
Chapter 6
Forecasting and Unpredictability

While – depending on one’s subjective optimism or pessimism often, sometimes
or rarely – it is possible to predict the future, certain forecasting tasks, in particular,
when it comes to self-reference, are provable unattainable, and will remain so forever.
Why? Because some forecasting tasks would result in the following situation, frugally
explained by Aaronson [2] “Turing imagined that there was a special machine that
could solve the Halting Problem. Then he showed how we could have this machine
analyse itself, in such a way that it has to halt if it runs forever, and run forever
if it halts. Like a hound that finally catches its tail and devours itself, the mythical
machine vanishes in a fury of contradiction. (That’s the sort of thing you don’t say
in a research paper.)”

6.1 Reduction from Logical Incompleteness

Given two problems A and B. Let us say that if “a reduction from problem A (in)to
problem B” exists (or “problem A is reducible to problem B”) then the solution to
problem B can be used to solve problem A. Indeed, one may think of B as some
“oracle” or “subroutine” which can be used to solve A. Thereby, reduction from A
into B is an algorithm for transforming problem A into another problem B. Therefore,
when problem A is reducible to problem B, then a solution of problem A cannot be
harder than a solution to problem B, since a solution to B provides a solution to A.
Hence, a reduction from problem A to another problem B can be used to show that
problem B is at least as difficult as problem A.

More specifically, reduction (aka “algorithmic translation”) from some unsolvable
problem A (in particular, the halting problem) to problem B means the demonstration
that the problem B in question is unsolvable by showing that the unsolvable problem
A (in particular, the halting problem) can be reduced to it: that is, by showing that
if we could compute a solution to problem B in question, we could use this solution
to get a computable method for solving the unsolvable problem A (in particular, the

© The Author(s) 2018
K. Svozil, Physical (A)Causality, Fundamental Theories of Physics 192,
https://doi.org/10.1007/978-3-319-70815-7_6

29



30 6 Forecasting and Unpredictability

halting problem) [435, Sect. 2.1, p. 34]. But there cannot exist such a computable
method of solving A. Therefore problem B must be unsolvable as well.

In what follows we shall follow previous reviews of that subject [499, 516]; mostly
in the context of classical mechanics. Thereby the standard method is a reduction from
some form of recursion theoretic incompleteness (in particular, the halting problem)
into some physical entity or decision problem. Here the term reduction also refers to
the method to link physical undecidability by reducing it to logical undecidability.
Logical undecidability, in turn, can be related to ancient antinomies – for instance
“the liar:” already the Bible’s Epistle to Titus 1:12, states that “one of Crete’s own
prophets has said it: ‘Cretans are always liars, evil brutes, lazy gluttons.’ He has
surely told the truth.” – as well as antinomies plaguing Cantor’s naive set theory.

A typical example for this strategy is the embedding of a Turing machine, or
any type of computer capable of universal computation, into a physical system. As
a consequence, the physical system inherits any type of unsolvability derivable for
universal computers such as the unsolvability of the halting problem: because the
computer or recursive agent is embedded within that physical system, so are its
behavioural patterns.

References [35, 119–121, 154–156, 197, 284, 302, 372, 497, 499, 573, 574].
contain concrete examples. The author used a similar reduction technique in the
context of a universal ballistic computational model to argue that the n-body prob-
lem [171, 413, 563] may perform in an undecidable manner; that is, some observables
may not be computable. Consequently, the associated series solutions [496, 560, 561]
might not have computable rates of convergence; just like Chaitin’s Ω [108, 129,
136], the halting probability for prefix-free algorithms on universal computers [109,
111].

Of course, at some point this method or metaphor becomes problematic, as uni-
versal computation requires the arbitrary allocation of time and – depending of the
computational model – computational and/or memory space; that is, a potentially
infinite totality. This is never achievable in realistic physical situations [79–81, 232,
233].

6.2 Determinism Does Not Imply Predictability

One immediate consequence of reduction is the fact that, at least for sufficiently
complex systems allowing the implementation of Peano arithmetic or universal com-
putation, determinism does not imply predictability [497, 499]. This may sound
counterintuitive at first but is quite easy to understand in terms of the behaviour, the
temporal evolution or phenomenology of a device or subsystem capable of universal
computation.

Let us, for the sake of a more explicit (but not formal and in a rather algorithmic
way) demonstration what could happen, consider a supposedly and hypothetically
universal predictor. We shall, by a proof by contradiction show, that the assumption of
such a universal predictor (and some “innocent” side constructions) yields a complete



6.2 Determinism Does Not Imply Predictability 31

contradiction. Therefore, if we require consistency, our only consolation – or rather
our sole option – is to abandon the assumption of the existence of a universal predictor.

6.2.1 Unsolvability of the Halting Problem

The scheme of the proof by contradiction is as follows: the existence of a hypothetical
halting algorithm capable of solving universal prediction will be assumed. More
specifically, it will be (wrongly) assumed that a “universal predictor” exists which
can forecast whether or not any particular program halts on any particular input. This
could, for instance, be a subprogram of some suspicious super-duper macro library
that takes the code of an arbitrary program as input and outputs 1 or 0, depending
on whether or not the respective program halts. One may also think of it as a sort
of oracle or black box analysing an arbitrary program in terms of its symbolic code
and outputting one of two symbolic states, say, 1 or 0, referring to termination or
nontermination of the input program, respectively.

