) − fv(zj)|
≤ |fu(zj) − favg

u (zj)| + |favg
u (zj) − favg

v (zj)| + |favg
v (zj) − fv(zj)|

≤ εU + cj + 1
M−1 |fv(zj) − fu(zj)| + εU + cj ,
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and therefore, |fu(zj) − fv(zj)| ≤ 2(M−1)
M−2 (εU + cj). As a consequence we deduce

from
∑M

v=1

∑m
j=1 �εU (favg

v (zj), fv(zj)) ≤ M
∑m

j=1 cj =: B that also the labelled
error of CoSVR can be bounded

∑M
u,v=1

∑m
j=1 �ε̃(fu(zj), fv(zj)) ≤ B̃ for ε̃ =

2(M−1)
M−2 εU and B̃ = 2M(M−1)

(M−2) B, which finishes the proof. ��

3.3 Σ-CoSVR

Sindhwani and Rosenberg [11] showed that under certain conditions co-
regularisation approaches of two views exhibit a very useful property. If �U = �2
and the labelled loss is calculated utilising an arbitrary loss function for the
average predictor favg, the resulting multi-view approach is equivalent with a
single-view approach of a fused kernel. We use the notion from Sect. 2.

Definition 4. Let λ, ν1, ν2, ε
L ≥ 0 be parameters and the Gram submatrices

k(Z, x) and k(Z,Z) be defined as in Sect. 2. We consider a merged kernel kΣ

from two view kernels k1 and k2

kΣ(x, x′) := k⊕(x, x′) − k�(Z, x)T
(
1
λIm + k⊕(Z,Z)

)−1
k�(Z, x′), (4)

for x, x′ ∈ X , where k⊕ := 1
ν1

k1 + 1
ν2

k2 and k� := 1
ν1

k1 − 1
ν2

k2. We denote the
SVR optimisation

argmin
f∈HΣ

‖f‖2 +
n∑

i=1

�εL(yi,
1
2f(xi)), (5)

Σ-co-regularised support vector regression (Σ-CoSVR), where HΣ is the RKHS
of kΣ.

Please notice that for each pair (x, x′) the value of kΣ(x, x′) is calculated in
(4) with k1 and k2 including not only x and x′ but also unlabelled examples
z1, . . . , zm. Hence, the optimisation problem in (5) is a standard SVR with addi-
tional information about unlabelled examples incorporated in the RKHS HΣ .

Lemma 5. The algorithms �2-CoSVRmod and Σ-CoSVR are equivalent and HΣ

is the sum space HΣ = {f : X → IR | f = f1 + f2, f1 ∈ H1, f2 ∈ H2}.
Proof. The proof is an application of Theorem 2.2. of Sindhwani and Rosenberg
[11] for the loss function V being equal to the ε-insensitive loss with ε = εL, the
parameter of the labelled error of �2-CoSVRmod. ��
As Σ-CoSVR can be solved as a standard SVR algorithm we obtained a much
faster co-regularisation approach. The information of the two views and the
unlabelled examples are included in the candidate space HΣ and associated
kernel kΣ .
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3.4 Complexity

The CoSVR variants and CoRLSR mainly differ in the number of applied loss
functions and the strictness of constraints. This results in different numbers
of variables and constraints in total, as well as potentially non-zero variables
(referred to as sparsity, compare Table 1). All presented problems are convex QPs
with positive semi-definite matrices in the quadratic terms. As the number m of
unlabelled instances in real-world problems is much greater than n, the runtime
of a QP-solver is dominated by the respective second summand in the constraints
column of Table 1. Because of the ε-insensitive loss the number of actual non-
zero variables in the learned model will be even smaller for the CoSVR variants
than the numbers reported in the sparsity column of Table 1. In particular, for
the modified variants this will allow for a more efficient model storage compared
to CoRLSR. Indeed, according to the Karush-Kuhn-Tucker conditions (e.g., [3]),
only for active inequality constraints the corresponding dual γ-variables can be
non-zero. In this sense the respective unlabelled zj ∈ Z are unlabelled support
vectors. This consideration is also valid for the α-variables and support vectors
xi ∈ X as we use the ε-insensitive loss for the labelled error in all CoSVR
versions. And finally, in the two-view case with M = 2 the modified version with
respect to the unlabelled error term and the base version coincide.

Table 1. Number of variables, constraints, and potential non-zero variables for differ-
ent CoSVR versions and CoRLSR. The respective CoSVRmod variant is included by
cancelling the {M}-factor.

