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Abstract. Learning over multi-view data is a challenging problem with
strong practical applications. Most related studies focus on the classi-
fication point of view and assume that all the views are available at
any time. We consider an extension of this framework in two directions.
First, based on the BiGAN model, the Multi-view BiGAN (MV-BiGAN)
is able to perform density estimation from multi-view inputs. Second, it
can deal with missing views and is able to update its prediction when
additional views are provided. We illustrate these properties on a set of
experiments over different datasets.

1 Introduction

Many concrete applications involve multiple sources of information generating
different views on the same object [4]. If we consider human activities for exam-
ple, GPS values from a mobile phone, navigation traces over the Internet, or even
photos published on social networks are different views on a particular user. In
multimedia applications, views can correspond to different modalities [2] such as
sounds, images, videos, sequences of previous frames, etc.

The problem of multi-view machine learning has been extensively studied
during the last decade, mainly from the classification point of view. In that
case, one wants to predict an output y based on multiple views acquired on an
unknown object x. Different strategies have been explored but a general common
idea is based on the (early or late) fusion of the different views at a particular
level of a deep architecture [17,24,29].

The existing literature mainly explores problems where outputs are chosen
in a discrete set (e.g. categorization), and where all the views are available. An
extension of this problem is to consider the density estimation problem where one
wants to estimate the conditional probabilities of the outputs given the available
views. As noted by [15], minimizing classical prediction losses (e.g. Mean square
error) will not capture the different output distribution modalities.

In this article, we propose a new model able to estimate a distribution over
the possible outputs given any subset of views on a particular input. This model
is based on the (Bidirectional) Generative Adversarial Networks (BiGAN) for-
malism. More precisely, we bring two main contributions: first, we propose the
CV-BiGAN (Conditional Views BiGAN – Sect. 3) architecture that allows one
to model a conditional distribution P (y|.) in an original way. Second, on top of
this architecture, we build the Multi-view BiGANs (MV-BiGAN – Sect. 4) which
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is able to both predict when only one or few views are available, and to
update its prediction if new views are added. We evaluate this model on
different multi-views problems and different datasets (Sect. 5). The related work
is provided in Sect. 6 and we propose some future research directions in Sect. 7.

2 Background and General Idea

2.1 Notations and Task

Let us denote X the space of objects on which different views will be acquired.
Each possible input x ∈ X is associated to a target prediction y ∈ R

n. A classical
machine learning problem is to estimate P (y|x) based on the training set. But we
consider instead a multi-view problem in which different views on x are available,
x being unknown. Let us denote V the number of possible views and x̃k the k-th
view over x. The description space for view k is R

nk where nk is the number
of features in view k. Moreover, we consider that some of the V views can be
missing. The subset of available views for input xi will be represented by an
index vector si ∈ S = {0, 1}V so that sik = 1 if view k is available and sik = 0
elsewhere. Note that all the V views will not be available for each input x, and
the prediction model must be able to predict an output given any subset of views
s ∈ {0; 1}V .

In this configuration, our objective is to estimate the distributions p(y|v(s, x))
where v(s, x) is the set of views x̃k so that sk = 1. This distribution p will be
estimated based on a training set D of N training examples. Each example is
composed of a subset of views si, v(si, xi) associated to an output yi, so that
D = {(

y1, s1, v(s1, x1)
)
, ...,

(
yN , sN , v(sN , xN )

)} where si is the index vector of
views available for xi. Note that xi is not directly known in the training set but
only observed through its associated views.

2.2 Bidirectional Generative Adversarial Nets (BiGAN)

We quickly remind the principle of BiGANs since our model is an extension of
this technique. Generative Adversarial Networks (GAN) have been introduced
by [10] and have demonstrated their ability to model complex distributions. They
have been used to produce compelling natural images from a simple latent distri-
bution [6,19]. Exploring the latent space has uncovered interesting, meaningful
patterns in the resulting outputs. However, GANs lack the ability to retrieve a
latent representation given an output, missing out an opportunity to exploit the
learned manifold. Bidirectional Generative Adversarial Networks (BiGANs) have
been proposed by [7,8], independently, to fill that gap. BiGANs simultaneously
learn both an encoder function E that models the encoding process PE(z|y) from
the space R

n to a latent space R
Z , and a generator function G that models the

mapping distribution PG(y|z) of any latent point z ∈ R
Z to a possible object

y ∈ R
n. From both the encoder distribution and the generator distribution, we

can model two joint distributions, respectively denoted PE(y, z) and PG(y, z):
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PG(y, z) = P (z)PG(y|z)
PE(y, z) = P (y)PE(z|y)

