
Chapter 12
Quantum Mechanics in a Nutshell

12.1 The Quantum Canon

At the moment, there exists a loosely bundled canon of quantum rules subsumed
under the term quantum mechanics or quantum theory. It includes reversible as
well as irreversible processes, and is prima facie inconsistent. As already von Neu-
mann [552, 554] and later Everett [30, 206, 545] noted, there cannot be any irre-
versible measurement process nested in a ubiquitous uniformly reversible evolution
of the quantum state. Both von Neumann and Everett called the former, irreversible,
discontinuous change the “process 1”; and the latter, reversible, continuous, deter-
ministic change the “process 2,” respectively. Stated differently, there cannot exist
any irreversible many-to-one measurement scenario (other than pragmatic fappness)
in a reversible one-to-one environment.

Hence, if one wants to maintain irreversible measurements, then (at least within
the quantum formalism) one is faced with the following dilemma: either quantum
mechanics must be augmented with some irreversible, many-to-one state evolution,
thereby spoiling the ubiquitous, universal reversible one-to-one state evolution; or
the assumption of the co-existence of a ubiquitous, uniform reversible one-to-one
state evolution on the one hand with some irreversible many-to-one “wave function
collapse,” (by another wording, “reduction of the state vector”) throughout measure-
ment on the other hand, yields a complete contradiction.

How is such a situation handled in other areas? Every system of logic which is
self-contradictory (inconsistent) – such that a proposition as well as its negation is
postulated; or can be derived from the postulates – in particular, in a formal axiomatic
system, is detrimental and disastrous. Because by the principle of explosion (Latin:
ex falso quodlibet) any invocation of a statement as well as of its negation yields
every proposition true. This can be motivated by supposing that both “P” as well
as “not P” are true. Then the proposition “P or anything” is true (because at
least “P” is true). Now suppose that also “not P” holds. But then, in order for
“P or anything” to be true, “anything” needs to be true. However, if anything is
derivable, then such a system lacks any descriptive or predictive capacity. In this
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60 12 Quantum Mechanics in a Nutshell

respect it is quite convenient that quantum mechanics does not represent a formal
system in the strict logical sense.

With regards to the persistence and scientific reception of inconsistencies within
theoretical domains one is reminded of Cantorian “naive” set theory [116, 117];
whereby a set, or aggregate, was defined as follows [118, p. 85]: “By an “aggre-
gate” (Menge) we are to understand any collection into a whole (Zusammenfassung
zu einem Ganzen) M of definite and separate objects m of our intuition or our
thought. These objects are called the “elements” of M .” Despite its well known
inconsistencies (e.g., Russell’s paradox, [288] defining a “set of all sets that are not
members of themselves”), it was embraced by researchers of the time with unabated
enthusiasm. Hilbert, for instance, stated that [278] “Wherever there is any hope of
salvage, we will carefully investigate fruitful definitions and deductive methods. We
will nurse them, strengthen them, and make them useful. No one shall drive us out
of the paradise which Cantor has created for us.” Indeed, the different forms of
(un)countable infinities still present a marvel of early “naive” set theory.

Another source of perplexity remains irreversibility in statistical physics [381];
in particular, issues related to the second law of thermodynamics [375] in view of
microphysical irreversibility. As already pointed out in Sect. 1.1, for the second law
of thermodynamics to hold Maxwell advised to avoid [234, p. 422]: “all personal
enquiries [[of Molecules]] which would only get me into trouble.” A recent discus-
sion [84, 158, 380, 431] on the exorcism of Maxwell’s demon [189, 190, 332] is
witness of the ongoing debate.

Many practitioners either tend to look the other way, or take a pragmatic stance
expressed quite voluptuously byHeaviside [272, Sect. 225]:“I suppose all workers in
mathematical physics have noticed how the mathematics seems made for the physics,
the latter suggesting the former, and that practical ways of working arise naturally.
. . . But then the rigorous logic of the matter is not plain! Well, what of that? Shall I
refuse my dinner because I do not fully understand the process of digestion? No, not if
I am satisfied with the result. Now a physicist may in like manner employ unrigorous
processes with satisfaction and usefulness if he, by the application of tests, satisfies
himself of the accuracy of his results. At the same time he may be fully aware of
his want of infallibility, and that his investigations are largely of an experimental
character, and may be repellent to unsympathetically constituted mathematicians
accustomed to a different kind of work.”

12.2 Assumptions of Quantum Mechanics

As suggested by Dirac [173] and explored by von Neumann [552, 554], quantum
mechanics has been formalized in terms of Hilbert spaces.

Many researchers have attempted to at least partially derive this kind of quantum
formalism from other principles, mostly informational (cf., e.g., Refs. [569, 588],
and [239, Part II], to name but a few). Indeed, as Lakatos has pointed out [324], the
contemporary researchers cannot know which ideas will prevail, and will ultimately
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12.2 Assumptions of Quantum Mechanics 61

result in progressive research programs. Therefore it appears prudent to pursue varied
research programs in parallel.

In the following we shall present a very brief, somewhat revisionist, view on
quantum mechanics. It is based on pure quantum states representable as dichotomic
value assignments on, equivalently, a (normalized) system of orthonormal basis vec-
tors, the associated set of projection operators, or the associated set of subspaces
of a Hilbert space. (Fapp a Hilbert space is a vector space with a scalar product.)
Vector spaces are needed for the manipulation of vectors, such as vector additions
and superpositions. (For the rest of this chapter, suppose that we are “riding” a single
vector of a high dimensional Hilbert space, thereby qualifying as “members of the
church of the larger Hilbert space.”)

By the spectral theorem, observables can be represented by the weighted spectral
sums of such pure (mutually orthogonal) quantum states aswell. Any non-degenerate
spectral sum represents a maximal measurement. We may call this, or rather the set
of orthogonal projection operators in the spectral sum, a context.

Quantum complementarity is the feature that two different contexts cannot be
directly measured simultaneously.

Scalar products are needed for defining the relational property of vectors, such
as orthogonality and collinearity. They allow projections of vectors onto arbitrary
non-zero subspaces. Thereby they grant a particular view on the quantum state, as
seen from another quantum state – or, equivalently, the proposition represented by
the respective vector or associated projection operator.

Ultimately, scalar products facilitate the definition of frame functions which can
be interpreted as quantum probabilities. This is necessary because, at least from
dimension three onwards, the tight intertwining (pasting) of such maximal views or
contexts does not allow quantum probabilities to be defined by the convex sum of
two-valued measures. These two-valued measures could, if they existed, be inter-
preted as non-contextual truth assignments. As it turns out, relative to reasonable
side assumptions, any such classical strategy fails, simply because, from dimension
three onwards, such two-valued measures do not exist for more than a single context.

12.3 Representation of States

Suppose we are given a Hilbert space of sufficient dimension. That is, its dimen-
sion coincides with the maximal number of mutually exclusive outcomes of any
experiment we wish to formalize.

It is “reasonable” to define a physical state of an object by the maximal empirical
(information) content in principle accessible to an observer by any sort of operational
means available to this observer. In Dirac’s words [173, pp. 11–12], “A state of a sys-
tem may be defined as an undisturbed motion that is restricted by as many conditions
or data as are theoretically possible without mutual interference or contradiction.
In practice the conditions could be imposed by a suitable preparation of the system,
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consisting perhaps in passing it through various kinds of sorting apparatus, such as
slits and polarimeters, the system being left undisturbed after the preparation.”

Schrödinger, in his Generalbeichte [452, Footnote 1, p. 845] (general confession)
of 1935, pointed out that [539, Sect. 6, p. 328] “Actually [[in truth]]—so they say—
there is intrinsically only awareness, observation, measurement. If through them I
have procured at a given moment the best knowledge of the state of the physical
object that is possibly attainable in accord with natural laws, then I can turn aside
as meaningless any further questioning about the “actual state,” inasmuch as I am
convinced that no further observation can extend my knowledge of it—at least, not
without an equivalent diminution in some other respect (namely by changing the
state, see below).”1

No further justification is given here.
A quantum state is thus identified with a maximal co-measurable (or

co-preparable) entity. This is based on complementarity: not all conceivable quantum
physical properties are co-measurable. (For classicalmodels of complementarity, see,
for instance, Moore’s discrete-valued automaton analogue of the Heisenberg uncer-
tainty principle [373, 446, 499], as well as Wright’s generalized urn model [578],
and partition logics in general [511].)

In the Hilbert space formulation of quantum mechanics a state is thus formalized
by two entities; some structural elements, and a measure on these elements [520]:

(I) equivalently,

(i) an orthonormal basis of Hilbert space;
(ii) a set of mutually orthogonal projection operators corresponding to an

orthonormal basis called context;
(iii) a maximal observable, or maximal operator, or maximal transformation

whose spectral sum contains the set of mutual orthogonal projection opera-
tors from the aforementioned basis;

(iv) a maximal Boolean subalgebra [249, 300, 376, 420] of the quantum logic
also called a block;

(II) as well as a two-valued (0-1) measure (or, used synonymously, valuation, or
truth assignment) on all the aforementioned entities, singling out or selecting
one of them such that this measure is one on exactly one of them, and zero on
all the others.

1German original [452, Sect. 6, p. 823] “Wirklich – so sagt man – sind ja eigentlich nur
Wahrnehmung, Beobachtung, Messung. Habe ich mir durch sie in einem gegebenen Augenblick
die bestmögliche Kenntnis vom Zustande des physikalischen Objekts verschafft, die naturgesetzlich
erlangbar ist, so darf ich jede darüber hinausgehende Frage nach dem “wirklichen Zustand” als
gegenstandslos abweisen, sofern ich überzeugt bin, dass keine weitere Beobachtung meine Kenntnis
davon erweitern kann – wenigstens nicht, ohne sie in anderer Hinsicht um ebensoviel zu schmälern
(nämlich durch Veränderung des Zustandes, s. w. u.)”.
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Another way of formalizing a state would be to single out a particular vector of the
basis referred to earlier – the onewhich is actually “true;” that is, whosemeasurement
(deterministically) indicates that the system is in this state.

However, one cannot “not measure” the accompanying context of a particular
set of orthogonal vectors which, together with the state vector, completes a basis.
One can deny it, or look the other way, but the permutation quantum evolution
presented below presents no way for “blissful ignorance:” any “beam dump” is fapp
irreversible and only fapp formalizable by taking partial traces, whereas in principle
the information about the rest of the context remains intact.

12.4 Representation of Observables

A non-degenerate quantum observable is identified with all properties of a state, less
the two-valued measure, and formalized by

(i) an orthonormal basis of Hilbert space;
(ii) a set of mutually orthogonal projection operators corresponding to an orthonor-

mal basis called context;
(iii) a maximal observable, or maximal operator, or maximal transformation whose

spectral sum contains the set of mutual orthogonal projection operators from
the aforementioned basis;

(iv) a maximal Boolean subalgebra [249, 300, 376, 420] of the quantum logic also
called block.

This correspondence (exmeasure) between a quantumstate and a quantumobserv-
able is reflected in the formalism itself: Anymaximal observable can be decomposed
into a spectral sum,with the orthogonal projection operators forming a corresponding
orthonormal basis, or, synonymously, by a context or a block.

12.5 Dynamical Laws by Isometric State Permutations

The isometric state permutation rule postulates that the quantum state evolves in a
deterministic way by isometric (length preserving) state permutation. [Throughout
this book we shall denote a bijection between the same set (continuum) as permu-
tation.] This can be equivalently understood as a linear transformation preserving
the inner product, or as change of orthonormal bases/contexts/blocks [260, Sect. 74]
(see also [460]). The formalization is in terms of unitary operators.

Suppose that the quantum mechanical (unitary) permutation is ubiquitous and
thus valid universally. Then, stated pointedly, “reversibility rules.”

This assumption is strongly supported by a nesting argument [30, 31] first put
forward by Everett, and later by Wigner [571] (cf. Sect. 1.7 on p. 10). Because it is
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quite reasonable that any observing agent, when combined with the object this agent
observes (including the cut/interface), should form a system that is quantized again;
thereby implying a time evolution which is governed by isometric state permutation.

12.6 Disallowed Irreversible Processes

With the assumption of uniform validity of state the quantum evolution by isometric
permutativity, many-to-one processes are excluded. In particular, formation of mixed
states frompure states, aswell as irreversiblemeasurements, and the associated “state
reduction” (or “wave function collapse”) contradict the isometric state permutation
rule, and cannot take place in this regime.

12.6.1 Disallowed State Reduction

Usually a “state reduction” occurs during an irreversiblemeasurement. It is associated
with a transition from a state which is in a non-trivial coherent (or, by an equivalent
term, linear) superposition – that is, a linear combination – a multiplicity of more
than one states

∑n>1
i=1 αi |i〉 with normalization

∑n>1
i=1 |αi |2 = ∑n>1

i=1 αiαi = 1 into
a single state |k〉, 1 ≤ k ≤ n with probability |αk |2 = αkαk . No one-to-one process
such as a permutation can produce this n-to-1 transition.

