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Abstract. In computing, remote devices may be identified by means
of device fingerprinting, which works by collecting a myriad of client-
side attributes such as the device’s browser and operating system ver-
sion, installed plugins, screen resolution, hardware artifacts, Wi-Fi set-
tings, and anything else available to the server, and then merging these
attributes into uniquely identifying fingerprints. This technique is used in
practice to present personalized content to repeat website visitors, detect
fraudulent users, and stop masquerading attacks on local networks. How-
ever, device fingerprints are seldom uniquely identifying. They are bet-
ter viewed as partial device fingerprints, which do have some discrim-
inatory power but not enough to uniquely identify users. How can we
infer from partial fingerprints whether different observations belong to the
same device? We present a mathematical formulation of this problem that
enables probabilistic inference of the correspondence of observations. We
set out to estimate a correspondence probability for every pair of observa-
tions that reflects the plausibility that they are made by the same user.
By extending probabilistic data association techniques previously used
in object tracking, traffic surveillance and citation matching, we develop
a general-purpose probabilistic method for estimating correspondence
probabilities with partial fingerprints. Our approach exploits the natural
variation in fingerprints and allows for use of situation-specific knowledge
through the specification of a generative probability model. Experiments
with a real-world dataset show that our approach gives calibrated corre-
spondence probabilities. Moreover, we demonstrate that improved results
can be obtained by combining device fingerprints with behavioral models.

1 Introduction

In networking, remote computers may be partially identified from information
they disclose about themselves. This is called device fingerprinting. In the most
general terms, device fingerprinting refers to any active or passive collection
of meta-data for the purpose of host identification. These meta-data can for
instance be browser user-agents, hard drive serial numbers, hardware artifacts
such as clock skew, or implementation and configuration details of various proto-
cols [4,10,14,19,21,22]. Device fingerprints can be used both to distinguish hosts
— for instance as a security mechanism against masquerading attacks on local
networks — and to identify or track them, for instance to present personalized
advertisements or to prevent fraud by recognizing blacklisted devices.
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Ideally, the device fingerprints are both highly diverse and stable over time,
like human fingerprints, so that they allow us to safely conclude whether or not
two hosts are one and the same, even when considerable time has passed between
observing them. In practice, however, device fingerprints are typically not com-
pletely unique across devices, which means they sometimes fail to distinguish
hosts, or they are not stable, diminishing our ability to identify previously seen
hosts over time. In some cases there is, in fact, a trade-off between uniqueness
and stability, in that fingerprints can be made more unique by including unstable
attributes.

Various scholars have addressed a lack of stability with heuristic methods that
merge fingerprints based on some measure of similarity [10,28]. However, little
has been said about what to do when fingerprints are not completely unique.
In this paper we consider partial device fingerprints. To be precise, the kind of
fingerprint we are interested in is that which is not perfectly unique — multiple
devices may have the same fingerprint — but it is stable and free of noise, at
least in the time frame in which they are used, so we can distinguish devices
with different partial fingerprints with absolute certainty. The challenge is to
determine whether devices that show up with the same partial fingerprint are in
fact one and the same.

If fingerprints are almost unique, we may be satisfied to map every fingerprint
to a single device and accept the small number of false positive matches. As
the diversity of fingerprints decreases, however, this may result in too many
devices getting clumped together. A particularly unfortunate scenario is when
the majority of fingerprints is unique, but a small number of fingerprints is shared
by a disproportionate group of devices. In that case the discriminatory power of
the unique fingerprints is diluted by the common ones.

So far, no-one has investigated automated methods for identifying devices
from partial fingerprints. Our contribution is the development of a general-
purpose probabilistic method that allows one to calculate for every pair of obser-
vations (o1, o2) with matching device fingerprints a correspondence probability
P(device(o1) = device(o2)), which reflects the plausibility that the observations
originate from the same device. These correspondence probabilities have a self-
contained measure of uncertainty, which may be large or small depending on
the prevalence of a fingerprint. The strength of our method lies in the ability
to use partial device fingerprints in combination with user modeling, which we
demonstrate on a real-world dataset. Our mathematical formulation of the par-
tial fingerprint problem reveals similarities to data association problems studied
in Artificial Intelligence, and we draw upon methods previously developed for
those problems. Our main developments in this regard are a new approach to
dealing with an unknown number of entities and a way to exploit the variation
in fingerprint prevalence.