Algorithm Variables Constraints Sparsity

ε-CoSVR 2{M}n + M2m 4{M}n + 2M2m {M}n + 1
2
(M2 − M)m

�2-CoSVR 2{M}n + M2m 4{M}n + M2m {M}n + M2m

ε-CoSVRmod 2{M}n + 2Mm 4{M}n + 4Mm {M}n + Mm

�2-CoSVRmod 2{M}n + Mm 4{M}n + Mm {M}n + Mm

Σ-CoSVR 2n 4n n

CoRLSR Mn + Mm 0 Mn + Mm

3.5 A Rademacher Bound for CoSVR

Similarly to the result of Rosenberg and Bartlett [9] we want to prove a bound on
the empirical Rademacher complexity R̂n of CoSVR in the case of M = 2. Note
that, despite the proof holding for the special case of M = 2, the CoSVR method
in general is applicable to arbitrary numbers of views. The empirical Rademacher
complexity is a data-dependent measure for the capacity of a function class H
to fit random data and is defined as
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R̂n(H) = Eσ

[
sup
f∈H

∣∣∣∣∣
2
n

n∑

i=1

σif(xi)

∣∣∣∣∣ : {x1, . . . , xn} = X

]
.

The random data are represented via Rademacher random variables σ =
(σ1, . . . , σn)T . We consider ε-CoSVR and �2-CoSVR and define bounded versions
Hε

Σ and H2
Σ of the sum space HΣ from Sect. 2 for the corresponding versions.

Obviously, a pair (π1, π2) ∈ IR(n+m)×(n+m) of kernel expansion coefficients (see
(1)) represents an element of HΣ . For ε-CoSVR and �2-CoSVR we set

Hε
Σ := {(π1, π2) ∈ HΣ : −μ1n+m ≤ π1, π2 ≤ μ1n+m} , and (6)

H2
Σ := {(π1, π2) ∈ HΣ : ν1π

T
1 K1π1 + ν2π

T
2 K2π2

+λ(U1π1 − U2π2)T (U1π1 − U2π2) ≤ 1
}

, (7)

respectively. In (6) μ is an appropriate constant according to Lemmas 1 and
2. The definition in (7) follows the reasoning of Rosenberg and Bartlett [9].
Now we derive a bound on the empirical Rademacher complexity of Hε

Σ and
H2

Σ , respectively. We point out that the subsequent proof is also valid for the
modified versions with respect to the empirical risk. For two views the base and
modified versions with respect to the co-regularisation fall together anyway. For
reasons of simplicity, in the following lemma and proof we omit mod and mod for
the CoSVR variants. Furthermore, we will apply the infinity vector norm ‖v‖∞
and row sum matrix norm ‖L‖∞ (consult, e.g., Werner [15]).

Lemma 6. Let Hε
Σ and H2

Σ be the function spaces in (6) and (7) and, without
loss of generality, let Y = [−1, 1].

(i) The empirical Rademacher complexity of ε-CoSVR can be bounded via

R̂n(Hε
Σ) ≤ 2s

n
μ(‖L1‖∞ + ‖L2‖∞),

where μ is a constant dependent on the regularisation parameters and s is
the number of potentially non-zero variables in the kernel expansion vector
π ∈ Hε

Σ.
(ii) The empirical Rademacher complexity of �2-CoSVR has a bound

R̂n(H2
Σ) ≤ 2

n

√
trn(KΣ),

where trn(KΣ) :=
∑n

i=1 kΣ(xi, xi) with the sum kernel kΣ from (4).

Our proof applies Theorems 2 and 3 of Rosenberg and Bartlett [9].

Proof. At first, using Theorem 2 of Rosenberg and Bartlett [9], we investigate
the general usefulness of the empirical Rademacher complexity R̂n of Hloss

Σ in
the CoSVR scenario. The function space Hloss

Σ can be either Hε
Σ or H2

Σ . Theorem
2 requires two preconditions. First, we notice that the ε-insensitive loss function
utilising the average predictor �L(y, f(x)) = max{0, |y − (f1(x)+f2(x))/2|−εL}
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maps into [0, 1] because of the boundedness of Y. Second, it is easy to show
that �L is Lipschitz continuous, i.e. |�L(y, y′)− �L(y, y′′)|/|y′ −y′′| ≤ C, for some
constant C > 0. With similar arguments one can show that the ε-insensitive loss
function of base CoSVR is Lipschitz continuous as well. According to Theorem
2 of Rosenberg and Bartlett [9], the expected loss E(X,Y )∼D �L(f(X), Y ) can
then be bounded by means of the empirical risk and the empirical Rademacher
complexity

ED �L(f(X), Y ) ≤ 1
n

n∑

i=1

lL(f(xi), yi) + 2CR̂n(Hloss
Σ ) +

2 + 3
√

ln(2/δ)/2√
n

for every f ∈ Hloss
Σ with probability at least 1 − δ. Now we continue with the

cases (i) and (ii) separately.