12.6.2 Disallowed Partial Traces

Again any “generation” of a mixed state from pure states by “tracing out” certain
components of the state is disallowed, since this amounts to a loss of information,
and does not correspond to any invertible (reversible) transformation. Conversely,
one could “purify” any mixed state, but this process is nonunique.

12.7 Superposition of States – Quantum Parallelism

Already Dirac referred to the principle of superposition of states [173, pp. 11–12],
“whenever the system is definitely in one state we can consider it as being partly in
each of two or more other states. The original state must be regarded as the result
of a kind of superposition of the two or more new states, in a way that cannot be
conceived on classical ideas.”

The superposition principle can be formalized by linear combinations as fol-
lows: suppose two states, which can be formally represented by orthonormal bases
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B = {|e1〉, |e2, . . . , |en〉} and B′ = {|f1〉, |f2, . . . , |fn〉}. Then each member |ei 〉 of
the first basis can be represented as a linear combination or coherent superposition
or superposition of elements of the second basis by

|ei 〉 =
n∑

j=1

αi j |f j 〉; (12.1)

and vice versa.
For normalization reasons which are motivated by probability interpretations, the

absolute squares of the coefficients αi j must add up to 1; that is,

n∑

j=1

|αi j |2 =
n∑

j=1

αi jαi j = 1. (12.2)

With this normalization, the dyadic (tensor) product of |ei 〉 is always of trace class
one; that is,

Tr(|ei 〉〈ei |) = Tr

⎡

⎣

⎛

⎝
n∑

j=1

αi j |f j 〉
⎞

⎠

(
n∑

k=1

αik〈fk |
)⎤

⎦ =

=
n∑

l=1

〈fl |
⎛

⎝
n∑

j=1

αi j |f j 〉
⎞

⎠

(
n∑

k=1

αik〈fk |
)

|fl〉 =

=
n∑

l, j,k=1

αi jαikδl jδkl =
n∑

l=1

αilαil = 1.

(12.3)

Superpositions of pure states – resulting in a pure state – should not be confused
with mixed states, such as, for instance,

ρ =
n∑

j=1

ρi j |fi 〉〈f j |, (12.4)

which are the linear combination of dyadic (tensor) products |fi 〉〈f j | of pure states
|fi 〉 and |f j 〉 such that Tr(ρ) = 1 and Tr(ρ2) < 1.

12.8 Composition Rules and Entanglement

In classical physics any compound system – the whole – can be composed from its
parts by separation and specification of the parts individually.
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This “factoring” of states of multiple constituent parts into products of individual
single particle states need no longer be possible in quantum mechanics (although it
is not excluded in particular quasi-classical cases): in general, any strategy to obtain
the entire state of the whole system of many particles by considering the states of
the individual particles fails.

This is a consequence of the quantum mechanical possibility to superpose states
of multiple particles; that is, to add together arbitrarily weighted (subject to nor-
malization) products of single particle states to form a new, valid, state. Classically,
these states are “unreachable” by reversible evolutions-by-permutation, but quantum
mechanically it is quite straightforward to create such a superposition through uni-
tary transformations.Arguably themost prominent one is aHadamard transformation
corresponding to a 50:50 beam splitter.

12.8.1 Relation Properties About Versus Individual
Properties of Parts

Probably the first to discuss this quantum feature (in the context of the measurement
process) was von Neumann, stating that, “If I is in the state ϕ(q) and I I in the
state ξ(r), then I + I I is in the state Φ(q, r) = ϕ(q)ξ(r). If on the other hand
I + I I is in a state Φ(q, r) which is not a product ϕ(q)ξ(r), then I and I I are
mixtures and not states, but Φ establishes a one-to-one correspondence between
the possible values of certain quantities in I and in I I . [554, Sect.VI.2, pp. 436–
437] . . . all “probability dependencies” which may exist between the two systems
disappear as the information is reduced to the sole knowledge of . . . the separated
systems I and I I . But if one knows the state of I precisely, as also that of I I ,
“probability questions” do not arise, and then I + I I , too, is precisely known [554,
Sect.VI.2, p. 426]”.2 Unfortunately the translation uses the two English phrases
“probability dependencies” as well as “probability questions” for von Neumann’s
German expression “Wahrscheinlichkeitsabhängigkeit.” Maybe it would be better to
translate these by “probabilistic correlations.”

In a series of German [452] and English [453, 455] papers Schrödinger empha-
sized that [539, Sect. 10, p. 332] “The whole is in a definite state, the parts taken
individually are not.”3

2German original: “Ist I im Zustande ϕ(q) und I I im Zustande ξ(r), so ist I + I I im Zustande
Φ(q, r) = ϕ(q)ξ(r). Ist dagegen I + I I in einem Zustande Φ(q, r), der kein Produkt ϕ(q)ξ(r) ist,
so sind I und I I Gemische, aber Φ stiftet eine ein-eindeutige Zuordnung zwischen den möglichen
Werten gewisser Größen in I und in I I . [554, Sect.VI.2, p. 232] . . . bei alleiniger Kenntnis . . .

der getrennten Systeme I und I I , gehen alle “Wahrscheinlichkeitsabhängigkeiten”, die zwischen
denn beiden Systemen noch bestehen können, verloren. Wenn man aber sowohl den Zustand von I
als auch denjenigen von I I genau kennt, kommen “Wahrscheinlichkeitsabhängigkeiten” nicht in
Frage, und man kennt auch I + I I genau [554, Sect.VI.2, p. 227]”.
3German original [452, Sect. 10, p. 827] “Das Ganze ist in einem bestimmten Zustand, die Teile
für sich genommen nicht.”
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Both von Neumann and Schrödinger thought of this as a sort of a zero-sum
game, very much like complementary observables: due to the scarcity and fixed
amount of information which merely gets permuted during state evolution, one can
either have total knowledge of the individual parts; with zero relational knowledge
of the correlations and relations among the parts; or conversely one can have total
knowledge of the correlation and relations among the parts; but know nothing about
the properties of the individual parts. Stated differently, any kind of mixture between
the two extremes can be realized for an ensemble of multiple particles or parts:

(i) either the properties of the individual parts are totally determined; in this case
the relations and correlations among the parts remain indeterminate,

(ii) or the relations and correlations among the parts are totally determined; but then
the properties of the individual parts remain indeterminate.

For classical particles only the first case can be realized. The latter case is a genuine
quantum mechanical feature.

Everett expressed this by saying that, in general (that is, with the exception of
quasi-classical states) [206], “a constituent subsystem cannot be said to be in any
single well-defined state, independently of the remainder of the composite system.”
The entire state of multiple quanta can be expressed completely in terms of corre-
lations or joint probability distributions [365, 576], or, by another term, relational
properties [587, 588], among observables belonging to the subsystems. As point-
edly stated by Bennett [287] in quantum physics the possibility exists “that you
have a complete knowledge of the whole without knowing the state of any one part.
That a thing can be in a definite state, even though its parts were not. . . . It’s not a
complicated idea but it’s an idea that nobody would ever think of.”

Schrödinger called such states in German verschränkt, and in English entangled.
In the context of multiple particles the formal criterion for entanglement is that
an entangled state of multiple particles (an entangled multipartite state) cannot be
represented as a product of states of single particles.

12.8.2 “Breathing” In and Out of Entanglement
and Individuality

The sort of “zero-sum game” mentioned earlier is complementary with regards to
encoding information into relations-correlations versus individual properties: due to
the scarcity and fixed amount of information which merely gets permuted during
state evolution, one can either have total knowledge of the individual parts; with zero
relational knowledge of the correlations and relations among the parts; or conversely
one canhave total knowledge of the correlation and relations among the parts; but then
one learns nothing about the properties of the individual parts. Stated differently, any
kind of mixture between the following two extremes can be realized for a ensemble
of multiple particles or parts:
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(i) individuality: either the properties of the individual parts are totally determined;
in this case the relations and correlations among the parts remain indeterminate;
in probability theory one may say that the parts are independent [261, Sect. 45]

(ii) entanglement: or the relations and correlations among the parts are totally deter-
mined; but then the properties of the individual parts remain indeterminate.

For classical particles only the first, individual, case can be realized. The latter,
entangled, case is a genuine quantum mechanical feature.

Thereby, interaction entangles any formerly individual parts at the price of los-
ing their individuality, and measurements on individual parts destroys entanglement
and “enforces value-definiteness” of the individual constituent parts. Suppose one
starts out with a factorable case. Then an entangled state is obtained by a unitary
transformation of the factorable state. Its inverse transformation leads back from
the entangled state to the factorable state; through a continuum of non-maximal
entangled intermedium states. This may go back and forth – from individuality to
entanglement and then back to individuality – an arbitrary number of times.

In purely formal terms; that is, on the syntactic level, this can be quite well
understood: a pure state of, say, k particles with n states per particle can, be written
as

n∑

i1,...,ik=1

αi1,...,ik |ψ1,i1〉 . . . |ψk,ik 〉 =
n∑

i1,...,ik=1

αi1,...,ik |ψ1,i1 . . . ψk,ik 〉, (12.5)

and not

n∑

i1,...,ik=1

a1,i1 . . . ak,ik |ψ1,i1〉 . . . |ψk,ik 〉 =
n∑

i1,...,ik=1

a1,i1 . . . ak,ik |ψ1,i1 . . . ψk,ik 〉. (12.6)

In particular, this is only valid if αi1,...,ik = a1,i1 . . . ak,ik .
For the sake of a concrete demonstration [368, Sect. 1.5], consider a general state

in four-dimensional Hilbert space. It can be written as a vector in C
4, which can be

parameterized by

(
α1,α2,α3,α4

)ᵀ
, with α1,α3,α3,α4 ∈ C, (12.7)

and suppose (wrongly) (12.7) that all such states can be written in terms of a tensor
product of two quasi-vectors in C

2

(
a1, a2

)T ⊗(b1, b2
)ᵀ ≡ (

a1b1, a1b2, a2b1, a2b2
)ᵀ

, with a1, a2, b1, b2 ∈ C. (12.8)

A comparison of the coordinates in (12.7) and (12.8) yields

α1 = a1b1, α2 = a1b2, α3 = a2b1, α4 = a2b2. (12.9)
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By taking the quotient of the two first and the two last equations, and by equating
these quotients, one obtains

α1

α2
= b1

b2
= α3

α4
, and thus α1α4 = α2α3. (12.10)

How can we imagine this? As in many cases, states in the Bell basis, and, in
particular, the Bell state, serve as a sort of Rosetta Stone for an understanding of this
quantum feature. The Bell state |Ψ −〉 is a typical example of an entangled state; or,
more generally, states in the Bell basis can be defined and, with |0〉 = (

1, 0
)ᵀ

and
|1〉 = (

0, 1
)ᵀ
, encoded by

|Ψ ∓〉 = 1√
2

(|01〉 ∓ |10〉) =

⎛

⎜
⎜
⎝

0
1

∓1
0

⎞

⎟
⎟
⎠ , |Φ∓〉 = 1√

2
(|00〉 ∓ |11〉) =

⎛

⎜
⎜
⎝

1
0
0

∓1

⎞

⎟
⎟
⎠ .

(12.11)
For instance, in the case of |Ψ −〉 a comparison of coefficient yields

α1 = a1b1 = 0, α2 = a1b2 = 1√
2
,

α3 = a2b1 − 1√
2
, α4 = a2b2 = 0;

(12.12)

and thus entanglement, since

α1α4 = 0 �= α2α3 = 1

2
. (12.13)

This shows that |Ψ −〉 cannot be considered as a two particle product state. Indeed,
the state can only be characterized by considering the relative properties of the two
particles – in the case of |Ψ −〉 they are associated with the statements [588]: “the
quantum numbers (in this case “0” and “1”) of the two particles are different in (at
least) two orthogonal directions.”

The Bell basis symbolizing entanglement and non-individuality can, in an ad hoc
manner, be generated from a non-entangled, individual state symbolized by elements
of the Cartesian standard basis in 4-dimensional real space R4

|e1〉 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ , |e2〉 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , |e3〉 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ , |e4〉 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ . (12.14)

by arranging the coordinates (12.11) of the Bell basis as row or column vectors,
thereby forming the respective unitary transformation
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U = |Ψ −〉〈e1| + |Ψ +〉〈e2| + |Φ−〉〈e3| + |Φ+〉〈e4| =

= (|Ψ −〉, |Ψ +〉, |Φ−〉, |Φ+〉) = 1√
2

⎛

⎜
⎜
⎝

0 0 1 1
1 1 0 0

−1 1 0 0
0 0 −1 1

⎞

⎟
⎟
⎠ .