2 Problem Setting

The problem we are interested in can be formulated as follows. Let O =
{o1, o2, ...} be a set of observations, each one tagged with a partial fingerprint
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f1, f2, .... The observations can take any form. Our only assumption is that they
are exchangeable, which means O is invariant to permutations of the labeling.
Let the unobserved assignment ω be a partition of {1, ..., |O|} such that each
subset in the partition contains the indices of observations made by a single
device. The assignment defines an equivalence relation oa ∼ ob for observation
pairs (oa, ob) belonging to the same device. We assume that fingerprints are sta-
ble; that is, if fa �= fb then oa �∼ ob. The converse is not true: fa = fb does not
imply oa ∼ ob, as different devices may have the same fingerprint.

Let the complete-data Y = {O,ω} be the union of the observed data O
and the unobserved assignment ω. We only observe Y completely if the finger-
prints are unique, because then we can infer ω by putting each fingerprint in
its own equivalence class. If however we have partial fingerprints, then multi-
ple assignments ω ∈ Ω are plausible. Hence, our observations O can be seen as
incomplete-data, and the assignment ω as missing data.

Analogous problems have been studied in the Artificial Intelligence field
where they are referred to as data association problems [2]. A general formulation
was given in [13]. Applications include object tracking, robotic map-building,
surveillance, and citation matching [3,6,15,18,25,27]. These problems have in
common that observed objects or entities are to some degree indistinguishable,
and the challenge is to determine whether two identical-looking objects are in
fact one and the same.

In all data association problems, uncertainty about the correct assignment
ω is unavoidable. This limits the usefulness of heuristic imputation of corre-
spondences. Several AI scholars have applied probabilistic methods that capture
the uncertainty due to measurement error and unpredictable trajectories in a
generative probability model (e.g., [7,17,25]). This model can be designed to
include prior information and assumptions about the appearance and behavior
of entities.

The complete-data Y = {O,ω} can be written as a set of observation
sequences {T1, T2, ..., TN}, N = |ω|, each one belonging to a unique device.
Borrowing a term from the object tracking literature, we call such sequences
trajectories. A probabilistic model P (Y ) = P (T1, ..., TN ) can be designed to
capture patterns and regularities in these trajectories. Using Bayes’ law, this
model then implies a conditional probability distribution over assignments given
the observed data

P (ω|O) =
P (O,ω)
P (O)

∝ P (Y )

where we ignore the normalization constant P (O) since it is constrained to make
the probabilities sum to one. A correspondence probability P (oa ∼ ob) can then
be estimated by summing over the unobserved assignment:

P (oa ∼ ob) =
∑

ω∈Ω: oa∼ob

P (ω|O) ∝
∑

ω∈Ω: oa∼ob

P (ω,O) . (1)

In the following section we explain how such a generative probability model can
be set up, and in Sect. 4 we explain how correspondence probabilities can be
computed according to (1).
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3 Designing a Complete-Data Probability Model

We consider probability models that consist of three independent components: a
prior distribution on the number of users, a prior distribution on the fingerprint
counts, and a trajectory model. The parameters of these models can often be esti-
mated from other data or prior information; for instance, if partial fingerprints
are used to track website visitors who have cookies turned off, the complete-data
model can be fitted to the data from users who have cookies turned on. Alter-
natively, model parameters can be estimated from the incomplete-data using a
stochastic EM scheme that we will explain in Sect. 4.2.

3.1 Dealing with an Unknown Population Size

The number of devices N observed in O is often unknown, and moreover it may
vary over time as new observations come in. A similar situation was encoun-
tered in [16], who suggested estimating N by doing a grid search to optimize
a pre-specified criterion. In the partial fingerprint context this approach is not
attractive, as taking N to be a fixed parameter does not lead to a generative
model. Furthermore, if one is looking to simultaneously estimate the size of
multiple subpopulations, a grid search is not workable because of the curse of
dimensionality.

An idea borrowed from ecology is to introduce an artificial supercommunity
of size S > N from which devices are randomly selected (e.g. [9]). To be precise,
we fix S at some value that we know is larger than N , and for each device
i = 1, ..., S we introduce a random variable zi ∈ {0, 1} that determines whether
device i is available. If a device has at least one observation in O, it is by definition
available; otherwise it is either unavailable or available and unobserved. Hence,
the size of the observed population is N =

∑S
i=1 zi, which is a random variable.