(1)

assuming that P (z) = N (0, 1) and P (y) can be estimated over the training set
by a uniform sampling. The BiGAN framework also introduces a discriminator
network D1 whose task is to determine whether a pair (y, z) is sampled from
pG(y, z) or from pE(y, z), while E and G are trained to fool D1, resulting in the
following learning problem:

min
G,E

max
D1

Ey∼P (y),z∼PE(z|y) [log D1(y, z)]

+Ez∼P (z),y∼PG(y|z) [1 − log D1(y, z)]
(2)

It can be shown, by following the same steps as in [10], that the optimization
problem described in Eq. 2 minimizes the Jensen-Shanon divergence between
PE(y, z) and PG(y, z), allowing the model to learn both a decoder and a gen-
erator over a training set that will model the joint distribution of (y, z) pairs.
As proposed by [8], we consider in the following that PG(y|z) is modeled by
a deterministic non-linear model G so that G(z) = y, and PE as a diagonal
Gaussian distribution E(z) = (μ(y), σ(y)). G, μ and σ are estimated by using
gradient-based descent techniques.

2.3 General Idea

We propose a model based on the Generative Adversarial Networks paradigm
adapted to the multi-view prediction problem. Our model is based on two dif-
ferent principles:

Conditional Views BiGANs (CV-BiGAN): First, since one wants to model
an output distribution based on observations, our first contribution is to propose
an adaptation of BiGANs to model conditional probabilities, resulting in a model
able to learn P (y|x̃) where x̃ can be either a single view or an aggregation of
multiple views. If conditional GANs have already been proposed in the literature
(see Sect. 6) they are not adapted to our problem which require explicit mappings
between input space to latent space, and from latent space to output space.

Multi-View BiGANs (MV-BiGAN): On top of the CV-BiGAN model, we
build a multi-view model able to estimate the distribution of possible outputs
based on any subset of views v(s, x). If a natural way to extend the Conditional
BiGANS for handling multi-view is to define a mapping function which map
the set of views to a representation space (see Sect. 4.1) the resulting model
has shown undesirable behaviors (see Sect. 5.1). Therefore, we propose to con-
strain the model based on the idea that adding one more view to any subset
of views must decrease the uncertainty on the output distribution i.e. the more
views are provided, the less variance the output distribution has. This behavior
is encouraged by using a Kullback-Leibler divergence (KL) regularization (see
Sect. 4.2).
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Fig. 1. The CV-BiGAN architecture. The two top levels correspond to the BiGAN
model, while the third level is added to model the distribution over the latent space
given the input of the CV-BiGAN. The discriminator D2 is used to constraint P (z|y)
and P (z|x̃) to be as close as possible.

3 The Conditional BiGAN Model (CV-BiGAN)

Our first objective is to extend the BiGAN formalism to handle an input space
(e.g. a single observed view) in addition to the output space R

n. We will denote
x̃ the observation and y the output to predict. In other words, we wish to capture
the conditional probability P (y|x̃) from a given training dataset. Assuming one
possesses a bidirectional mapping between the input space and an associated
representation space, i.e. PE(z|y) and PG(y|z), one can equivalently capture
P (z|x̃). The CV-BiGAN model keeps the encoder E and generator G defined
previously but also includes an additional encoder function denoted H which
goal is to map a value x̃ to the latent space R

Z . Applying H on any value of
x̃ results in a distribution PH(z|x̃) = N (μH(x̃), σH(x̃)) so that a value of z
can be sampled from this distribution. This would then allow one to recover a
distribution P (y|x̃).