(12.15)

Successive application of U and its inverse Uᵀ transforms an individual, non-
entangled state from the Cartesian basis back and forth into an entangled, non-
individual state from the Bell basis. For the sake of another demonstration, consider
the following perfectly cyclic evolution which permutes all (non-)entangled states
corresponding to the Cartesian and Bell bases:

|e1〉 U�→ |Ψ −〉 V�→ |e2〉 U�→ |Ψ +〉 V�→ |e3〉 U�→ |Φ−〉 V�→ |e4〉 U�→ |Φ+〉 V�→ |e1〉.
(12.16)

This evolution is facilitated byU of Eq. (12.15), as well as by the following additional
unitary transformation [460]:

V = |e2〉〈Ψ −| + |e3〉〈Ψ +| + |e4〉〈Φ−| + |e1〉〈Φ+| =

=

⎛

⎜
⎜
⎝

〈Φ+|
〈Ψ −|
〈Ψ +|
〈Φ−|

⎞

⎟
⎟
⎠ = 1√

2

⎛

⎜
⎜
⎝

1 0 0 1
0 1 −1 0
0 1 1 0
1 0 0 −1

⎞

⎟
⎟
⎠ .

(12.17)

One of the ways thinking of this kind of “breathing in and out of individuality and
entanglement” is in terms of sampling and scrambling information, as quoted from
Chiao [251, p. 27] (reprinted in [350]): “Nothing has really been erased here, only
scrambled!” Indeed, mere re-coding or “scrambling,” and not erasure or creation
of information, is tantamount to, and an expression and direct consequence of, the
unitary evolution of the quantum state.

12.9 Quantum Probabilities

So far, quantum theory lacks probabilities. These will be introduced and compared to
classical probabilities next. Indeed, for the sake of appreciating the novel features of
quantum probabilities and correlations, as well as the (joint) expectations of quantum
observables, a short excursion into classical probability theory is useful.
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12.9.1 Boole’s Conditions of Possible Experience

Already George Boole, although better known for his symbolic logic calculus of
propositions aka Laws of Thought [66], pointed out that the probabilities of certain
events, as well as their (joint) occurrence are subject to linear constraints [45–50,
66, 67, 163, 181–183, 221, 257, 258, 328, 421, 424, 524, 541–543]. A typical
problem considered by Boole was the following [67, p. 229]: “Let p1, p2, . . . , pn

represent the probabilities given in the data. As these will in general not be the
probabilities of unconnected events, they will be subject to other conditions than that
of being positive proper fractions, . . .. Those other conditions will, as will hereafter
be shown, be capable of expression by equations or inequations reducible to the
general form a1 p1 + a2 p2 + · · · + an pn + a ≥ 0, a1, a2, . . . , an, a being numerical
constants which differ for the different conditions in question. These . . . may be
termed the conditions of possible experience.”

Independently, Bell [40] derived some bounds on classical joint probabilities
which relate to quantized systems insofar as they can be tested and falsified in
the quantum regime by measuring subsets of compatible observables (possibly by
Einstein–Podolsky–Rosen type [196] counterfactual inference) – one at a time – on
different subensembles prepared in the same state. Thereby, in hindsight, it appears
to be a bitter turn of history of thought that Bell, a staunch classical realist, who found
wanting [41] previous attempts [552, 554], created one of the most powerful theo-
rems used against (local) hidden variables. The present form of the “Bell inequal-
ities” is due to Wigner [572] (cf. Sakurai [439, pp. 241–243] and Pitowsky [397,
Footnote 13]. Fine [215] later pointed out that deterministic hidden variables just
amount to suitable joint probability functions.

In referring to a later paper by Bell [42], Froissart [143, 227] proposed a general
constructive method to produce all “maximal” (in the sense of tightest) constraints
on classical probabilities and correlations for arbitrary physical configurations. This
method uses all conceivable types of classical correlated outcomes, represented as
matrices (or higher dimensional objects) which are the vertices [227, p. 243] “of
a polyhedron which is their convex hull. Another way of describing this convex
polyhedron is to view it as an intersection of half-spaces, each one corresponding
to a face. The points of the polyhedron thus satisfy as many inequations as there are
faces. Computation of the face equations is straightforward but tedious.” That is,
certain “optimal” Bell-type inequalities can be interpreted as defining half-spaces
(“below-above,” “inside-outside”) which represent the faces of a convex correlation
polytope.

Later Pitowsky pointed out that any Bell-type inequality can be interpreted as
Boole’s condition of possible experience [396–400, 407]. Pitowsky does not quote
Froissart but mentions [396, p. 1556] that he had been motivated by a (series of)
paper(s) by Garg and Mermin [235] (who incidentally did not mention Froissart
either) on Farkas’ Lemma. Their concerns were linear constraints on pair dis-
tributions, derivable from the existence of higher-order distributions; constraints
which turn out to be Bell-type inequalities; derivable as facets of convex correlation
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polytopes. The Garg and Mermin paper is important because it concentrates on the
“inverse” problem: rather than finding high-order distributions from low-order ones,
they consider the question of whether or not those high-order distributions could
return random variables with first order distributions as marginals. One of the exam-
ples mentioned [235, p. 2] are “three dichotomic variables each of which assumes
either the value 1 or −1 with equal probability, and all the pair distributions vanish
unless the members of the pair have different values, then any third-order distri-
bution would have to vanish unless all three variables had different values. There
can therefore be no third-order distribution.” (I mention this also because of the
similarity with Specker’s parable of three boxes [479, 521].) A very similar ques-
tion had also been pursued by Vorob’ev [556] and Kellerer [304, 305], who inspired
Klyachko [312], as neither one of the previous authors are mentioned. [To be fair,
in the reference section of an unpublished previous paper [311] Klyachko mentions
Pitowsky two times; one reference not being cited in the main text.]

12.9.2 Classical Strategies: Probabilities from Convex
Sum of Truth Assignments and the Convex Polytope
Method

The gist of the classical strategy is to obtain all conceivable probabilities by a convex
polytopemethod: any classical probability distribution can bewritten as a convex sum
of all of the conceivable “extreme” cases. These “extreme” cases can be interpreted
as classical truth assignments; or, equivalently, as two-valued states. A two-valued
state is a function on the propositional structure of elementary observables, assigning
any proposition the values “0” and “1” if they are (for a particular “extreme” case)
“false” or “true,” respectively. “Extreme” cases are subject to criteria defined later
in Sect. 12.9.4. The first explicit use [502, 506, 511, 521] (see Pykacz [423] for an
early use of two-valued states) of the polytope method for deriving bounds using
two-valued states on logics with intertwined contexts seems to have been for the
pentagon logic, discussed in Sect. 12.9.8.3) and cat’s cradle logic (also called “Käfer,”
the German word for “bug,” by Specker), discussed in Sect. 12.9.8.4.

More explicitly, suppose that there be as many, say, k, “weights” λ1, . . . ,λk as
there are two-valued states (or “extreme” cases, or truth assignments, if you prefer
this denominations). Then convexity demands that all of these weights are positive
and sum up to one; that is,

λ1, . . . ,λk ≥ 0, and

λ1 + · · · + λk = 1.
(12.18)

Suppose further that for any particular, say, the i th, two-valued state (or the i th
“extreme” case, or the i th truth assignment, if you prefer this denomination), all
the, say, m, “relevant” terms – relevance here merely means that we want them to
contribute to the linear bounds denoted byBoole as conditions of possible experience,
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as discussed in Sect. 12.9.6 – are “lumped” or combined together and identified as
vector components of a vector |xi 〉 in an m-dimensional vector space Rm ; that is,

|xi 〉 = (
xi1 , xi2 , . . . , xim

)ᵀ
. (12.19)

Note that any particular convex [see Eq. (12.18)] combination

|w(λ1, . . . ,λk)〉 = λ1|x1〉 + · · · + λk |xk〉 (12.20)

of the k weights λ1, . . . ,λk yields a valid – that is consistent, subject to the criteria
defined later in Sect. 12.9.4 – classical probability distribution, characterized by the
vector |w(λ1, . . . ,λk)〉. These k vectors |x1〉, . . . , |xk〉 can be identified with vertices
or extreme points (which cannot be represented as convex combinations of other
vertices or extreme points), associated with the k two-valued states (or “extreme”
cases, or truth assignments). Let V = {|x1〉, . . . , |xk〉} be the set of all such vertices.

For any such subset V (of vertices or extreme points) of Rm , the convex hull is
defined as the smallest convex set in R

m containing V [230, Sect. 2.10, p. 6]. Based
on its vertices a convex V-polytope can be defined as the subset of Rm which is the
convex hull of a finite set of vertices or extreme points V = {|x1〉, . . . , |xk〉} in Rm :

P = Conv(V ) =

=
{

k∑

i=1

λi |xi 〉
∣
∣
∣λ1, . . . ,λk ≥ 0,

k∑

i=1

λi = 1, |xi 〉 ∈ V

}

.
(12.21)

A convex H-polytope can also be defined as the intersection of a finite set of
half-spaces, that is, the solution set of a finite system of n linear inequalities:

P = P(A, b) =
{
|x〉 ∈ R

m
∣
∣
∣Ai |x〉 ≤ |b〉 for 1 ≤ i ≤ n

}
, (12.22)

with the condition that the set of solutions is bounded, such that there is a constant
c such that ‖|x〉‖ ≤ c holds for all |x〉 ∈ P . Ai are matrices and |b〉 are vectors with
real components, respectively. Due to the Minkoswki-Weyl “main” representation
theorem [22, 230, 254, 274, 361, 449, 590] every V-polytope has a description by a
finite set of inequalities. Conversely, every H-polytope is the convex hull of a finite
set of points. Therefore the H-polytope representation in terms of inequalities as
well as the V-polytope representation in terms of vertices, are equivalent, and the
term convex polytope can be used for both and interchangeably. A k-dimensional
convex polytope has a variety of faces which are again convex polytopes of various
dimensions between 0 and k − 1. In particular, the 0-dimensional faces are called
vertices, the 1-dimensional faces are called edges, and the k − 1-dimensional faces
are called facets.

The solution of the hull problem, or the convex hull computation, is the determina-
tion of the convex hull for a given finite set of k extreme points V = {|x1〉, . . . , |xk〉}
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in R
m (the general hull problem would also tolerate points inside the convex poly-

tope); in particular, its representation as the intersection of half-spaces defining the
facets of this polytope – serving as criteria of what lies “inside” and “outside” of
the polytope – or, more precisely, as a set of solutions to a minimal system of linear
inequalities. As long as the polytope has a non-empty interior and is full-dimensional
(with respect to the vector space intowhich it is imbedded) there are only inequalities;
otherwise, if the polytope lies on a hyperplane one obtains also equations.

For the sake of a familiar example, consider the regular 3-cube,which is the convex
hull of the 8 vertices in R

3 of V = { (
0, 0, 0

)ᵀ
,
(
0, 0, 1

)ᵀ
,
(
0, 1, 0

)ᵀ
,
(
1, 0, 0

)ᵀ
,

(
0, 1, 1

)ᵀ
,
(
1, 1, 0

)ᵀ
,
(
1, 0, 1

)ᵀ
,
(
1, 1, 1

)ᵀ }
. The cube has 8 vertices, 12 edges, and

6 facets. The half-spaces defining the regular 3-cube can be written in terms of the 6
facet inequalities 0 ≤ x1, x2, x3 ≤ 1.

Finally the correlation polytope can be defined as the convex hull of all the ver-
tices or extreme points |x1〉, . . . , |xk〉 in V representing the (k per two-valued state)
“relevant” terms evaluated for all the two-valued states (or “extreme” cases, or truth
assignments); that is,

Conv(V ) =
{
|w(λ1, . . . ,λk)〉

∣
∣
∣

∣
∣
∣|w(λ1, . . . ,λk)〉 = λ1|x1〉 + · · · + λk |xk〉 ,

λ1, . . . ,λk ≥ 0, λ1 + · · · + λk = 1, |xi 〉 ∈ V
}
.

(12.23)

The convex H-polytope – associated with the convex V-polytope in (12.23) –
which is the intersection of a finite number of half-spaces, can be identified with
Boole’s conditions of possible experience.

A similar argument can be put forward for bounds on expectation values, as the
expectations of dichotomic E ∈ {−1,+1}-observables can be considered as affine
transformations of two-valued states v ∈ {0, 1}; that is, E = 2v − 1. One might
even imagine such bounds on arbitrary values of observables, as long as affine trans-
formations are applied. Joint expectations from products of probabilities transform
non-linearly, as, for instance E12 = (2v1 − 1)(2v2 − 1) = 4v1v2 − 2(v1 + v2) − 1.
So, given some bounds on (joint) expectations; these can be translated into bounds
on (joint) probabilities by substituting 2vi − 1 for expectations Ei . The converse
is also true: bounds on (joint) probabilities can be translated into bounds on (joint)
expectations by vi = (Ei + 1)/2.