One advantage of this approach is that we may introduce user-level param-
eters νi for i = 1, ..., S, which is of fixed size even though N is unknown. A
second advantage is that it is straightforward to use prior information on N .
In the simplest case we may set N ∼ U(1, S), but another option is to use
N ∼ Binomial(S, π) with some informative prior on π that reflects prior knowl-
edge. In addition, if we want the model to work for varying observation windows,
we may choose to model the arrival and departure of users. This allows for online
deployment of the model with a continuously expanding observation window.

3.2 Modeling Variation in Fingerprint Prevalence

The overall prevalence of a partial fingerprint can be used to inform correspon-
dence probabilities. The intuition is that if we have never seen fingerprint f
before and then observe it twice, it seems likely that these observations corre-
spond to the same device; if on the other hand this fingerprint is known to occur
frequently, we are less certain of this correspondence.

The simplest way to incorporate this idea in a probability model is to
assume that fingerprints are drawn independently from a categorical distribution
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f ∼ Categorical(p) with p = (p1, ..., pK),
∑K

f=1 pf = 1. Then for N users, the
probability of generating fingerprint f1 for the first user, f2 for the second user,
and so on, is

P (f) = pf1pf2 · · · pfN
=

K∏

f=1

p
nf

f , (2)

where nf is the number of users with fingerprint f .
Now imagine two complete-data realizations Y1 and Y2, which can both be

obtained by adding an observation onew with a fingerprint f to Y0, with one
difference: in Y1, the new observation is assigned to a device that exists in Y0,
while in Y2, it is assigned to a new device. If Y1 has N devices with nf occurrences
of fingerprint f , then Y2 has N +1 devices with nf +1 occurrences of fingerprint
f . Hence, in the probability ratio P (Y1)

P (Y2)
all terms in (2) cancel out except for

a 1
pf

. This term is inversely proportional to pf , the population frequency of
fingerprint f , and consequently the hypothesis that onew is made by a device
previously seen with the same fingerprint is more plausible if the fingerprint is
known to occur rarely.

In practice we do not know the true fingerprint population proportions p.
If we put a Dirichlet(α) prior on p for some α > 0 and then integrate out the
uncertainty in the fingerprint probabilities p, the fingerprint counts follow a
compound Dirichlet-Categorical distribution, which we can derive as

P (f |α) =
∫
p

P (f |p)P (p|α) dp

= Γ(A)
Γ(α)K

∏K
f=1 Γ(nf+α)

Γ(N+A) .

Now the probability ratio P (Y1)
P (Y2)

contains a term

N + A

nf + α
. (3)

This is inversely proportional to the smoothed fingerprint count nf + α, which
is in line with our intuition: if we have seen few occurrences of f , we are inclined
to believe that onew belongs to a previously seen device.

Thus far we have assumed that the number of distinct fingerprints K that
could ever occur is a finite number known to us. We may circumvent this by
specifying a fingerprint distribution with an infinite number of fingerprints. If
we fix A and write α = A/K, then as K goes to infinity the term (3) goes
to (N + A)/nf . The corresponding generative process is known as the Chinese
restaurant process (CRP) [1,26]. Ignoring the order of users within groups, it
has probability mass function

P (f) =
Γ(A)A|F |

Γ(A + N)

∏

f∈F

Γ(nf ) (4)

where F is the set of observed fingerprints. The same distribution was introduced
in the context of population genetics by Ewens [11].
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A simple generalization of this distribution uses a discount parameter 0 <
d < 1 with

P (f) =
Γ(A)

Γ(A + N)
d|F |Γ(A/d + |F |)

A/d

∏

f∈F

Γ(nf − d)
Γ(1 − d)

. (5)

This is sometimes called the two-parameter Poisson-Dirichlet distribution, and
it is regularly used in similar situations such as the modeling of word frequencies.