Given a pair (x̃, y), we wish a latent representation z sampled from PH(z|x̃)
to be similar to one from PE(z|y). As our goal here is to learn P (z|x̃), we define
two joint distributions between x̃ and z:

PH(x̃, z) = PH(z|x̃)P (x̃)

PE(x̃, z) =
∑

y

PE(z|y)P (x̃, y) (3)

Minimizing the Jensen-Shanon divergence between these two distributions is
equivalent to solving the following adversarial problem:

min
E,H

max
D2

Ex̃,y∼p(x̃,y),z∼pE(z|y) [log D2(x̃, z)]

+Ex̃,y∼p(x̃,y),z∼pH(z|x) [1 − log D2(x̃, z)]
(4)
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Note that when applying stochastic gradient-based descent techniques over
this objective function, the probability P (x̃, y) is approximated by sampling
uniformly from the training set. We can sample from PH(x̃, z) and PE(x̃, z) by
forwarding the pair (x̃, y) into the corresponding network.

By merging the two objective functions defined in Eqs. 2 and 4, the final
learning problem for our Conditionnal BiGANs is defined as:

min
G,E,H

max
D1,D2

Ex̃,y∼P (x̃,y),z∼PE(z|y) [log D1(y, z)]

+ Ez∼P (z),y∼PG(y|z) [1 − log D1(y, z)]
+ Ex̃,y∼P (x̃,y),z∼pE(z|y) [log D2(x̃, z)]
+ Ex̃,y∼P (x̃,y),z∼PH(z|x̃) [1 − log D2(x̃, z)]

(5)

The general idea of CV-BiGAN is illustrated in Fig. 1.

4 Multi-View BiGAN

4.1 Aggregating Multi-views for CV-BiGAN

We now consider the problem of computing an output distribution conditioned
by multiple different views. In that case, we can use the CV-BiGAN Model (or
other conditional approaches) conjointly with a model able to aggregate the dif-
ferent views where A is the size of the aggregation space. Instead of considering
the input x̃, we define an aggregation model Ψ . Ψ(v(s, x)) will be the represen-
tation of the aggregation of all the available views x̃k

1:

Ψ(v(s, x)) =
V∑

k=1

skφk(x̃k) (6)

where φk is a function that will be learned that maps a particular view in R
nk to

the aggregation space R
A. By replacing x̃ in Eq. 5, one can then simultaneously

learn the functions φk and the distributions PH , PE and PD, resulting in a
multi-view model able to deal with any subset of views (Fig. 2).

4.2 Uncertainty Reduction Assumption

However, the previous idea suffers from a very high instability when learning,
as it is usually noted with complex GANs architectures (see Sect. 5). In order to
stabilize our model, we propose to add a regularization based on the idea that
adding new views to an existing subset of views should reduce the uncertainty
over the outputs. Indeed, under the assumption that views are consistent one
another, adding a new view should allow to refine the predictions and reduce
the variance of the distribution of the outputs.
1 Note that other aggregation scheme can be used like recurrent neural networks for

example.
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H(.) φ1(x̃1)H

H(.) φ1(x̃1) + φ3(x̃3)H

KL constraint

Fig. 2. The MV-BiGAN additional components. In this example, we consider a case
where only x̃1 is available (top level) and a second case where both x̃1 and x̃3 are
available. The distribution P (z|x̃1, x̃3) is encouraged to be “included” in P (z|x̃1) by
the KL constraint. The aggregation of the views is made by the φk functions that are
learned conjointly with the rest of the model.

Let us consider an object x and two index vectors s and s′ such that
v(x, s) ⊂ v(x, s′) i.e. ∀k, s′

k ≥ sk. Then, intuitively, P (x|v(x, s′)) should be
“included” in P (x|v(x, s)). In the CV-GAN model, since P (y|z) is deterministic,
this can be enforced at a latent level by minimizing KL(P (z|v(x, s′)||P (z|v(x, s)).
By assuming those two distributions are diagonal gaussian distributions (i.e.
P (z|v(x, s′) = N (μ1, Σ1) and P (z|v(x, s) = N (μ2, Σ2) where Σk are diagonal
matrices with diagonal elements σk(i)), the KL divergence can be computed as
in Eq. 7 and differentiated.

KL(P (z|v(x, s′))||P (z|v(x, s))) =

1
2

Z∑

i=1

(

−1 − log

(
σ2
1(i)

σ2
2(i)

)

+
σ2
1(i)

σ2
2(i)

+
(μ1(i) − μ2(i))2

σ2
2(i)

)
(7)

Note that this divergence is written on the estimation made by the function
H and will act as a regularization over the latent conditional distribution.