This method of finding classical bounds must fail if, such as for Kochen–Specker
configurations, there are no or “too few” (such that there exist two or more atoms
which cannot be distinguished by any two-valued state) two-valued states. In this
case one my ease the assumptions; in particular, abandon admissibility, arriving at
what has been called non-contextual inequalities [92].
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12.9.3 Context and Greechie Orthogonality Diagrams

Henceforth a context will be anyBoolean (sub-)algebra of experimentally observable
propositions. The terms block or classical mini-universe will be used synonymously.

In classical physics there is only one context – and that is the entire set of observ-
ables. There exist models such as partition logics [184, 506, 511] – realizable by
Wright’s generalized urn model [578] or automaton logic [444–446, 499], – which
are still quasi-classical but have more than one, possibly intertwined, contexts. Two
contexts are intertwined if they share one or more common elements. In what fol-
lows we shall only consider contexts which, if at all, intertwine at a single atomic
proposition.

For such configurations Greechie has proposed a kind of orthogonality dia-
gram [249, 300, 523] in which

1. entire contexts (Boolean subalgebras, blocks) are drawn as smooth lines, such as
straight (unbroken) lines, circles or ellipses;

2. the atomic propositions of the context are drawn as circles; and
3. contexts intertwining at a single atomic proposition are represented as non-

smoothly connected lines, broken at that proposition.

In Hilbert space realizations, the straight lines or smooth curves depicting con-
texts represent orthogonal bases (or, equivalently, maximal observables, Boolean
subalgebras or blocks), and points on these straight lines or smooth curves represent
elements of these bases; that is, two points on the same straight line or smooth curve
represent two orthogonal basis elements. From dimension three onwards, bases may
intertwine [240] by possessing common elements.

12.9.4 Two-Valued Measures, Frame Functions
and Admissibility of Probabilities and Truth
Assignments

In what follows we shall use notions of “truth assignments” on elements of logics
which carry different names for related concepts:

1. The quantum logic community uses the term two-valued state; or, alternatively,
valuation for a total function v on all elements of some logic L mapping v : L →
[0, 1] such that [420, Definition 2.1.1, p. 20]

a. v(I) = 1,
b. if {ai , i ∈ N} is a sequence of mutually orthogonal elements in L – in particu-

lar, this applies to atoms within the same context (block, Boolean subalgebra)
– then the two-valued state is additive on those elements ai ; that is, additivity
holds:
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v

(
∨

i∈N

)

=
∑

i∈N
v(ai ). (12.24)

2. Gleason has used the term frame function [240, p. 886] of weight 1 for a separable
Hilbert space H as a total, real-valued (not necessarily two-valued) function f
defined on the (surface of the) unit sphere of H such that if {ai , i ∈ N} represents
an orthonormal basis of H, then additivity

∑

i∈N
f (ai ) = 1. (12.25)

holds for all orthonormal bases (contexts, blocks) of the logic based on H.
3. A dichotomic total function v : L → [0, 1] will be called strongly admissible if

a. within every context C = {ai , i ∈ N}, a single atom a j is assigned the value
one: v(a j ) = 1; and

b. all other atoms in that context are assigned the value zero: v(ai �= a j ) = 0.
Physically this amounts to only one elementary proposition being true; the
rest of them are false. (One may think of an array of mutually exclusively
firing detectors.)

c. Non-contextuality, stated explicitly]: The value of any observable, and, in
particular, of an atom in which two contexts intertwine, does not depend on
the context. It is context-independent.

4. In order to cope with value indefiniteness (cf. Sect. 12.9.8.7), a weaker form of
admissibility has been proposed [3–6] which is no total function but rather is a
partial function which may remain undefined (indefinite) on some elements of
L: A dichotomic partial function v : L → [0, 1] will be called admissible if the
following two conditions hold for every context C of L:

a. if there exists a a ∈ C with v(a) = 1, then v(b) = 0 for all b ∈ C \ {a};
b. if there exists a a ∈ C with v(b) = 0 for all b ∈ C \ {a}, then v(a) = 1;
c. the value assignments of all other elements of the logic not covered by, if

necessary, successive application of the admissibility rules, are undefined
and thus the atom remains value indefinite.

Unless otherwise mentioned (such as for contextual value assignments or admis-
sibility discussed in Sect. 12.9.8.7) the quantum logical (I), Gleason type (II), strong
admissibility (III) notions of two-valued states will be used. Such two valued states
(probability measures) are interpretable as (pre-existing) truth assignments; they are
sometimes also referred to as a Kochen–Specker value assignment [583].
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12.9.5 Why Classical Correlation Polytopes?

A caveat seems to be in order from the very beginning: in what follows correlation
polytopes arise from classical (and quasi-classical) situations. The considerations
are relevant for quantum mechanics only insofar as the quantum probabilities could
violate classical bounds; that is, if the quantum tests violote those bounds by “lying
outside” of the classical correlation polytope.

There exist at least twogood reasons to consider (correlation) polytopes for bounds
on classical probabilities, correlations and expectation values:

1. they represent a systematic way of enumerating the probability distributions and
deriving constraints – Boole’s conditions of possible experience – on them;

2. one can be sure that these constraints and bounds are optimal in the sense that
they are guaranteed to yield inequalities which are best criteria for classicality.

It is not evident to see why, with the methods by which they have been obtained,
Bell’s original inequality [41, 42] or the Clauser–Horne–Shimony–Holt inequal-
ity [145] should be “optimal” at the time theywere presented. Their derivation involve
estimates which appear ad hoc; and it is not immediately obvious that bounds based
on these estimates could not be improved. The correlation polytope method, on the
other hand, offers a conceptually clear framework for a derivation of all classical
bounds on higher-order distributions.

12.9.6 What Terms May Enter Classical Correlation
Polytopes?

What can enter as terms in such correlation polytopes? To quote Pitowsky [397,
p. 38], “Consider n events A1, A2, . . . , An , in a classical event space . . . Denote
pi = probability(Ai ), pi j = probability(Ai ∩ A j ), and more generally pi1i2...ik =
probability

(
Ai1 ∩ Ai2 ∩ · · · ∩ Aik

)
, whenever 1 ≤ i1 < i2 < · · · < ik ≤ n. We

assume no particular relations among the events. Thus A1, . . . , An are not neces-
sarily distinct, they can be dependent or independent, disjoint or non-disjoint etc.”

However, although the events A1, . . . , An may be in any relation to one another,
one has to make sure that the respective probabilities, and, in particular, the extreme
cases – the two-valued states interpretable as truth assignments – properly encode
the logical or empirical relations among events. In particular, when it comes to
an enumeration of cases, consistency must be retained. For example, suppose one
considers the following three propositions: A1: “it rains in Vienna,” A3: “it rains in
Vienna or it rains in Auckland.” It cannot be that A2 is less likely than A1; therefore,
the two-valued states interpretable as truth assignments must obey p(A2) ≥ p(A1),
and in particular, if A1 is true, A2 must be true as well. (It may happen though
that A1 is false while A2 is true.) Also, mutually exclusive events cannot be true
simultaneously.
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These admissibility and consistency requirements are considerably softened in
the case of non-contextual inequalities [92], where subclassicality – the require-
ment that among a complete (maximal) set of mutually exclusiver observables only
one is true and all others are false (equivalent to one important criterion for Glea-
son’s frame function [240]) – is abandoned. To put it pointedly, in such scenarios,
the simultaneous existence of inconsistent events such as A1: “it rains in Vienna,”
A2: “it does not rain in Vienna” are allowed; that is, p(“it rains in Vienna”) =
p(“it does not rain in Vienna”) = 1. The reason for this rather desperate step is
that, for Kochen–Specker type configurations, there are no classical truth assign-
ments satisfying the classical admissibility rules; therefore the latter are abandoned.
(With the admissibility rules goes the classical Kolmogorovian probability axioms
even within classical Boolean subalgebras.)

It is no coincidence that most calculations are limited – or rather limit themselves
because there is no formal reasons to go to higher orders – to the joint probabilities
or expectations of just two observables: there is no easy “workaround” of quantum
complementarity. The Einstein–Podolsky–Rosen setup [196] offers one for just two
complementary contexts at the price of counterfactuals, but there seems to be no
generalization to three or more complementary contexts in sight [448].

12.9.7 General Framework for Computing Boole’s
Conditions of Possible Experience

As pointed out earlier, Froissart and Pitowsky, among others such as Tsirelson, have
sketched a very precise algorithmic framework for constructively finding all condi-
tions of possible experience. In particular, Pitowsky’s later method [397–400, 407],
with slight modifications for very general non-distributive propositional structures
such as the pentagon logic [506, 511, 521], goes like this:

1. define the terms which should enter the bounds;
2. a. if the bounds should be on the probabilities: evaluate all two-valuedmeasures

interpretable as truth assignments;
b. if the bounds should be on the expectations: evaluate all value assignments

of the observables;
c. if (as for non-contextual inequalities) the bounds should be on some pre-

defined quantities: evaluate all value definite pre-assigned quantities;
3. arrange these terms into vectors whose components are all evaluated for a fixed

two-valued state, one state at a time; one vector per two-valued state (truth assign-
ment), or (for expectations) per value assignments of the observables, or (for
non-contextual inequalities) per value-assignment;

4. consider the set of all obtained vectors as vertices of a convex polytope;
5. solve the convex hull problem by computing the convex hull, thereby finding the

smallest convex polytope containing all these vertices. The solution can be rep-
resented as the half-spaces (characterizing the facets of the polytope) formalized
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by (in)equalities – (in)equalities which can be identified with Boole’s conditions
of possible experience.

Froissart [227] and Tsirelson [143] are not much different; they arrange joint
probabilities for two random variables into matrices instead of “delineating” them as
vectors; but this difference is notational only. We shall explicitly apply the method
to various configurations next.

12.9.8 Some Examples

In what follows we shall enumerate several (non-)trivial – that is, non-Boolean in
the sense of pastings [249, 300, 376, 420] of Boolean subalgebras. Suppose some
points or vertices in R

n are given. The convex hull problem of finding the smallest
convex polytope containing all these points or vertices, given the latter, will be
solved evaluatedwith Fukuda’s cddlib package cddlib-094h [229] (usingGMP [223])
implementing the double description method [22, 23, 231].

12.9.8.1 Trivial Cases

Bounds on the Probability of One Observable

The case of a single variable has two extreme cases: false≡ 0 and true≡ 1, resulting
in the two vertices

(
0
)
as well as

(
1
)
, respectively. The corresponding hull problem

yields a probability “below 0” as well as “above 1,” respectively; thus solution this
rather trivial hull problem yields 0 ≤ p1 ≤ 1. For dichotomic expectation values ±1
a similar argument yields −1 ≤ E1 ≤ 1.

Bounds on the (Joint) Probabilities and Expectations of Two Observables

The next trivial case is just two dichotomic (two values) observables and their joint
probability. The respective logic is generated by the pairs (overline indicates nega-
tion) a1a2, a1ā2, ā1a2, ā1ā2, representable by a single Boolean algebra 24, whose
atoms are these pairs: a1a2, a1ā2, ā1a2, ā1ā2. For single Boolean algebras with k
atoms, there are k two-valued measures; in this case k = 4.

For didactive purposes this case has been covered ad nauseam in Pitowsky’s
introductions [396–400, 407]; so it is just mentioned without further discussion:
take the probabilities two observables p1 and p2, and a their joint variable p12 and
“bundle” them together into a vector

(
p1, p2, p1 ∧ p2 ≡ p12 = p1 p2

)ᵀ
of three-

dimensional vector space. Then enumerate all four extreme cases – the two-valued
states interpretable as truth assignments – involving two observables p1 and p2, and
a their joint variable p12 very explicitly false-false-false, false-true-false, true-false-
false, and true-true-true, or by numerical encoding, 0-0-0, 0, 1, 0, 1, 0, 0, and 1-1-1,
yielding the four vectors
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|v1〉 = (
0, 0, 0

)ᵀ
, |v2〉 = (

0, 1, 0
)ᵀ

,

|v3〉 = (
1, 0, 0

)ᵀ
, |v4〉 = (

1, 1, 1
)ᵀ

.
(12.26)

Solution of the hull problem for the polytope

{
λ1|v1〉 + λ2|v2〉 + λ3|v3〉 + λ4|v4〉

∣
∣
∣

∣
∣
∣λ1 + λ2 + λ3 + λ4 = 1,λ1,λ2,λ3,λ4 ≥ 0

} (12.27)

yields the “inside-outside” inequalities of the half-spaces corresponding to the four
facets of this polytope:

p1 + p2 − p12 ≤ 1,

0 ≤ p12 ≤ p1, p2.
(12.28)

For the expectation values of two dichotomic observables ±1 a similar argument
yields

E1 + E2 − E12 ≤ 1,

−E1 + E2 + E12 ≤ 1,

E1 − E2 + E12 ≤ 1,

−E1 − E2 − E12 ≤ 1.