3.3 Modeling User Appearance and Behavior

The last component of the generative probability model is a trajectory model
P (T ). We assume that trajectories are independent, i.e. P (T1, ..., TN ) =∏N

i=1 P (Ti), although the P (Ti) may depend on shared hyperparameters.
We propose a simple trajectory model that can be used in all partial fin-

gerprint situations. Assume that the number of observations in a trajectory
follows a distribution P (n = |Ti|) and that given |Ti|, the times at which these
observations occur are drawn uniformly from the observation window. Then the
probability of a trajectory Ti is

P (Ti) = P (|Ti|) · |Ti|!

where the factorial term arises from the fact that the observations in a trajectory
are always ordered in time.

More advanced trajectory models use domain-specific assumptions about the
coherence of observation sequences. This can be achieved by modeling a sequence
Ti = oi

1, o
i
2, ..., o

i
|Ti| as a Markov process

P (Ti) = p(oi
1)

|Ti|∏

j=2

p(oi
j |oi

j−1)

where the transition probability p(oi
j |oi

j−1) may use any information available at
the observation-level.

If devices are observed repeatedly, there may be value in modeling the behav-
ioral characteristics of users. For instance, a user may have a tendency to appear
at a specific time of day. If this user’s fingerprint appears at a non-typical time,
we may be inclined to say this is a different user with the same fingerprint.

Such patterns can be used to inform correspondence probabilities by intro-
ducing user-level parameters νi in a trajectory model P (Ti) = P (T |νi). Alter-
natively, one may treat the user-level parameters as nuisance parameters and
integrate them out of the likelihood. The probability of a trajectory T then
changes from P (T |ν) to P (T |φ) =

∫
ν
P (T |ν)P (ν|φ) dν where P (ν|φ) is a hier-

archical distribution. For convenient modeling choices this integral may have a
closed-form solution.
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3.4 Putting the Components Together

If we put these three model components together, we get a generative complete-
data probability model

P (Y ) = p(N) · N ! · Γ(A)A|F |

Γ(A + N)

∏

f∈F

Γ(nf ) ·
N∏

i=1

P (Ti). (6)

The N ! term is needed to account for the fact that there is no natural order of
users in our complete-data formulation.

4 Inference

4.1 Calculating Correspondence Probabilities
from a Complete-Data Probability Model

The calculation of correspondence probabilities from a complete-data model as
per (1) involves a summation over all possible assignments ω ∈ Ω. In general,
to estimate any function of the complete-data f(Y ) conditional on the obser-
vations O and the probability model P (Y ) we must average over the uncer-
tainty in ω. This is cumbersome. If there are fingerprints with more than a few
observations, then a sum over ω ∈ Ω is intractable, as the number of possi-
ble assignments ω ∈ Ω grows combinatorially in the number of observations. A
solution used extensively in the data association literature is to draw a sample
ω(1), ..., ω(M) from P (ω|O) ∝ P (Y ) using a Markov-Chain Monte Carlo (MCMC)
approach [12].

MCMC methods work by starting with a random guess ω0 and then generat-
ing a Markov chain ω0, ω1, ω2, ... using a transition kernel density P (ω′|ω). For
a suitably chosen transition density, the sequence ω1, ω2, ... has the desired dis-
tribution as its stationary distribution. One way to achieve this is offered by the
Metropolis-Hastings algorithm, which works as follows. First, the assignment is
initialized to some value ω(0) ∈ Ω. Then, in every iteration t = 1, ..., T , a candi-
date transition ω → ω′ is randomly drawn from a proposal distribution q(ω′|ω)
and accepted with probability

A(ω′|ω) = min
(

1,
P (ω′|O) q(ω|ω′)
P (ω|O) q(ω′|ω)

)
. (7)

If the proposal is accepted we set ω(t+1) = ω′, and otherwise ω(t+1) = ω(t). If the
proposal distribution is reversible, that is, q(ω|ω′) > 0 if and only if q(ω′|ω) > 0,
then the resulting Markov Chain is ergodic with stationary distribution P (ω|O),
as desired.

The idea is to construct a proposal distribution that proposes small changes
to the assignment, by at most a few correspondences. Figure 1 shows four types of
simple reversible transitions. It can easily be verified that every possible assign-
ment can eventually be reached by making only such transitions. Various pro-
posal mechanisms using some combination of the above transitions have been
suggested in the data association literature [18,23–25].
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The computational efficiency of a Metropolis-Hastings algorithm designed in
this manner lies in the fact that the acceptance probability (7) is always simple
to compute, because most terms cancel out. The first half of the probability ratio
in (7) can be written as

P (ω′|O)
P (ω|O)

=
P (ω′, O)
P (ω,O)

=
P (Y ′)
P (Y )

.