The final objective function of the MV-BiGAN can be written as:

min
G,E,H

max
D1,D2

Es,x,y∼P (s,x,y),z∼PE(z|y) [log D1(y, z)]

+Ez∼P (z),y∼PG(y|z) [1 − log D1(y, z)]
+Es,x,y∼P (s,x,y),z∼PE(z|y) [log D2(v(x, s), z)]
+Es,x,y∼P (s,x,y),z∼PH(z|v(x,s)) [1 − log D2(v(x, s), z)]

+λEx∼P (x)

∑

s,s′∈Sx

∀k,s′
k≥sk

KL(H(v(x, s′))||H(v(x, s)))

(8)

where λ controls the strength of the regularization. Note that aggregation models
Ψ are included into H and D2 and can be optimized conjointly in this objective
function.
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4.3 Learning the MV-BiGAN

The different functions E, G, H, D1 and D2 are implemented as parametric neu-
ral networks and trained by mini-batch stochastic gradient descent (see Sect. 5.4
for more details concerning the architectures).We first update the discriminators
networks D1 and D2, then we update the generator and encoders G, E and H
with gradient steps in the opposite direction.

As with most other implementation of GAN-based models, we find that using
an alternative objective proposed by [10] for E, G and H instead leads to more
stable training. The new objective consist of swapping the labels for the discrim-
inators instead of reversing the gradient. We also find that we can update all the
modules in one pass instead of taking alternate gradient steps while obtaining
similar results.

Note that the MV-BiGAN model is trained based on datasets where all the
V views are available for each data point. In order to generate examples where
only subsets of views are available, the ideal procedure would be to consider all
the possible subsets of views. Due to the number of data points that would be
generated by such a procedure, we build random sequences of incremental sets
of views and enforce the KL regularization over successive sets.

5 Experiments

We evaluate our model on three different types of experiments, and on two
differents datasets. The first dataset we experiment on is the MNIST dataset of
handwritten digits. The second dataset is the CelebA [14] dataset composed of
both images of faces and corresponding attributes. The MNIST dataset is used
to illustrate the ability of the MV-BiGAN to handle different subset of views,
and to update its prediction when integrating new incoming views. The CelebA
dataset is used to demonstrate the ability of MV-BiGAN to deal with different
types (heterogeneous) of views.

5.1 MNIST, 4 Views

We consider the problem where 4 different views can be available, each view
corresponding to a particular quarter of the final image to predict – each view is
a vector of R(14×14). The MV-BiGAN is used here to recover the original image.
The model is trained on the MNIST training digits, and results are provided on
the MNIST testing dataset.

Figure 3 illustrates the results obtained for some digits. In this figure, the first
column displays the input (the subset of views), while the other columns shows
predicted outputs sampled by the MV-BiGAN. An additional view is added
between each row. This experiment shows that when new views are added, the
diversity in the predicted outputs decreases due to the KL-contraint introduced
in the model, which is the desired behavior i.e. more information implied less
variance. When removing the KL constraint (Fig. 4), the diversity still remains
important, even if many views are provided to the model. This show the impor-
tance of the KL regularization term in the MV-BiGAN objective.
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Fig. 3. Results of the MV-BiGAN on sequences of 4 different views. The first column
corresponds to the provided views, while the other columns correspond to outputs
sampled by the MV-BiGAN.

Fig. 4. Comparaison between MV-BiGAN with (top) and without (bottom) KL-
constraint.
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5.2 MNIST, Sequence of Incoming Views

We made another set of experiments where the views correspond to images with
missing values (missing values are replaced by 0.5). This can be viewed as a
data imputation problem – Fig. 5. Here also, the behavior of the MV-BiGAN
exhibits interesting properties: the model is able to predict the desired output
as long as enough information has been provided. When only non-informative
views are provided, the model produces digits with a high diversity, the diversity
decreasing when new information is added.

Fig. 5. MV-BiGAN with sequences of incoming views. Here, each view is a 28 × 28
matrix (values are between 0 and 1 with missing values replaced by 0.5).