(12.29)

Bounds on the (Joint) Probabilities and Expectations of Three Observables

Very similar calculations, taking into account three observables and their joint prob-
abilities and expectations, yield

p1 + p2 + p3 − p12 − p13 − p23 + p123 ≤ 1,

−p1 + p12 + p13 − p123 ≤ 0,

−p2 + p12 + p23 − p123 ≤ 0,

−p3 + p13 + p23 − p123 ≤ 0,

p12, p13, p23 ≥ p123 ≥ 0.

(12.30)

and
−E12 − E13 − E23 ≤ 1

−E12 + E13 + E23 ≤ 1,

E12 − E13 + E23 ≤ 1,

E12 + E13 − E23 ≤ 1,

−1 ≤ E123 ≤ 1.

(12.31)
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12.9.8.2 Einstein–Podolsky–Rosen Type “Explosion” Setups of Joint
Distributions Without Intertwined Contexts

The first non-trivial (in the sense that quantum probabilities and expectations violate
the classical bounds) instance occurs for four observables in an Einstein–Podolski–
Rosen type “explosion” setup [196], where n observables aremeasured on both sides,
respectively.

Clauser–Horne–Shimony–Holt Case: 2 Observers, 2 Measurement Configura-
tions per Observer

If just two observables are measured on the two sides, the facets of the polytope are
the Bell–Wigner–Fine (in the probabilistic version) as well as the Clauser–Horne–
Shimony–Holt (for joint expectations) inequalities; that is, for instance,

0 ≤ p1 + p4 − p13 − p14 + p23 − p24 ≤ 1,

−2 ≤ E13 + E14 + E23 − E24 ≤ 2.
(12.32)

To obtain a feeling, Fig. 12.1a depicts the Greechie orthogonality diagram of the 2
particle 2 observables per particle situation. Figure12.1b enumerates all two-valued
states thereon.

At this point itmight be interesting to see howexactly the approach of Froissart and
Tsirelson blends in [143, 227]. The only difference to the Pitowsky method – which
enumerates the (two particle) correlations and expectations as vector components
– is that Froissart and later and Tsirelson arrange the two-particle correlations and
expectations as matrix components; so both differ only by notation. For instance,
Froissart explicitly mentions [227, pp. 242–243] 10 extremal configurations of the
two-particle correlations, associated with 10 matrices

(
p13 = p1 p3 p14 = p1 p4

p23 = p2 p3 p24 = p2 p4

)

(12.33)

containing 0s and 1s (the indices “1, 2” and “3, 4” are associated with the two sides
of the Einstein–Podolsky–Rosen “explosion”-type setup, respectively), arranged in
Pitowsky’s case as vector

(
p13 = p1 p3, p14 = p1 p4, p23 = p2 p3, p24 = p2 p4

)
. (12.34)

For probability correlations the number of different matrices or vectors is 10 (and not
16 as could be expected from the 16 two-valued measures), since, as enumerated in
Table12.1 some suchmeasures yield identical results on the two-particle correlations;
in particular, v1, v2, v3, v4, v5, v9, v13 yield identical matrices (in the Froissart case)
or vectors (in the Pitowsky case).
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Fig. 12.1 a Four contexts
{a1, a′

1}, {a2, a′
2} on one

side, and {a3 ≡ b1, a′
3 ≡ b′

1},{a4 ≡ b2, a′
4 ≡ b′

2} an the
other side of the
Einstein–Podolsky–Rosen
“explosion”–type setup are
relevant for a computation of
the Bell–Wigner–Fine (in the
probabilistic version) as well
as the Clauser–Horne–
Shimony–Holt (for joint
expectations) inequalities;
b the 24 two-valued
measures thereon, tabulated
in Table12.1, which are used
to compute the vertices of
the correlation polytopes.
Full circles indicate the value
“1 ≡ true”
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(b)

Beyond the Clauser–Horne–Shimony–Holt Case: 2 Observers, More Measure-
ment Configurations per Observer

The calculation for the facet inequalities for two observers and three measurement
configurations per observer is straightforward and yields 684 inequalities [148, 407,
469]. If one considers (joint) expectations one arrives at novel ones which are not of
the Clauser–Horne–Shimony–Holt type; for instance [469, p. 166, Eq. (4)],
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Table 12.1 The 16 two-valued states on the 2 particle two observables per particle configura-
tion, as drawn in Fig. 12.1b. Two-particle correlations appear green. There are 10 different such
configurations, painted in red

# a1 a2 a3 a4 a13 a 14 a 23 a 24
v1 0 0 0 0 0 0 0 0
v2 0 0 0 1 0 0 0 0
v3 0 0 1 0 0 0 0 0
v4 0 0 1 1 0 0 0 0
v5 0 1 0 0 0 0 0 0
v6 0 1 0 1 0 0 0 1
v7 0 1 1 0 0 0 1 0
v8 0 1 1 1 0 0 1 1
v9 1 0 0 0 0 0 0 0
v10 1 0 0 1 0 1 0 0
v11 1 0 1 0 1 0 0 0
v12 1 0 1 1 1 1 0 0
v13 1 1 0 0 0 0 0 0
v14 1 1 0 1 0 1 0 1
v15 1 1 1 0 1 0 1 0
v16 1 1 1 1 1 1 1 1

−4 ≤ −E2 + E3 − E4 − E5 + E14 − E15 +
+E24 + E25 + E26 − E34 − E35 + E36,

−4 ≤ E1 + E2 + E4 + E5 + E14 + E15 +
+E16 + E24 + E25 − E26 + E34 − E35.

(12.35)

As already mentioned earlier, these bounds on classical expectations [469] trans-
late into bounds on classical probabilities [148, 407] (and vice versa) if the affine
transformations Ei = 2vi − 1 [and conversely vi = (Ei + 1)/2] are applied.

Here a word of warning is in order: if one only evaluates the vertices from the joint
expectations (and not also the single particle expectations), one never arrives at the
novel inequalities of the type listed in Eq. (12.35), but obtains 90 facet inequalities;
among them72 instances of theClauser–Horne–Shimony–Holt inequality form, such
as

E25 + E26 + E35 − E36 ≤ 2,

E14 + E15 + E24 − E25 ≤ 2,

−E25 − E26 − E35 + E36 ≤ 2,

−E14 − E15 − E24 + E25 ≤ 2.

(12.36)

They can be combined to yield (see also Ref. [469, p. 166, Eq. (4)])

−4 ≤ E14 + E15 + E24 + E26 + E35 − E36 ≤ 4. (12.37)
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For the general case of n qubits, algebraic methods different than the hull problem
for polytopes have been suggested in Refs. [404, 443, 567, 594].

12.9.8.3 Intertwined Contexts

In the following we shall present a series of logics whose contexts (representable by
maximal observables, Boolean subalgebras, blocks, or orthogonal bases) are inter-
twined; but “not much:” by assumption and for convenience, contexts intertwine in
only one element; it does not happen that two contexts are pasted [249, 300, 376,
420] along two or more atoms. (They nevertheless might be totally identical.) Such
intertwines – connecting contexts by pasting them together – can only occur from
Hilbert space dimension three onwards, as contexts in lower-dimensional spaces
cannot have the same element unless they are identical.

In Sect. 12.9.8.3 we shall first study the “firefly case” with just two contexts inter-
twined in one atom; then, in Sect. 12.9.8.3, proceed to the pentagon configuration
with five contexts intertwined cyclically, then, in Sect. 12.9.8.4, paste two such pen-
tagon logics to form a cat’s cradle (or, by another term, Specker’s bug) logic; and
finally, in Sect. 12.9.8.6, connect two Specker bugs to arrive at a logic which has a
so “meagre” set of states that it can no longer separate two atoms. As pointed out
already by Kochen and Specker [314, p. 70,] this is no longer imbeddable into some
Boolean algebra. It thus cannot be represented by a partition logic; and thus has
neither any generalized urn and finite automata models nor classical probabilities
separating different events. The case of logics allowing no two valued states will be
covered consecutively.

Firefly Logic

Cohen presented [147, pp. 21–22] a classical realization of the first logicwith just two
contexts and one intertwining atom: a firefly in a box, observed from two sides of this
box which are divided into two windows; assuming the possibility that sometimes
the firefly does not shine at all. This firefly logic, which is sometimes also denoted by
L12 because it has 12 elements (in a Hasse diagram) and 5 atoms, with the contexts
defined by {a1, a2, a5} and {a3, a4, a5} is depicted in Fig. 12.2.

The five two-valued states on the firefly logic are enumerated in Table12.2 and
depicted in Fig. 12.3.

These two-valued states induce [506] a partition logic realization [184, 511]
{{{1}, {2, 3}, {4, 5}}, {{1}, {2, 5}, {3, 4}}}which in turn induce all classical probability

a4

a3

a5

a2

a1

Fig. 12.2 Firefly logic with two contexts {a1, a2, a5} and {a3, a4, a5} intertwined in a5
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Table 12.2 Two-valued
states on the firefly logic

# a1 a2 a3 a4 a5

v1 0 0 0 0 1

v2 0 1 0 1 0

v3 0 1 1 0 0

v4 1 0 1 0 0

v5 1 0 0 1 0

v1 v2 v3

v4 v5

Fig. 12.3 Two-valuedmeasures on thefirefly logic. Filled circles indicate the value “1” interpretable
as “true”

λ2 + λ5

λ3 + λ4

λ1

λ2 + λ3

λ4 + λ5

Fig. 12.4 Classical probabilities on the firefly logicwith two contexts, as induced by the two-valued
states, and subject to λ1 + λ2 + λ3 + λ4 + λ5 = 1, 0 ≤ λ1, . . . ,λ5 ≤ 1

distributions, as depicted in Fig. 12.4. No representation in R3 is given here; but this
is straightforward (just two orthogonal tripods with one identical leg), or can be read
off from logics containing more such intertwined fireflies; such as in Fig. 12.6.

Pentagon Logic

Admissibility of two-valued states imposes conditions and restrictions on the two-
valued states already for a single context (Boolean subalgebra): if one atom is
assigned the value 1, all other atoms have to have value assignment(s) 0. This is
even more so for intertwining contexts. For the sake of an example, consider two
firefly logics pasted along an entire block, as depicted in Fig. 12.5. For such a logic
we can state a “true-and-true implies true” rule: if the two-valued measure at the
“outer extremities” is 1, then it must be 1 at its center atom.

We shall pursue this path of ever increasing restrictions through construction of
pasted; that is, intertwined, contexts. This ultimately yields to non-classical logics
which have no separating sets of two-valued states; and even, as in Kochen–Specker
type configurations, to logicswhich donot allow for any twovalued state interpretable
as preassigned truth assignments.

Let us proceed by pasting more firefly logics together in “closed circles.” The
next possibilities – two firefly logics forming either a triangle or a square Greechie
orthogonal diagram – have no realization in three dimensional Hilbert space. The
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a1

a2

a3 a4 a5

a6

a7

Fig. 12.5 Two firefly logics pasted along an entire context {a3, a4, a5}with the following property:
if a two valued state v is v(a1) = v(a6) = 1, or v(a1) = v(a7) = 1, or v(a2) = v(a6) = 1,
or v(a2) = v(a7) = 1, or then the “central atom” a4 must be v(a4) = 1. No representation in
R
3 is given here; but this is straightforward; or can be read off from logics containing more such

intertwined fireflies; such as in Fig. 12.6

& & =

�� a1

� a2

��a3

� a4

�� a5

�
a6

��a7

�a8

��a9

�
a10

Fig. 12.6 Orthogonality diagram of the pentagon logic, which is a pasting of 3 firefly log-
ics (two of which share an entire context), resulting in a pasting of five intertwined contexts
a = {a1, a2, a3}, b = {a3, a4, a5}, c = {a5, a6, a7}, d = {a7, a8, a9}, e = {a9, a10, a1}. They
have a (quantum) realization in R3 consisting of the 10 projections associated with the one dimen-

sional subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to a1 =
(

4
√
5,−

√√
5 − 2,

√
2
)ᵀ

,

a2 =
(
− 4

√
5,−

√
2 + √

5,
√
3 − √

5
)ᵀ
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− 4
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5,
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2 + √

5,
√
3 + √

5
)ᵀ

, a4 =
(√

5 + √
5,

√
3 − √

5, 2
√

−2 + √
5
)ᵀ

, a5 =
(
0,−

√√
5 − 1, 1

)ᵀ
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(
−
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5,
√
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5,

2
√√

5 − 2
)ᵀ
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(

4
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5,
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2 + √

5,
√
3 + √

5
)ᵀ

, a8 =
(

4
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5,−

√
2 + √

5,
√
3 − √

5
)ᵀ

, a9 =
(
− 4

√
5,−

√√
5 − 2,

√
2
)ᵀ

, a10 =
(
0,

√
2,
√√

5 − 2
)ᵀ

, respectively [523, Fig. 8, p. 5393].