Plugging in the three-component model (6) yields

P (Y ′)
P (Y )

=
p(N ′) · N ′! · Γ(A) A|F |

Γ(A+N ′)

∏
f∈F Γ(n′

f ) · ∏N
i=1 P (T ′

i )

p(N) · N ! · Γ(A) A|F |
Γ(A+N)

∏
f∈F Γ(nf ) · ∏N

i=1 P (Ti)
. (8)

When the proposal is a simple transition shown in Fig. 1, Y and Y ′ differ by
at most three trajectories Ti and only one fingerprint count nf , which means
almost all terms in (8) cancel out and a simple expression remains.

Fig. 1. Visualization of Markov transitions used in MCMC sampling from the condi-
tional distribution of assignments

4.2 Parameter Estimation

We may estimate the parameter vector θ of the probability model by maximizing
the marginal likelihood, obtained by summing out the unobserved assignment ω

L(θ|O) = P (O|θ) =
∑

ω∈Ω

P (O,ω|θ).

The summation is intractable. A solution proposed by [25] is to use a stochastic
Expection-Maximization (EM) scheme. The EM algorithm works by first setting
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the parameter vector to an initial guess θ0 and then alternating the following
two steps [8,20]:

E: Compute the posterior distribution over the missing data ω given the
observed data O and the current parameter guess:

P̃ (t)(ω) = P (ω|O,θ(t−1)).

M: Update the parameters to θ(t) by maximizing the expectation of the
complete data log-likelihood with respect to P̃ (t):

θ(t) = arg max
θ

EP̃ (t) [log P (ω,O|θ)]

= arg max
θ

∑

ω∈Ω

[
P̃ (t)(ω) · log P (O,ω|θ)

]
.

If the complete-data log-likelihood is an exponential family, the maximization in
the M-step depends only on a fixed number of sufficient statistics of P̃ (t)(ω).
These sufficient statistics may be approximated by drawing a sample from
P (ω|O,θ(t−1)) with a Metropolis-Hastings algorithm. This constitutes a Monte-
Carlo EM algorithm [29]. It converges if the Monte Carlo error is kept small
enough, which can most easily be achieved by increasing the Monte Carlo sam-
ple size with every iteration — either with predetermined increments or with
data-driven strategies as suggested by [5].

5 Experiments

We validate our method on a real-world dataset from Avito, the largest Rus-
sian classifieds site with 70 million unique monthly visitors. This dataset was
previously used for a data prediction contest and is publicly available1. Users of
Avito browse the site and search for products and services in different categories,
filtered by location, and sometimes with keywords. Each row of the dataset is
a single search action, with columns including a timestamp, indicators of the
category, location, and keywords used in the search, as well as anonymous iden-
tifiers of the device model, browser version, and browser User-Agent of the client
device. In addition, for every search a user identifier is given, obtained from cook-
ies stored on their machine. The dataset contains a sample of 4.3 million users
and spans from April 25th, 2015, to May 20th, 2015. In this period these users
made 112 million searches.

For every user we constructed a device fingerprint from the user’s device type
and model (e.g. Samsung GT-i9500, iPhone, etc.) and browser family (Chrome,
Safari, etc.). A total of 9252 distinct fingerprints were found, among 4.3 million
unique users. The distribution of fingerprints across users, shown in Fig. 2, is
highly skewed: the ten most common fingerprints account for 92% of users.

While these device fingerprints are far from uniquely identifying, we can still
use them in combination with other information to discover correspondences
1 https://www.kaggle.com/c/avito-context-ad-clicks/data.

https://www.kaggle.com/c/avito-context-ad-clicks/data
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between searches. Our goal in this section is to estimate correspondence proba-
bilities for searches by using these partial fingerprints in combination with three
models: (1) a model that only considers the number of searches made by each
user, (2) the same model, but with one extra parameter left to be estimated from
the data with MCMC-EM, and (3) a model that aims to exploit consistency in
the sequence of searches made by a user.