5.3 CelebA, Integrating Heterogeneous Information

At last, the third experiment aims at measuring the ability of MV-BiGAN to
handle heterogeneous inputs. We consider two views: (i) the attribute vector
containing information about the person in the picture (hair color, sex, ...),
and (ii) a incomplete face. Figure 6 illustrates the results obtained on two faces.
The first line corresponds to the faces generated based on the attribute vector.
One can see that the attribute information has been captured by the model:
for example, the sex of the generated face is constant (only women) showing
that MV-BiGan has captured this information from the attribute vector. The
second line corresponds to the faces generated when using the incomplete face
as an input. One can also see that the generated outputs are “compatible” with
the incomplete information provided to the model. But the attribute are not
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considered (for example, women and men are generated). At last, the third line
corresponds to images generated based on the two partial views (attributes and
incomplete face) which are close to the ground-truth image (bottom left). Note
that, in this set of experiments, the convergence of the MV-BiGAN was quite
difficult to obtain, and the quality of the generated faces is still not satisfying.

Fig. 6. Results obtained on the CelebA dataset for two examples. The first line corre-
sponds to the images generated based on the attribute vector, the second line corre-
sponds to images generated based on the incomplete face, the third line corresponds
to the images generated based on the two views. The groundthruth face is given in the
bottom-left corner, while the incomplete face is given in the top-left corner.

5.4 Implementation Details

All models are optimized using Adam with standard hyperparameters β1 = 0.5,
β2 = 10−3 and a learning rate of 2 · 10−5. All hidden layers in generator or
encoder networks are followed by a rectified linear unit. In discriminator net-
works, leaky rectified linear units of slope 0.2 are used instead. Latent represen-
tations (μ, log(σ2)) are of size 2 × 128.

For MNIST experiments, the generator function G has three hidden fully
connected layers. The second and the third hidden layers are followed by batch
normalizations. The output layer uses a sigmoid.

The aggregation model Ψ is a sum of mapping functions φk. Each φk is a
simple linear transformation. The encoding functions E and H are both neural
networks that include an aggregation network followed by two fully connected
layers. A batch normalization is added after the second layer. They output a
pair of vectors (μ, log(σ2)). The output layers has a tanh for μ and a negative
exponential linear unit for log σ2.

The discriminator D1 has three fully connected layers with batch normal-
ization at the third layer. A sigmoid is applied to the outputs. The vector z is
concatenated to the representation at the second layer.

The discriminator D2 is similar to E and H except it uses a sigmoid at the
output level. z is concatenated directly to the aggregation vector Ψ(v(x, s)).

All hidden layers and the aggregation space are of size 1500. λ is set to 1·10−5.
Minibatch size is set to 128. The models have been trained for 300 epochs.

For CelebA experiments, the generator function G is a network of trans-
posed convolution layers described in Table 1.

The mapping functions φk for images are convolution networks (Table 1). For
attribute vectors, they are linear transformations. E and H are neural networks
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Table 1. Convolution architectures used in our experiments on the CelebA dataset.
The top part is used for encoding images into the aggregation space. The bottom part
is used in G to generate images from a vector z.

Operation Kernel Strides Padding Feature maps BN Nonlinearity

Convolution 4 × 4 2 × 2 1 × 1 64 × Leaky ReLU

Convolution 4 × 4 2 × 2 1 × 1 128
√

Leaky ReLU

Convolution 4 × 4 2 × 2 1 × 1 256
√

Leaky ReLU

Convolution 4 × 4 2 × 2 1 × 1 512
√

Leaky ReLU

Convolution 4 × 4 1 × 1 Output size × Linear

Transposed convolution 4 × 4 1 × 1 512
√

ReLU

Transposed convolution 4 × 4 2 × 2 1 × 1 256
√

ReLU

Transposed convolution 4 × 4 2 × 2 1 × 1 128
√

ReLU

Transposed convolution 4 × 4 2 × 2 1 × 1 64
√

ReLU

Transposed convolution 4 × 4 2 × 2 1 × 1 3 × Tanh

with one hidden layer on top of the aggregation model. The hidden layer is
followed by a batch normalization. The output layer is the same as in the MNIST
experiments. The discriminator D1 is a transposed convolution network followed
by a hidden fully connected layer before the output layer. z is concatenated at the
hidden fully connected level. As in the MNIST experiments, the discriminator
D2 is similar to E and H, and z is concatenated directly to the aggregation vector
Ψ(v(x, s)). Aggregation space is of size 1000. λ is set to 1 · 10−3, and mini-batch
size is 16. The model has been trained for 15 epochs.