Another such realization is a1 = (1, 0, 0)ᵀ, a2 = (0, 1, 0)ᵀ, a3 = (0, 0, 1)ᵀ, a4 = (1,−1, 0)ᵀ,
a5 = (1, 1, 0)ᵀ, a6 = (1,−1, 2)ᵀ, a7 = (−1, 1, 1)ᵀ, a8 = (2, 1, 1)ᵀ, a9 = (0, 1,−1)ᵀ,
a10 = (0, 1, 1)ᵀ, respectively [532]
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Table 12.3 Two-valued states on the pentagon

# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

v1 1 0 0 1 0 1 0 1 0 0

v2 1 0 0 0 1 0 0 1 0 0

v3 1 0 0 1 0 0 1 0 0 0

v4 0 0 1 0 0 1 0 1 0 1

v5 0 0 1 0 0 0 1 0 0 1

v6 0 0 1 0 0 1 0 0 1 0

v7 0 1 0 0 1 0 0 1 0 1

v8 0 1 0 0 1 0 0 0 1 0

v9 0 1 0 1 0 0 1 0 0 1

v10 0 1 0 1 0 1 0 0 1 0

v11 0 1 0 1 0 1 0 1 0 1

ve
1
2 0 1

2 0 1
2 0 1

2 0 1
2 0

next diagram realizably is obtained by a pasting of three firefly logics. It is the pen-
tagon logic (also denoted as orthomodular house [300, p. 46, Fig. 4.4] and discussed
in Ref. [50]; see also Birkhoff’s distributivity criterion [57, p. 90, Theorem 33],
stating that, in particular, if some lattice contains a pentagon as sublattice, then it
is not distributive [60]) which is subject to an old debate on “exotic” probability
measures [577]. In terms of Greechie orthogonality diagrams there are two equiva-
lent representations of the pentagon logic: one as a pentagon, as depicted [521] in
Fig. 12.6 and one as a pentagram; thereby the indices of the intertwining edges (the
non-intertwining ones follow suit) are permuted as follows: 1 �→ 1, 9 �→ 5, 7 �→ 9,
5 �→ 3, 3 �→ 7. From a Greechie orthogonality point of view the pentagon repre-
sentation is preferable over the pentagram, because the latter, although appearing
more “magic,” might suggest the illusion that there are more intertwining contexts
and observables as there actually are.

As pointed out by Wright [577, p 268] the pentagon has 11 “ordinary” two-
valued states v1, . . . , v11, and one “exotic” dispersionless state ve, which was shown
by Wright to have neither a classical nor a quantum interpretation; all defined on the
10 atoms a1, . . . , a10. They are enumerated in Table12.3. and depicted in Fig. 12.7.

These two-valued states directly translate into the classical probabilities depicted
in Fig. 12.8.

The pentagon logic has quasi-classical realizations in terms of partition log-
ics [184, 506, 511], such as generalized urn models [577, 578] or automaton log-
ics [444–446, 499]. An early realization in terms of three-dimensional (quantum)
Hilbert space can, for instance, be found in Ref. [523, pp. 5392–5393]; other such
parametrizations are discussed in Refs. [24, 85, 86, 312].

The full hull problem, including all joint expectations of dichotomic ±1 observ-
ables yields 64 inequalities enumerated in the supplementary material; among them
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Fig. 12.7 Two-valued measures on the pentagon logic. Filled circles indicate the value “1” inter-
pretable as “true.” In the last diagram non-filled circles indicate the value “ 12 ”

�� λ1 + λ2 + λ3

� λ7 + λ8 + λ9 + λ10 + λ11

�� λ4 + λ5 + λ6

� λ1 + λ3 + λ9 + λ10 + λ11

�� λ2 + λ7 + λ8

�
λ1 + λ4 + λ6 + λ10 + λ11

��λ3 + λ5 + λ9

�λ1 + λ2 + λ4 + λ7 + λ11

��λ6 + λ8 + λ10

�λ4 + λ5 + λ7 + λ9 + λ11

Fig. 12.8 Classical probabilities on the pentagon logic, λ1 + · · · + λ11 = 1, λ1, . . . ,λ11 ≥ 0,
taken from Ref. [521]

E12 ≤ E45, E18 ≤ E7,10,

E16 + E26 + E36 + E48 ≤ E18 + E28 + E34 + E59,

E14 + E18 + E28 ≤ 1 + E12 + E16 + E26 + E36 + E48 + E5,10.

(12.38)

The full hull computations for the probabilities p1, . . . , p10 on all atoms a1, . . . ,

a10 reduces to 16 inequalities, among them
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+p4 + p8 + p9 ≥ +p1 + p2 + p6,

2p1 + p2 + p6 + p10 ≥ 1 + p4 + p8.
(12.39)

If one considers only the five probabilities on the intertwining atoms, then the Bub-
Stairs inequality p1 + p3 + p5 + p7 + p9 ≤ 2 results [24, 85, 86]. Concentration on
the four non-intertwining atoms yields p2 + p4 + p6 + p8 + p10 ≥ 1. Limiting the
hull computation to adjacent pair expectations of dichotomic ±1 observables yields
the Klyachko–Can–Biniciogolu–Shumovsky inequality [312]

E13 + E35 + E57 + E79 + E91 ≥ 3. (12.40)

12.9.8.4 Combo of Two Intertwined Pentagon Logics Forming
a Specker Bug (or Pitowsky Cat’s Cradle) “True Implies
False” Logic

The pasting of two pentagon logics results in ever tighter conditions for two-valued
measures and thus truth value assignments: consider the Greechie orthogonality
diagram of a logic drawn in Fig. 12.9. Specker [481] called this the “Käfer” (bug)
Logic because of the similar shape with a bug. It has been introduced in 1963(5)
by Kochen and Specker [313, Fig. 1, p. 182]; and subsequently used as a subset of
the diagrams Γ1, Γ2 and Γ3 demonstrating the existence of quantum propositional
structures with the “true implies true” property (cf. Sect. 12.9.8.5), the non-existence
of any two-valued state (cf. Sect. 12.9.8.7), and the existence of a non-separating set
of two-valued states (cf. Sect. 12.9.8.6), respectively [314].

Pitowsky called it (part of [429]) “cat’s cradle” [403, 405] (see also Refs. [39,
Fig. B.l. p. 64], [483, pp. 588–589], [1, Sect. IV, Fig. 2] and [420, p. 39, Fig. 2.4.6]
for early discussions). A partition logic, as well as a Hilbert space realization can
be found in Refs. [511, 523]. There are 14 two-valued states which are listed in
Table12.4.

As already Pták and Pulmannová [420, p. 39, Fig. 2.4.6] as well as Pitowsky [403,
405] have pointed out, the reduction of some probabilities of atoms at intertwined
contexts yields [521, p. 285, Eq. (11.2)]

p1 + p7 = 3

2
− 1

2
(p12 + p13 + p2 + p6 + p8) ≤ 3

2
. (12.41)

A better approximation comes from the explicit parameterization of the classical
probabilities on the atoms a1 and a7, derivable from all the mutually disjoined two-
valued states which do not vanish on those atoms, as depicted in Fig. 12.10: p1 =
λ1 +λ2 +λ3, and p7 = λ7 +λ10 +λ13. Because of additivity the 14 positive weights
λ1, . . . ,λ14 ≥ 0 must add up to 1; that is,

∑14
i=1 λi = 1. Therefore,
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a3 a4 a5

a2 a6

a1 a7

a13

a12 a8

a11 a10 a9

Fig. 12.9 Greechie diagram of the Specker bug (cat’s cradle) logic which results from a pasting
of two pentagon logics sharing three common contexts. It is a pasting of seven intertwined con-
texts a = {a1, a2, a3}, b = {a3, a4, a5}, c = {a5, a6, a7}, d = {a7, a8, a9}, e = {a9, a10, a11},
f = {a11, a12, a1}, g = {a4, a13, a10}. They have a (quantum) realization in R

3 consisting of the
13 projections associatedwith the one dimensional subspaces spanned by the vectors from the origin

(0, 0, 0)ᵀ to a1 =
(
1,

√
2, 0

)ᵀ
, a2 =

(√
2,−1,−3

)ᵀ
, a3 =

(√
2,−1, 1

)ᵀ
, a4 = (0, 1, 1)ᵀ, a5 =

(√
2, 1,−1

)ᵀ
, a6 =

(√
2, 1, 3

)ᵀ
, a7 =

(
−1,

√
2, 0

)ᵀ
, a8 =

(√
2, 1,−3

)ᵀ
, a9 =

(√
2, 1, 1

)ᵀ
,

a10 = (0, 1,−1)ᵀ, a11 =
(√

2,−1,−1
)ᵀ

, a12 =
(√

2,−1, 3
)ᵀ

, a13 = (1, 0, 0)ᵀ, respec-
tively [533, p. 206, Fig. 1] (see also [523, Fig. 4, p. 5387])

Table 12.4 The 14 two-valued states on the Specker bug (cat’s cradle) logic

# a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13

v1 1 0 0 0 1 0 0 0 1 0 0 0 1

v2 1 0 0 1 0 1 0 0 1 0 0 0 0

v3 1 0 0 0 1 0 0 1 0 1 0 0 0

v4 0 1 0 0 1 0 0 0 1 0 0 1 1

v5 0 1 0 0 1 0 0 1 0 0 1 0 1

v6 0 1 0 1 0 1 0 0 1 0 0 1 0

v7 0 1 0 1 0 0 1 0 0 0 1 0 0

v8 0 1 0 1 0 1 0 1 0 0 1 0 0

v9 0 1 0 0 1 0 0 1 0 1 0 1 0

v10 0 0 1 0 0 0 1 0 0 0 1 0 1

v11 0 0 1 0 0 1 0 1 0 0 1 0 1

v12 0 0 1 0 0 1 0 0 1 0 0 1 1

v13 0 0 1 0 0 0 1 0 0 1 0 1 0

v14 0 0 1 0 0 1 0 1 0 1 0 1 0
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λ10 + λ11+
+λ12 + λ13 + λ14

λ2 + λ6+
+λ7 + λ8

λ1 + λ3 + λ4+
+λ12 + λ13 + λ14

λ4 + λ5 + λ6+
+λ7 + λ8 + λ9

λ2 + λ6 + λ8+
+λ11 + λ12 + λ14

λ1 + λ2 + λ3 λ7 + λ10 + λ13

λ1 + λ4 + λ5+
+λ10 + λ11+
+λ12

λ4 + λ6 + λ9+
+λ12 + λ13 + λ14

λ3 + λ5 + λ8+
+λ9 + λ11 + λ14

λ5 + λ7 + λ8+
+λ10 + λ11

λ3 + λ9+
+λ13 + λ14

λ1 + λ2 + λ4+
+λ6 + λ12

Fig. 12.10 Classical probabilities on the Specker bug (cat’s cradle) logic; λ1 + · · · + λ14 = 1,
0 ≤ λ1, . . . ,λ14 ≤ 1, taken from Ref. [521]. The two-valued states i = 1, . . . , 14 can be identified
by taking λ j = δi, j for all j = 1, . . . 14

p1 + p7 = λ1 + λ2 + λ3 + λ7 + λ10 + λ13 ≤
14∑

i=1

λi = 1. (12.42)

For two-valued measures this yields the “1–0” or “true implies false” rule [515]:
if a1 is true, then a7 must be false. For the sake of another proof by contradiction,
suppose a1 as well as a7 were both true. This would (by the admissibility rules) imply
a3, a5, a9, a11 to be false, which in turn would imply both a4 as well as a10, which
have to be true in one and the same context – a clear violation of the admissibility
rules stating that within a single context there can only be atom which is true. This
property, which has already been exploited by Kochen and Specker [314, Γ1] to
construct both a logic with a non-separating, as well as one with a non-existent set
of two valued states. These former case will be discussed in the next section. For the
time being, instead of drawing all two valued states separately, Fig. 12.10 enumerates
the classical probabilities on the Specker bug (cat’s cradle) logic.

The hull problem yields 23 facet inequalities; one of them relating p1 to p7:
p1+p2+p7+p6 ≥ 1+p4,which is satisfied, since, by subadditivity, p1+p2 = 1−p3,
p7 + p6 = 1 − p5, and p4 = 1 − p5 − p3. This is a good example of a situation
in which considering just Boole–Bell type inequalities do not immediately reveal
important aspects of the classical probabilities on such logics.