On the basis of this hypothetical halting algorithm one constructs another diag-
onalization program as follows: on receiving some arbitrary input program code
(including its input code) as input, the diagonalization program consults the hypo-
thetical halting algorithm to find out whether or not this input program halts. Upon
receiving the answer, it does the exact opposite consecutively: If the hypothetical
halting algorithm decides that the input program halts, the diagonalization program
does not halt (it may do so easily by entering an infinite loop). Alternatively, if
the hypothetical halting algorithm decides that the input program does not halt, the
diagonalization program will halt immediately.

The diagonalization program can be forced to execute a paradoxical task by receiv-
ing its own program code as input. This is so because, by considering the diagonaliza-
tion program, the hypothetical halting algorithm steers the diagonalization program
into halting if it discovers that it does not halt; conversely, the hypothetical halting
algorithm steers the diagonalization program into not halting if it discovers that it
halts.

The contradiction obtained in applying the diagonalization program to its own
code proves that this program and, in particular, the hypothetical halting algorithm
as the single and foremost nontrivial step in the execution, cannot exist. A slightly
revised form of the proof using quantum diagonalization operators holds for quantum
diagonalization [512], as quantum information could be in a fifty-fifty fixed-point
halting state. Procedurally, in the absence of any fixed-point halting state, the afore-
mentioned task might turn into a nonterminating alteration of oscillations between
halting and nonhalting states [303].



32 6 Forecasting and Unpredictability

6.2.2 Determinism Does Not Imply Predictability

A very general result about the incomputability of nontrivial functional properties is
Rice’s theorem (Cf. the Appendix Sect. A.5 on p. 174) stating that, given an algorithm,
all functional properties (that is, some “nontrivial” input/output behavior which nei-
ther is true for every program, nor true for no program – that is, some programs show
this behaviour, and others don’t) of that algorithm are undecidable. Stated differently,
given a program, there is no general algorithm predicting or determining whether the
function it computes has or has not some property (which some programs have, and
others do not have).

One proof is by reduction to the halting problem; that is, a proof by contradic-
tion: we construct a decision problem about functional properties by overlaying it
with a primary halting problem. A the primary halting problem will in general be
undecidable, so will be the compounded decision problem about function properties.

Suppose (wrongly) that there exists a program predicting or determining whether
or not, for any given program, the function it computes has or has not some particular
property (which some programs have, and others do not have).

Then we construct another program which first solves the halting program from
some other arbitrary but definite program, then clears the memory, and after that,
in a third step, runs a program which has the property which we are interested in.
Now we apply this new program to the predictor. Suppose the other arbitrary but
definite program terminates, then the predictor could in principle predict that the
new program satisfies the property.

Alas, if the other arbitrary but definite program does not halt (but for instance goes
into an infinite loop), then our predictor will never be able to execute the two final
steps of the new program – that is, clearing the memory and running the program
with the property we are interested in. Therefore, predicting the functional property
for the new three-step program constructed amounts to deciding the halting problem
for the other arbitrary but definite program. This task is in general undecidable for
arbitrary other but definite programs.

6.3 Quantitative Estimates in Terms of the Busy Beaver
Function

More quantitatively one can interpret this unpredictability in terms of the busy beaver
function [71, 125, 168, 426], also discussed in Appendix A.7, which can be defined
as a sort of “worst case scenario” as follows: suppose one considers all programs (on
a particular computer) up to length (in terms of the number of symbols) n. What is the
largest number producible by such a program before halting? (Note that non-halting
programs, possibly producing an infinite number, e.g., by a non-terminating loop, do
not apply.) This number may be called the busy beaver function of n.



6.3 Quantitative Estimates in Terms of the Busy Beaver Function 33

Consider a related question: what is the upper bound of running time – or, alter-
natively, recurrence time – of a program of length n bits before terminating or,
alternatively, recurring? An answer to this question will explain just how long we
have to wait for the most time-consuming program of length n bits to halt. That, of
course, is a worst-case scenario. Many programs of length n bits will have halted
long before the maximal halting time. We mention without proof [125, 128] that this
bound can be represented by the busy beaver function.

Knowledge of the maximal halting time would solve the halting problem quan-
titatively because if the maximal halting time were known and bounded by any
computable function of the program size of n bits, one would have to wait just a little
longer than the maximal halting time to make sure that every program of length n –
also this particular program, if it is destined for termination – has terminated. Other-
wise, the program would run forever. Hence, because of the recursive unsolvability
of the halting problem the maximal halting time cannot be a computable function.
Indeed, for large values of n, the maximal halting time “explodes in a way which is
unbounded by computability;” thereby growing faster than any computable function
of n (such as the Ackermann function).

By reduction, upper bounds for the recurrence of any kind of physical behaviour
can be obtained; for deterministic systems representable by n bits, the maximal
recurrence time grows faster than any computable number of n. This bound from
below for possible behaviours may be interpreted quite generally as a measure of the
impossibility to predict and forecast such behaviours by algorithmic means.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	6 Forecasting and Unpredictability
	6.1 Reduction from Logical Incompleteness
	6.2 Determinism Does Not Imply Predictability
	6.2.1 Unsolvability of the Halting Problem
	6.2.2 Determinism Does Not Imply Predictability

	6.3 Quantitative Estimates in Terms of the Busy Beaver Function