6 Related Work

Multi-view and Representation Learning: Many application fields natu-
rally deal with multi-view data with true advantages. For example, in the mul-
timedia domain, dealing with a bunch of views is usual [2]: text, audio, images
(different framings from videos) are starting points of these views. Besides, mul-
timedia learning tasks from multi-views led to a large amount of fusion-based
ad-hoc approaches and experimental results. The success of multi-view super-
vised learning approaches in the multimedia community seems to rely on the
ability of the systems to deal with the complementary of the information car-
ried by each modality. Comparable studies are of importance in many domains,
such as bioinformatics [23], speech recognition [1,13], signal-based multimodal
integration [31], gesture recognition [30], etc.

Moreover, multi-view learning has been theoretically studied mainly under
the semi-supervised setting, but only with two facing views [5,11,25,26]. In par-
allel, ensemble-based learning approaches have been theoretically studied, in the
supervised setting: many interesting results should concern multi-view learning,
as long as the ensemble is built upon many views [20,32]. From the represen-
tation learning point of view, recent models are based on the incorporation of
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some “fusion” layers in the deep neural network architecture as in [17] or [24] for
example. Some other interesting models include the multiview perceptron [33].

Estimating Complex Distributions: While deep learning has shown great
results in many classification task for a decade, training deep generative models
still remains a challenge. Deep Boltzmann Machines [21] are un-directed graphi-
cal models organized in a succession of layers of hidden variables. In a multi-view
setting, they are able to deal with missing views and have been used to capture
the joint distribution in bi-modal text and image data [22,24]. Another trend
started with denoising autoencoder [28], which aims to reconstruct a data from a
noisy input have been proved to possess some desirable properties for data gener-
ation [3]. The model have been generalized under the name Generative Stochastic
Networks by replacing the noise function C with a mapping to a latent space
[27]. Pulling away from the mixing problems encountered in previous approaches,
Variational Autoencoders [12] attempts to map the input distribution to a latent
distribution which is easy to sample from. The model is trained by optimizing a
variational bound on the likelihood, using stochastic gradient descent methods.
The Kullback-Leibler regularizer on the latent Gaussian representations used in
our model is reminiscent of the one introduced in the variational lower bound
used by the VAE.

The BiGAN model [7,8] that serves as a basis for our work is an extension of
the Generative Adversarial Nets [10]. A GAN extension that captures conditional
probabilities (CGAN) has been proposed in [16]. However, as noted by [15,18],
they display very unstable behavior. More specifically, CGAN have been able to
generate image of faces conditioned on an attribute vector [9], but fail to model
image distribution conditioned on a part of the image or on previous frames. In
both CGAN and CVBiGAN, the generation process uses random noise to be able
to generate a diversity of outputs from the same input. However, in a CGAN,
the generator concatenate an independent random vector to the input while CV-
BiGAN learns a stochastic latent representation of the input. Also, some of the
difficulties of CGAN in handling images as both inputs x̃ and outputs ỹ stem
from the fact that CGAN’s discriminator directly compares x̃ and y. In CV-
BiGAN, neither discriminators has access to both x̃ and y but only to a latent
representation z and either x̃ or y.

7 Conclusion and Perspectives

We have proposed the CV-BiGAN model for estimating conditional densities,
and its extension MV-BiGAN to handle multi-view inputs. The MV-BiGAN
model is able to both handle subsets of views, but also to update its predic-
tion when new views are added. It is based on the idea that the uncertainty of
the prediction must decrease when additional information is provided, this idea
being handled through a KL constraint in the latent space. This work opens dif-
ferent research directions. The first one concerns the architecture of the model
itself since the convergence of MV-BiGAN is still difficult to obtain and has a
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particularly high training cost. Another direction would be to see if this family
of model could be used on data streams for anytime prediction.

Acknowledgments. This work was supported by the French project LIVES ANR-
15-CE23-0026-03.
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