(i) We can reformulate the empirical Rademacher complexity

R̂n(Hε
Σ) =

2
n
Eσ

[
sup

(π1 | π2)T ∈K

∣∣σT (L1π1 + L2π2)
∣∣
]

,

where K := {(π1 | π2)T ∈ IR2(n+m) : −μ1n+m ≤ π1, π2 ≤ μ1n+m}. The
kernel expansion π of ε-CoSVR optimisation is bounded because of the box
constraints in the respective dual problems. Therefore, π lies in the �1-ball of
dimension s scaled with sμ, i.e., π ∈ sμ ·B1. The dimension s is the sparsity
of π, and thus, the number of expansion variables πvj different from zero.
From the dual optimisation problem we know that s � 2(n+m). It is a fact
that supπ∈sμ·B1

|〈v, π〉| = sμ‖v‖∞ (see Theorems II.2.3 and II.2.4 in Werner
[15]). Let L ∈ IRn×2(n+m) be the concatenated matrix L = (L1 | L2), where
L1 and L2 are the upper parts of the Gram matrices K1 and K2 according
to Sect. 2. From the definition we see that v = σT L and, hence,

sμ‖v‖∞ = sμ‖σT L‖∞ ≤ sμ‖σ‖∞‖L‖∞ ≤ sμ‖L‖∞

= sμ max
i=1,...,n

n+m∑

j=1

∑

v=1,2

|kv(xi, xj)|.

Finally, we obtain the desired upper bound for the empirical Rademacher
complexity of ε-CoSVR

R̂n(Hε
Σ) ≤ 2

n
Eσsμ‖L‖∞ ≤ 2s

n
μ(‖L1‖∞ + ‖L2‖∞).

(ii) Having the Lipschitz continuity of the ε-insensitive loss �L, the claim is a
direct consequence of Theorem 3 in the work of Rosenberg and Bartlett [9],
which finishes the proof. ��
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4 Empirical Evaluation

In this section we evaluate the performance of the CoSVR variants for predicting
the affinity values of small compounds against target proteins.

Our experiments are performed on 24 datasets consisting of ligands and their
affinity to one particular human protein per dataset, gathered from BindingDB.
Every ligand is a single molecule in the sense of a connected graph and all ligands
are available in the standard molecular fingerprint formats ECFP4, GpiDAPH3,
and Maccs. All three formats are binary and high-dimensional. An implemen-
tation of the proposed methods and baselines, together with the datasets and
experiment descriptions are available as open source3.

We compare the CoSVR variants ε-CoSVR, �2-CoSVR, and Σ-CoSVR against
CoRLSR, as well as SVR with a single-view (SVR([fingerprint name])) in terms of
root mean squared error (RMSE) using the linear kernel. We take the two-view set-
ting in our experiments as we want to include Σ-CoSVR results in the evaluation.
Another natural baseline is to apply SVR to a new view that is created by con-
catenating the features of all views (SVR(concat)). We also compare the CoSVR
variants against an oracle that chooses the best SVR for each view and each dataset
(SVR(best)) by taking the result with the best performance in hindsight.

We consider affinity prediction as semi-supervised learning with many unla-
belled data instances. Therefore, we split each labelled dataset into a labelled
(30% of the examples) and an unlabelled part (the remaining 70%). For the co-
regularised algorithms, both the labelled and unlabelled part are employed for
training, i.e., in addition to labelled examples they have access to the entire set
of unlabelled instances without labels. Of course, the SVR baselines only con-
sider the labelled examples for training. For all algorithms the unlabelled part
is used for testing. The RMSE is measured using 5-fold cross-validation. The
parameters for each approach on each dataset are optimised using grid search
with 5-fold cross-validation on a sample of the training set.