A restricted hull calculation for the joint expectations on the six edges of the
Greechie orthogonality diagram yields 18 inequalities; among them

E13 + E57 + E9,11 ≤ E35 + E79 + E11,1. (12.43)

A tightened “true implies 3-times-false” logic depicted in Fig. 12.11 has been
introduced by Yu and Oh [584]. As can be derived from admissibility in a straight-
forward manner, the set of 24 two-valued states [536] enforces at most one of the
four atoms h0, h1, h2, h3 to be 1. Therefore, classically ph0 + ph1 + ph2 + ph3 ≤ 1.
This can also be explicitly demonstrated by noticing that, from the 24 two-valued
states, exactly 3 acquire the value 1 on each one of the four atoms h0, h1, h2, and h3;
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Fig. 12.11 Two equivalent representations of a Petersen graph-like (with one additional context
connecting z1, z2, and z3) Greechie diagram of the logic considered by Yu and Oh [584, Fig. 2].
The set of two-valued states enforces at most one of the four atoms h0, h1, h2, h3 to be 1. The
logic has a (quantum) realization in R

3 consisting of the 25 projections; associated with the one
dimensional subspaces spanned by the 13 vectors from the origin (0, 0, 0)ᵀ to z1 = (1, 0, 0)ᵀ,
z2 = (0, 1, 0)ᵀ, z3 = (0, 0, 1)ᵀ, y−

1 = (0, 1,−1)ᵀ, y−
2 = (1, 0,−1)ᵀ, y−

3 = (1,−1, 0)ᵀ, y+
1 =

(0, 1, 1)ᵀ, y+
2 = (1, 0, 1)ᵀ, y+

3 = (1, 1, 0)ᵀ, h0 = (1, 1, 1)ᵀ, h1 = (−1, 1, 1)ᵀ, h2 = (1,−1, 1)ᵀ,
h3 = (1, 1,−1)ᵀ, respectively [584]

also the respective two-valued states are different for these four different atoms h0,
h1, h2, and h3. More explicitly, suppose the set of two-valued states is enumerated
in such a way that the respective probabilities on the atoms h0, h1, h2, and h3 are
ph0 = λ1+λ2+λ3, ph1 = λ4+λ5+λ6, ph2 = λ7+λ8+λ9, and ph3 = λ10+λ11+λ12.
Because of additivity the 24 positive weights λ1, . . . ,λ24 ≥ 0 must add up to 1; that
is,
∑24

i=1 λi = 1. Therefore [compare with Eq. (12.42)],

ph0 + ph1 + ph2 + ph3 =
12∑

j=1

λ j ≤
24∑

i=1

λi = 1. (12.44)

Tkadlec has noted [536] that Fig. 12.11 contains 3 Specker bug subdiagrams per
atom hi , thereby rendering the “true implies 3-times-false” property. For instance,
for h1 the three Specker bugs are formed by the three sets of contexts (missing
non-interwining atoms should be added)

1 : {{h1, y+
3 }, {y+

3 , y−
3 }, {y−

3 , h3}, {h3, y+
1 }, {y+

1 , y−
1 }, {y−

1 , h1}, {z1, z3}},
2 : {{h1, y+

2 }, {y+
2 , y−

2 }, {y−
2 , h2}, {h2, y+

1 }, {y+
1 , y−

1 }, {y−
1 , h1}, {z1, z2}},

3 : {{h1, y+
3 }, {y+

3 , y−
3 }, {y−

3 , h0}, {h0, y−
2 }, {y−

2 , y+
2 }, {y+

2 , h1}, {z3, z2}}.
(12.45)
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Fig. 12.12 Greechie diagram of the Kochen–Specker Γ1 logic [314, p. 68], which is an extension
of the Specker bug logic by two intertwining contexts at the bug’s extremities. The logic has a
(quantum) realization in R

3 consisting of the 16 projections associated with the one dimensional
subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to the 13 points mentioned in Fig. 12.9,

as well as c = (0, 0, 1)ᵀ, b1 =
(√

2, 1, 0
)ᵀ

, b7 =
(√

2,−1, 0
)ᵀ

, respectively [533, p. 206, Fig. 1]

12.9.8.5 Kochen–Specker’s Γ1 “True Implies True” Logic

A small extension of the Specker bug logic by two contexts extending from a1 and
a7, both intertwining at a point c renders a logic which facilitates that, whenever a1

is true, so must be an atom b1, which is element in the context {a7, c, b1}, as depicted
in Fig. 12.12.

The reduction of some probabilities of atoms at intertwined contexts yields (q1, q7

are the probabilities on b1, b7, respectively), additionally to Eq. (12.41),

p1 − p7 = q1 − q7, (12.46)

which, as can be derived also explicitly by taking into account admissibility, implies
that, for all the 112 two-valued states, if p1 = 1, then [from Eq. (12.41)] p7 = 0,
and q1 = 1 as well as q7 = 1 − q1 = 0.

Besides the quantum mechanical realization of this logic in terms of propositions
identified with projection operators corresponding to vectors in three-dimensional
Hilbert space Tkadlec and this author [523, p. 5387, Fig. 4] (see also Tkadlec [533,
p. 206, Fig. 1]) have given an explicit collection of such vectors. As Tkadlec has
observed (cf.Ref. [523, p. 5390], andRef. [535, p.]), the original realization suggested
by Kochen and Specker [314] appears to be a little bit “buggy” as they did not use
the right angle between a1 and a7, but this could be rectified.
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Other “true implies true” logics have been introduced by Belinfante [39, Fig. C.l.
p. 67], Pitowsky [289, p. 394], Clifton [1, 293, 546], as well as Cabello and G.
García-Alcaine [100, Lemma 1].

Notice that, if a second Specker bug logic is placed along b1 and b7, just as in
the Kochen–Specker Γ3 logic [314, p. 70], this imposes an additional “true implies
false” condition; together with the “true implies false” condition of the first logic
this implies the fact that a1 and a7 can no longer be separated by some two-valued
state: whenever one is true, the other one must be true as well, and vice versa. This
Kochen–Specker logic Γ3 will be discussed in the next Sect. 12.9.8.6.

Notice further that if we manage to iterate this process in such a manner that, with
every i th iteration we place another Kochen–Specker Γ3 logic along bi , while at the
same time increasing the angle between bi and b1, then eventually we shall arrive at
a situation in which b1 and bi are part of a context (in terms of Hilbert space: they
correspond to orthogonal vectors). But admissibility disallows two-valued measures
with more than one, and in particular, two “true” atoms within a single block. As
a consequence, if such a configuration is realizable (say, in 3-dimensional Hilbert
space), then it cannot have any two-valued state satisfying the admissibility crite-
ria. This is the Kochen–Specker theorem, as exposed in the Kochen–Specker Γ3

logic [314, p. 69], which will be discussed in Sect. 12.9.8.7.

12.9.8.6 Combo of Two Linked Specker Bug Logics Inducing
Non-separability

As we are heading toward logics with less and less “rich” set of two-valued states we
are approaching a logic depicted in Fig. 12.13 which is a combination of two Specker
bug logics linked by two external contexts. It is the Γ3-configuration of Kochen–
Specker [314, p. 70] with a set of two-valued states which is no longer separating: In
this case one obtains the “one-one” and “zero-zero rules” [515], stating that a1 occurs
if and only if b1 occurs (likewise, a7 occurs if and only if b7 occurs): Suppose v is a
two-valued state on the Γ3-configuration of Kochen–Specker. Whenever v(a1) = 1,
then v(c) = 0 because it is in the same context {a1, c, b7} as a1. Furthermore,
because of Eq. (12.41), whenever v(a1) = 1, then v(a7) = 0. Because b1 is in the
same context {a7, c, b1} as a7 and c, because of admissibility, v(b1) = 1. Conversely,
by symmetry, whenever v(b1) = 1, so must be v(a1) = 1. Therefore it can never
happen that either one of the two atoms a1 and b1 have different dichotomic values.
(Eq. 12.46 is compatible with these value assignments.) The same is true for the pair
of atoms a7 and b7.

Note that one needs two Specker bug logics tied together (at their “true implies
false” extremities) to obtain non-separability; just extending one to the Kochen–
Specker Γ1 logic [314, p. 68] of Fig. 12.12 discussed earlier to obtain “true implies
true” would be insufficient. Because in this case a consistent two-valued state exists
for which v(b1) = v(b7) = 1 and v(a1) = v(a7) = 0, thereby separating a1 from
b1, and vice versa. A second Specker bug logic is needed to eliminate this case; in
particular, v(b1) = v(b7) = 1.
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Fig. 12.13 Greechie diagram of two linked Specker bug (cat’s cradle) logics Γ3. The logic has a
(quantum) realization in R

3 consisting of the 27 projections associated with the one dimensional
subspaces spanned by the vectors from the origin (0, 0, 0)ᵀ to the 13 points mentioned in Fig. 12.9,

the 3 points mentioned in Fig. 12.12, as well as b2 =
(
1,−√

2,−3
)ᵀ

, b3 =
(
−1,

√
2,−1

)ᵀ
, b4 =

(1, 0,−1)ᵀ, b5 =
(
1,

√
2, 1

)ᵀ
, b6 =

(
1,

√
2,−3

)ᵀ
, b8 =

(
1,

√
2, 3

)ᵀ
, b9 =

(
1,

√
2,−1

)ᵀ
,

b10 = (1, 0, 1)ᵀ,b11 =
(
−1,

√
2, 1

)ᵀ
,b12 =

(
−1,

√
2,−3

)ᵀ
,b13 = (0, 1, 0)ᵀ, respectively [533,

p. 206, Fig. 1]. Note that, with this realization, there is an additional context {a13, c, b13} not drawn
here, which imposes an additional constraint v(a13)+v(c)+v(b13) = 1 on any two-valuedmeasure
v (See also the proof of Proposition 7.2 in Ref. [523, p. 5392].)

Besides the quantum mechanical realization of this logic in terms of propositions
which are projection operators corresponding to vectors in three-dimensional Hilbert
space suggested by Kochen and Specker [314], Tkadlec has given [533, p. 206,
Fig. 1] an explicit collection of such vectors (see also the proof of Proposition 7.2 in
Ref. [523, p. 5392]).

Probabilistic Criteria Against Value Definiteness from Contraints
on Two-Valued measures

The “1-1” or “true implies true” rule can be taken as an operational criterion for
quantization: Suppose that one prepares a system to be in a pure state correspond-
ing to a1, such that the preparation ensures that v(a1) = 1. If the system is then
measured along b1, and the proposition that the system is in state b1 is found to be
not true, meaning that v(b1) �= 1 (the respective detector does not click), then one
has established that the system is not performing classically, because classically the
set of two-valued states requires non-separability; that is, v(a1) = v(b1) = 1. With

the Tkadlec directions taken from Figs. 12.9 and 12.12, |a1〉 = (1/
√
3)
(
1,

√
2, 0

)ᵀ
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and |b1〉 = (1/
√
3)
(√

2, 1, 0
)ᵀ

so that the probability to find a quantized system

prepared along |a1〉 and measured along |b1〉 is pa1(b1) = |〈b1|a1〉|2 = 8/9, and that
a violation of classicality should occur with probability 1/9. Of course, any other
classical prediction, such as the “1-0” or “true implies false” rule, or more general
classical predictions such as of Eq. (12.41) can also be taken as empirical criteria for
non-classicality [521, Sect. 11.3.2.]).

Indeed, already Stairs [483, pp. 588–589] has argued along similar lines for
the Specker bug “true implies false” logic (a translation into our nomenclature is:
m1(1) ≡ a1, m2(1) ≡ a3, m2(2) ≡ a5, m2(3) ≡ a4, m3(1) ≡ a11, m3(2) ≡ a9,
m3(3) ≡ a10, m4(1) ≡ a7). Independently Clifton (there is a note added in proof
to Stairs [483, pp. 588–589]) presents asimilar argument, based upon (i) another
“true implies true” logic [1, 293, 546, Sects. II, III, Fig. 1] inspired by Bell [39,
Fig. C.l. p. 67] (cf. also Pitowsky [289, p. 394]), as well as (ii) on the Specker bug
logic [1, Sect. IV, Fig. 2]. More recently Hardy [70, 264, 265] as well as Cabello
and García-Alcaine and others [24, 90, 95, 96, 99, 138] discussed such scenarios.
These criteria for non-classicality are benchmarks aside from the Boole–Bell type
polytope method, and also different from the full Kochen–Specker theorem.

Imbedability

As every algebra imbeddable in a Boolean algebra must have a separating set of two
valued states, this logic is no longer “classical” in the sense of “homomorphically
(structure-preserving) imbeddable.” Nevertheless, two-valued states can still exist. It
is just that these states can no longer differentiate between the pairs of atoms (a1, b1)
aswell as (a7, b7). Partition logics and their generalized urn or finite automatamodels
fail to reproduce two linked Specker bug logics resulting in a Kochen–Specker Γ3

logic even at this stage. Of course, the situation will become more dramatic with the
non-existence of any kind of two-valued state (interpretable as truth assignment) on
certain logics associate with quantum propositions.

Complementarity and non-distributivity is not enough to characterize logicswhich
do not have a quasi-classical (partition logical, set theoretical) interpretation. While
in a certain, graph coloring sense the “richness/scarcity” and the “number” of two-
valued homomorphisms” yields insights into the old problem of the structural prop-
erty [152] by separating quasi-classical from quantum logics, the problem of finding
smaller, maybe minimal, subsets of graphs with a non-separating set of two-valued
states still remains an open challenge.