All experiments are run on a test set consisting of all the searches made
by a sample of 5000 users. These users made a total of 124331 searches with
218 unique fingerprints. Among those fingerprints, 55 were unique to a single
device in the test dataset; the most common fingerprint was observed with 1878
different devices. The number of searches made by users follows a heavy-tailed
distribution with a median of 5 and a maximum of almost 2000 searches.
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Fig. 2. Distribution of partial fingerprints

5.1 Evaluation Metrics

We evaluate the performance of our method with the three models based on the
estimated pairwise correspondence probabilities P (oi ∼ oj), i �= j, fi = fj . Our
first performance metric is the Brier Score, calculated as

BS =
1

#pairs

∑

i�=j, fi=fj

(p̂ij − yij)2

where yij = 1 if oi ∼ oj and yij = 0 if oi �∼ oj , p̂ij is the estimated correspondence
probability for oi and oj , and the summation runs over all observation pairs
that have the same partial fingerprint. Since there are too many such pairs to
enumerate (namely N(N−1)/2), we approximate the sum using a sample of 5000
observation pairs. We draw this sample in two different ways: (1) by drawing
observations pairs u.a.r. from all possible pairs, and (2) by first drawing one
observation u.a.r. and then another with the same fingerprint. Since the number
of possible pairs for a fingerprint with n observations is n(n−1)/2 rather than n,
the first sample will contain many more pairs from the most common fingerprints
than the second sample.
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The second performance metric is the Logarithmic Loss

LL =
−1

#pairs

∑

i�=j, fi=fj

(yij log(pij) + (1 − yij) log(1 − p̂ij)) .

The summation is approximated using the same two samples of 5000 pairs. From
an information-theoretic perspective, this logarithmic loss is essentially minus
the expected cross-entropy between the estimated correspondence probabilities
and the true correspondences. A higher log-loss indicates a higher expected sur-
prisal.

5.2 Models and Implementation

We now outline the three models and some of the non-trivial calculations
involved in their implementation.

Model 1. The first model can be written as

N ∼ U(1, S), f ∼ CRP(A, d),
|Ti| − 1 ∼ NegativeBinomial(r, p), i = 1, ..., N

(9)

where S is assumed to be large enough. In practice, S always cancels out of the
Metropolis-Hastings acceptance probability. Plugging these distributions into
the complete-data likelihood (6) gives

P (Y |M1, A, r, p) =
1

S − 1
N ! × Γ(A)A|F |

Γ(A + N)

∏

f∈F

Γ(nf )

×
N∏

i=1

((|Ti| + r − 2
|Ti| − 1

)
(1 − p)r p|Ti|−1 |Ti|!

)
.

The parameters A, r and p are estimated from the rows in the data set that are
not in the test sample. Using maximum-likelihood, we found the values r̂ = 0.26
and p̂ = 0.012. The fingerprint distribution parameters A and d were found with
the following procedure. First, we estimated the empirical relationship between
the number of users N and the number of unique fingerprints |F | by subsampling
N users for a range of N values and each time counting the number of unique
fingerprints. Then we fitted the distribution f ∼ CRP(A, d) by matching the
expected number of fingerprints E(|F |;A, d) to the empirical estimates using
least squares.

Model 2. The second model is similar to the first model, but instead of a
uniform prior on the total number of observed users N a binomial prior is used,
i.e. N ∼ B(S, ρ) where S � N is fixed at some large value. We estimate ρ from
the incomplete-data O using the MCMC-EM algorithm described in Sect. 4.2.
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In the M-step we set

ρ(t) = arg max
θ

EP̃ (t) [log P (ω,O|θ)]

≈ arg max
M∑

m=1

[
log P (O,ω(m)|ρ)

]

= 1
M

M∑
m=1

N(m)

S

where ω(1), ..., ω(M) are MCMC samples drawn in the E-step. The advantage of
this model is that prior information on ρ can be used to get better results and
faster convergence of the MCMC algorithm.