In Fig. 1 we present the results of the CoSVR variants compared to CoRLSR
1(a), SVR(concat) 1(b), and SVR(best) 1(c) for all datasets using the fingerprints
GpiDAPH3 and ECFP4. Figure 1(a), (b), indicate that all CoSVR variants out-
perform CoRLSR and SVR(concat) on the majority of datasets. Figure 1(c) indi-
cates that SVR(best) performs better than the other baselines but is still outper-
formed by ε-CoSVR and �2-CoSVR. Σ-CoSVR performs similar to SVR(best).

The indications in Fig. 1 are substantiated by a Wilcoxon signed-rank test on
the results (presented in Table 2). In this table, we report the test statistics (Z
and p-value). Results in which a CoSVR variant statistically significantly out-
performs the baselines (for a significance level p < 0.05) are marked in bold. The
test confirms that all CoSVR variants perform statistically significantly better
than CoRLSR and SVR(concat). Moreover, ε-CoSVR and �2-CoSVR statisti-
cally significantly outperform an SVR trained on each individual view as well
as taking the best single-view SVR in hindsight. Although Σ-CoSVR performs
slightly better than SVR(best), the advantage is not statistically significant.

3 CoSVR open source repository, https://bitbucket.org/Michael Kamp/cosvr.

https://bitbucket.org/Michael_Kamp/cosvr
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Fig. 1. Comparison of ε-CoSVR, �2-CoSVR, and Σ-CoSVR with the baselines
CoRLSR, SVR(concat), and SVR(best) on 24 datasets using the fingerprints Gpi-
DAPH3 and ECFP4 in terms of RMSEs. Each point represents the RMSEs of the two
methods compared on one dataset.

Table 2. Comparing RMSEs using Wilcoxon signed-rank test (hypothesis test on
whether CoSVR has significantly smaller RMSEs than the baselines).

In Table 3 we report the average RMSEs of all CoSVR variants, CoRLSR
and the single-view baselines for all combinations of the fingerprints Maccs, Gpi-
DAPH3, and ECFP4. In terms of average RMSE, ε-CoSVR and �2-CoSVR out-
perform the other approaches for the view combination Maccs and GpiDAPH3,
as well as GpiDAPH3 and ECFP4. For the views Maccs and ECFP4, these
CoSVR variants have lower average RMSE than CoRLSR and the single-view
SVRs. However, for this view combination, the SVR(best) baseline outperforms
CoSVR. Note that SVR(best) is only a hypothetical baseline, since the best view
varies between datasets and is thus unknown in advance. The Σ-CoSVR per-
forms on average similar to CoRLSR and the SVR(concat) baseline and slightly
worse than SVR(best). To avoid confusion about the different performances
of Σ-CoSVR and �2-CoSVR, we want to point out that Σ-CoSVR equals �2-
CoSVRmod (see Lemma 5) and not �2-CoSVR (equivalent with �2-CoSVRmod

for M = 2) which we use for our experiments.
The advantage in learning performance of ε-CoSVR and �2-CoSVR comes

along with the cost of a higher runtime as shown in Fig. 2. In concordance with
the theory, Σ-CoSVR equalises the runtime disadvantage with a runtime similar
to the single-view methods.
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In conclusion, co-regularised support vector regression techniques are able
to exploit the information from unlabelled examples with multiple sparse views
in the practical setting of ligand affinity prediction. They perform better than
the state-of-the-art single-view approaches [12], as well as a concatenation of fea-
tures from multiple views. In particular, ε-CoSVR and �2-CoSVR outperform the
multi-view approach CoRLSR [4] and SVR on all view combinations. �2-CoSVR
outperforms SVR(concat) on all, ε-CoSVR on 2 out of 3 view combinations.
Moreover, both variants outperform SVR(best) on 2 out of 3 view combinations.

Table 3. Average RMSEs for all combina-
tions of the fingerprints Maccs, GpiDAPH3,
and ECFP4

Method View combinations

Maccs,

ECFP4

Maccs,

GpiDAPH3

GpiDAPH3,

ECFP4

ε-CoSVR 1.035 1.016 1.049

�2-CoSVR 1.007 1.019 1.062

Σ-CoSVR 1.116 1.114 1.151

CoRLSR 1.06 1.073 1.199

SVR(view1) 1.04 1.041 1.355

SVR(view2) 1.094 1.37 1.106

SVR(concat) 1.011 1.12 1.194

SVR(best) 0.966 1.027 1.104

Fig. 2. Runtimes of the CoSVR vari-
ants, CoRLSR, and single-view SVRs
on 24 ligand datasets and all view com-
binations (runtime in log-scale).

5 Conclusion

We proposed CoSVR as a semi-supervised multi-view regression method that
copes with the practical challenges of few labelled data instances and multiple
adequate views on data. Additionally, we presented CoSVR variants with consid-
erably reduced numbers of variables and a version with substantially decreased
runtime. Furthermore, we proved upper bounds on the Rademacher complex-
ity for CoSVR. In the experimental part, we applied CoSVR successfully to
the problem of ligand affinity prediction. The variants ε-CoSVR and �2-CoSVR
empirically outperformed the state-of-the-art approaches in ligand-based virtual
screening. However, this performance came at the cost of solving a more complex
optimisation problem resulting in a higher runtime than single-view approaches.
The variant Σ-CoSVR still outperformed most state-of-the-art approaches with
the runtime of a single-view approach.
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4. Brefeld, U., Gärtner, T., Scheffer, T., Wrobel, S.: Efficient co-regularised least
squares regression. In: Proceedings of the 23rd International Conference on
Machine Learning (2006)

5. Farquhar, J.D.R., Meng, H., Szedmak, S., Hardoon, D., Shawe-Taylor, J.: Two
view learning: SVM-2K, theory and practice. In: Advances in Neural Information
Processing Systems, vol. 18 (2006)

6. Geppert, H., Humrich, J., Stumpfe, D., Gärtner, T., Bajorath, J.: Ligand predic-
tion from protein sequence and small molecule information using support vector
machines and fingerprint descriptors. J. Chem. Inf. Model 49(4), 767–779 (2009)

7. Myint, K.Z., Wang, L., Tong, Q., Xie, X.Q.: Molecular fingerprint-based artifi-
cial neural networks QSAR for ligand biological activity predictions. Mol. Pharm.
9(10), 2912–2923 (2012)

8. Nisius, B., Bajorath, J.: Reduction and recombination of fingerprints of different
design increase compound recall and the structural diversity of hits. Chem. Biol.
Drug Des. 75(2), 152–160 (2010)

9. Rosenberg, D.S., Bartlett, P.L.: The Rademacher complexity of co-regularized ker-
nel classes. In: Proceedings of the 11th International Conference on Artificial Intel-
ligence and Statistics (2007)

10. Schölkopf, B., Herbrich, R., Smola, A.J.: A generalized representer theorem. In:
Helmbold, D., Williamson, B. (eds.) COLT 2001. LNCS (LNAI), vol. 2111, pp.
416–426. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44581-1 27

11. Sindhwani, V., Rosenberg, D.S.: An RKHS for multi-view learning and manifold
co-regularization. In: Proceedings of the 25th International Conference on Machine
Learning (2008)

12. Sugaya, N.: Ligand efficiency-based support vector regression models for predicting
bioactivities of ligands to drug target proteins. J. Chem. Inf. Model 54(10), 2751–
2763 (2014)

13. Ullrich, K., Mack, J., Welke, P.: Ligand affinity prediction with multi-pattern
kernels. In: Calders, T., Ceci, M., Malerba, D. (eds.) DS 2016. LNCS (LNAI),
vol. 9956, pp. 474–489. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46307-0 30

14. Wang, X., Ma, L., Wang, X.: Apply semi-supervised support vector regression for
remote sensing water quality retrieving. In: IEEE International Geoscience and
Remote Sensing Symposium (2010)

15. Werner, D.: Funktionalanalysis. Springer, Heidelberg (1995). https://doi.org/10.
1007/978-3-642-21017-4 2

16. Xu, C., Tao, D., Xu, C.: A Survey on Multi-view Learning. arXiv (2013)

https://doi.org/10.1007/3-540-44581-1_27
https://doi.org/10.1007/978-3-319-46307-0_30
https://doi.org/10.1007/978-3-319-46307-0_30
https://doi.org/10.1007/978-3-642-21017-4_2
https://doi.org/10.1007/978-3-642-21017-4_2

	Co-Regularised Support Vector Regression
	1 Introduction
	2 Kernels and Multiple Views
	3 The CoSVR Algorithm: Variants and Properties
	3.1 Base CoSVR
	3.2 Reduction of Variable Numbers
	3.3 -CoSVR
	3.4 Complexity
	3.5 A Rademacher Bound for CoSVR

	4 Empirical Evaluation
	5 Conclusion
	References