Model 3. The third model is an extended version of Model 1. This model is
designed to exploit coherence in the searches that users make. Recall that the
data set includes for every observation an identifier for the location used in the
search; users tend to repeatedly use a small number of locations in all their
searches. Let zi

j be the location used in search oi
j by user i. We assume, for

a trajectory Ti, that the associated sequence of searches zi = (zi
1, z

i
2, ..., z

i
|Ti|)

follows a Dirichlet-Categorical distribution

P (zi|α) =
Γ(

∑K
k=1 αk)

Γ(|Ti| +
∑K

k=1 αk)

∏K
k=1 Γ(nik + αk)
∏K

k=1 Γ(αk)

where nik =
∑|Ti|

j=1 I[zi
j = k]. A draw from this distribution can be generated by

first drawing a probability vector p from a Dirichlet distribution with parameter
vector α and then drawing |Ti| observations from a categorical distribution with
probability vector p. The conditional probability distribution of the location zi

j

used in the j’th search by user i given this user’s previous searches equals

P (zi
j = k|zi

1, ..., z
i
j−1) =

αk + nj−1
ik∑K

k=1 αk + (j − 1)

where nj−1
ik is the number of previous searches made with the same location.

Since the conditional probability of location k increases with the number of
times it has been used before, this model incorporates the idea that users tend
to keep using the same locations.

As before, the parameter vector α was estimated a priori from the data
excluding the test sample.

Implementation Details. For all models, data preprocessing was done in R,
and core computations were implemented in C++ functions which were called
from R using the Rcpp module. Code is available online2.
2 https://github.com/michaelciere/partial-fingerprints.

https://github.com/michaelciere/partial-fingerprints
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For the third model, to get satisfactory acceptance rates an additional type
of Metropolis transition was used that extracts or absorbs a group observations
with the same LocationID from a user’s trajectory in one go.

For all three models a total of 250 × 106 MCMC iterations was used, start-
ing from a randomly initialized assignment ω(0). For the second model, these
iterations were spread out over 250 MCMC-EM iterations. Convergence was
confirmed by manual inspection. The performance metrics were then computed
with another 50 × 106 samples. Running on a machine with a 2.0 GHz Intel
Xeon CPU and plenty of memory (the algorithm needs about 5 GB with this
dataset), the MCMC algorithm took about ten seconds per 106 samples.

5.3 Results

Table 1 shows the performance of the three models. As a benchmark this table
also shows the scores obtained by naively assuming that observations with
matching fingerprints are always made by the same user.

Table 1. Calibration of the correspondence probabilities estimated on the test dataset
using the three models and a naive benchmark model which assumes observations with
matching fingerprints correspond to one device with probability one. Lower scores mean
better calibration. The metrics on the first and third row are computed on a sample
of observations pairs randomly drawn from the set of all possible pairs with matching
fingerprints. The metrics on the second and fourth row are computed on a stratified
sample in which the number of pairs with fingerprint f is proportional to nf .

Naive Model 1 Model 2 Model 3

Brier score 0.925 0.0390 0.0366 0.0224

Brier score (weighted) 0.945 0.0313 0.0309 0.0150

Log-loss 12.8 0.249 0.222 0.117

Log-loss (weighted) 13.1 0.216 0.222 0.0919

All three models give calibrated correspondence estimates. This can also be
seen in the calibration plots in Fig. 3. Results for model 2, in which an extra
model parameter was estimated from the incomplete-data, are comparable with
the results from model 1. The correspondence probability estimates obtained by
model 3, which attempts to capture coherence in the locations by which users
filter their searches, are markedly better than those for the first two models. This
improvement is larger for the weighted scores, which can be explained by the
fact that the most common fingerprints, which have a smaller influence on the
weighted scores, are shared by so many users that estimating correspondences
remains difficult even when locations are taken into account. In addition, for
these common fingerprints MCMC sampling is difficult and many iterations are
needed for the correspondence probability estimates to converge.
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Fig. 3. LOWESS-smoothed calibration curves of estimated correspondence
probabilities.

6 Conclusions

This paper has introduced a general-purpose probabilistic method for identifying
devices from non-unique device fingerprints. Our experiments have shown that
this method produces calibrated correspondence probability estimates. Espe-
cially promising are the results obtained by combining partial device fingerprints
with user modeling. Many challenges remain. For instance, we have assumed in
this work that the device fingerprints are stable, meaning they are measured
without noise. When fingerprints are noisy, this noise has to be modeled as well,
which introduces additional complications. Furthermore, online deployment of
this method would require one to model the arrival and departure of devices.
Resolving these issues opens the door to new uses of device fingerprinting in
fraud detection, content personalization, and automated authentication.
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