Chromatic Inseparability

The “true implies true” rule is associated with chromatic separability; in particular,
with the impossibility to separate two atoms a7 and b7 with less than four colors.
A proof is presented in Fig. 12.14. That chromatic separability on the unit sphere
requires 4 colors is implicit in Refs. [245, 269].
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Fig. 12.14 Proof (by contradiction) that chromatic separability of two linked Specker bug (cat’s
cradle) logics Γ3 cannot be achieved with three colors. In particular, a7 and b7 cannot be separated,
as this would result in the depicted inconsistent coloring: suppose a red/green/blue coloring with
chromatic admissibility (“all three colors occur only once per context or block or Boolean sub-
algebra”) is possible. Then, if a7 is colored red and b7 is colored green, c must be colored blue.
Therefore, a1 must be colored red. Therefore, a4 as well as a10 must be colored red (similar for
green on the second Specker bug), contradicting admissibility

12.9.8.7 Propositional Structures Without Two-Valued States

Gleason-Type Continuity

Gleason’s theorem [240] was a response to Mackey’s problem to “determine all
measures on the closed subspaces of a Hilbert space” contained in a review [351] of
Birkhoff and von Neumann’s centennial paper [62] on the logic of quantummechan-
ics. Starting from von Neumann’s formalization of quantum mechanics [552, 554],
the quantummechanical probabilities and expectations (aka the Born rule) are essen-
tially derived from (sub)additivity among the quantum context; that is, from sub-
classicality: within any context (Boolean subalgebra, block, maximal observable,
orthonormal base) the quantum probabilities sum up to 1.

Gleason’s finding caused ripples in the community, at least of those who cared and
coped with it [41, 151, 180, 301, 314, 401, 434, 591]. (I recall having an argument
with Van Lambalgen around 1983, who could not believe that anyone in the larger
quantum community had not heard of Gleason’s theorem. As we approached an
elevator at Vienna University of Technology’s Freihaus building we realized there
was also one very prominent member of Vienna experimental community entering
the cabin. I suggested to stage an example by asking; and voila. . .)
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With the possible exception of Specker who did not explicitly refer to the Glea-
son’s theorem in independently announcing that two-valued states on quantum logics
cannot exist [479] – he must have made up his mind from other arguments and pre-
ferred to discuss scholastic philosophy; at that time the Swiss may have had their
own biotope – Gleason’s theorem directly implies the absence of two-valued states.
Indeed, at least for finite dimensions [11, 12], as Zierler andSchlessinger [591, p. 259,
Example 3.2] (even before publication of Bell’s review [41]) noted, “it should also
be mentioned that, in fact, the non-existence of two-valued states is an elementary
geometric fact contained quite explicitly in [240, Paragraph 2.8].”

Now, Gleason’s Paragraph 2.8 contains the following main (necessity) theo-
rem [240, p. 888]: “Every non-negative frame function on the unit sphere S in R

3

ir regular.” Whereby [240, p. 886] “a frame function f [[satisfying additivity]] is
regular if and only if there exists a self-adjoint operator T defined on [[the separable
Hilbert space]] H such that f (|x〉) = 〈Tx |x〉 for all unit vectors |x〉.” (Of course,
Gleason did not use the Dirac notation.)

In what follows we shall consider Hilbert spaces of dimension n = 3 and higher.
Suppose that the quantum system is prepared to be in a pure state associated with
the unit vector |x〉, or the projection operator |x〉〈x |.

As all self-adjoint operators have a spectral decomposition [260, Sect. 79], and
the scalar product is (anti)linear in its arguments, let us, instead of T, only consider
one-dimensional orthogonal projection operators E2

i = Ei = |yi 〉〈yi | (formed by
the unit vector |yi 〉 which are elements of an orthonormal basis {|y1〉, . . . , |yn〉})
occurring in the spectral sum of T = ∑n≥3

i=1 λiEi , with In = ∑n≥3
i=1 Ei .

Thus if T is restricted to some one-dimensional projection operator E = |y〉〈y|
along |y〉, then Gleason’s main theorem states that any frame function reduces to
the absolute square of the scalar product; and in real Hilbert space to the square of
the angle between those vectors spanning the linear subspaces corresponding to the
two projectors involved; that is (note that E is self-adjoint), fy(|x〉) = 〈Ex |x〉 =
〈x |Ex〉 = 〈x |y〉〈y|x〉 = |〈x |y〉|2 = cos2 ∠(x, y).

Hence, unless a configuration of contexts is not of the star-shapedGreechie orthog-
onality diagram form – meaning that they all share one common atom; and, in terms
of geometry, meaning that all orthonormal bases share a common vector – and the
two-valued state has value 1 on its centre, as depicted in Fig. 12.15, there is no way
how any two contexts could have a two-valued assignment; even if one context has
one: it is just not possible by the continuous, cos2-form of the quantum probabilities.
That is (at least in this author’s believe) the watered down version of the remark of
Zierler and Schlessinger [591, p. 259, Example 3.2].

Finite Logics Admitting No Two-Valued States

When it comes to the absence of a global two-valued state on quantum logics corre-
sponding to Hilbert spaces of dimension three and higher – where contexts or blocks
can be intertwined or pasted [376] to form chains – Kochen and Specker [314] pur-
sued a very concrete, “constructive” (in the sense of finitary mathematical objects
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Fig. 12.15 Greechie
diagram of a star shaped
configuration with a variety
of contexts, all intertwined in
a single “central” atom; with
overlaid two-valued state
(bold black filled circle)
which is one on the centre
atom and zero everywhere
else (see also Refs. [3, 5, 6])

but not in the sense of physical operationalizability [79]) strategy: they presented
finite logics realizable by vectors (from the origin to the unit sphere) spanning one-
dimensional subspaces, equivalent to observable propositions, which allowed for
lesser and lesser two-valued state properties. For the reason of non-imbedability
is already enough to consider two linked Specker bugs logics Γ3 [314, p. 70], as
discussed in Sect. 12.9.8.6.

Kochen and Specker went further and presented a proof by contradiction of the
non-existence of two-valued states on a finite number of propositions, based on their
Γ1 “true implies true” logic [314, p. 68] discussed in Fig. 12.12, iterating them until
they reached a complete contradiction in their Γ2 logic [314, p. 69]. As has been
pointed out earlier, their representation as points of the sphere is a little bit “buggy”
(as could be expected from the formation of so many bugs): as Tkadlec has observed,
Kochen–Specker diagramΓ2 it is not a one-to-one representation of the logic, because
some different points at the diagram represent the same element of corresponding
orthomodular poset (cf. Ref. [523, p. 5390], and Ref. [535, p.]).

The early 1990s saw an ongoing flurry of papers recasting the Kochen–Specker
proofwith ever smaller numbers of, ormore symmetric, configurations of observables
(see Refs. [17, 83, 96, 97, 112, 307, 340, 364, 385, 386, 390, 391, 408, 472, 523,
533–535, 557, 558, 583, 593] for an incomplete list). Arguably the most compact
such logic is one in four-dimensional space suggested by Cabello, Estebaranz and
García-Alcaine [91, 96, 385]. It consists of 9 contexts, with each of the 18 atoms
tightly intertwined in two contexts. Its Greechie orthogonality diagram is drawn in
Fig. 12.16.

In a parity proof by contradiction consider the particular subset of real four-
dimensionalHilbert spacewith a “parity property,” consisting of 18 atomsa1, . . . , a18

in 9 contexts, as depicted in Fig. 12.16. Note that, on the one hand, each atom/point/
vector/projector belongs to exactly two – that is, an even number of – contexts; that
is, it is biconnected. Therefore, any enumeration of all the contexts occurring in the
graph depicted in Fig. 12.16 would contain an even number of 1s assigned. Because,
due to non-contextuality and biconnectivity, any atom a with v(a) = 1 along one
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Fig. 12.16 The most compact way of deriving the Kochen–Specker theorem in four dimensions
has been given by Cabello, Estebaranz and García-Alcaine [96]. The configuration consists of 18
biconnected (two contexts intertwine per atom) atoms a1, . . . , a18 in 9 contexts. It has a (quantum)
realization in R

4 consisting of the 18 projections associated with the one dimensional subspaces
spanned by the vectors from the origin (0, 0, 0, 0)ᵀ to a1 = (0, 0, 1,−1)ᵀ, a2 = (1,−1, 0, 0)ᵀ,
a3 = (1, 1,−1,−1)ᵀ, a4 = (1, 1, 1, 1)ᵀ, a5 = (1,−1, 1,−1)ᵀ, a6 = (1, 0,−1, 0)ᵀ, a7 =
(0, 1, 0,−1)ᵀ, a8 = (1, 0, 1, 0)ᵀ, a9 = (1, 1,−1, 1)ᵀ, a10 = (−1, 1, 1, 1)ᵀ, a11 = (1, 1, 1,−1)ᵀ,
a12 = (1, 0, 0, 1)ᵀ, a13 = (0, 1,−1, 0)ᵀ, a14 = (0, 1, 1, 0)ᵀ, a15 = (0, 0, 0, 1)ᵀ, a16 =
(1, 0, 0, 0)ᵀ, a17 = (0, 1, 0, 0)ᵀ, a18 = (0, 0, 1, 1)ᵀ, respectively [92, Fig. 1] (for alternative real-
izations see Refs. [91, 92])

context must have the same value 1 along the second context which is intertwined
with the first one – to the values 1 appear in pairs.

Alas, on the other hand, in such an enumeration there are nine – that is, an odd
number of – contexts. Hence, in order to obey the quantum predictions, any two-
valued state (interpretable as truth assignment) would need to have an odd number
of 1s – exactly one for each context. Therefore, there cannot exist any two-valued
state on Kochen–Specker type graphs with the “parity property.”

More concretely, note that, within each one of those 9 contexts, the sum of any
state on the atoms of that context must add up to 1. That is, due to additivity (12.24)
and (12.25) one obtains a system of 9 equations
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v(a) = v(a1) + v(a2) + v(a3) + v(a4) = 1,

v(b) = v(a4) + v(a5) + v(a6) + v(a7) = 1,

v(c) = v(a7) + v(a8) + v(a9) + v(a10) = 1,

v(d) = v(a10) + v(a11) + v(a12) + v(a13) = 1,

v(e) = v(a13) + v(a14) + v(a15) + v(a16) = 1,

v( f ) = v(a16) + v(a17) + v(a18) + v(a1) = 1,

v(g) = v(a6) + v(a8) + v(a15) + v(a17) = 1,

v(h) = v(a3) + v(a5) + v(a12) + v(a14) = 1,

v(i) = v(a2) + v(a9) + v(a11) + v(a18) = 1.

(12.47)

By summing up the left hand side and the right hand sides of the equations, and since
all atoms are biconnected, one obtains

2

[
18∑

i=1

v(ai )

]

= 9. (12.48)

Because v(ai ) ∈ {0, 1} the sum in (12.48) must add up to some natural number
M . Therefore, Eq. (12.48) is impossible to solve in the domain of natural numbers,
as on the left and right hand sides there appear even (2M) and odd (9) numbers,
respectively.

Of course, one could also prove the nonexistence of any two-valued state (inter-
pretable as truth assignment) by exhaustive attempts (possibly exploiting symme-
tries) to assign values 0s and 1s to the atoms/points/vectors/projectors occurring in the
graph in such away that both the quantumpredictions aswell as context independence
is satisfied. This latter method needs to be applied in cases with Kochen–Specker
type diagrams without the “parity property;” such as in the original Kochen–Specker
proof [314]. (However, admissibility (IV) is too weak for a proof of this type, as it
allows also a third, value indefinite, state, which spoils the arguments [6].)

This result, as well as the original Kochen–Specker theorem, is state independent
insofar as it applies to an arbitrary quantum state. One could reduce the size of the
proof by assuming a particular state. Such proofs are called state-specific or state
dependent. By following Cabello, Estebaranz and García-Alcaine [96, Eqs. (10)–
(19), p. 185] their state independent proof utilizing the logic depicted in Fig. 12.16
can be transferred to a state-specific proof as follows: suppose that the quantum (or
quanta, depending upon the physical realization) is prepared in the state

v(a1) = 1, (12.49)

so that any two-valued state must obey the admissibility rules

v(a2) = v(a3) = v(a4) = v(a16) = v(a17) = v(a18) = 0. (12.50)



102 12 Quantum Mechanics in a Nutshell

b′

c

d

e′

i′

h′g′

a5

a6

a7

a8

a9

a10

a11a12

a13

a14

a15

Fig. 12.17 Greechie orthogonality diagram of a state-specific proof of the Kochen–Specker the-
orem based on the assumption that the physical system is in state a1, such that v(a1) = 1. The
additivity and admissibility constraints (12.51) represent different “reduced” (or “truncated”) con-
texts, because all states v(a2) = v(a3) = v(a4) = v(a16) = v(a17) = v(a18) = 0 “orthogonal to”
a1 must vanish

The additivity relations (12.47) reduce to seven equations (two equations encoding
contexts a and f are satisfied trivially)

v(b′) = v(a5) + v(a6) + v(a7) = 1,

v(c) = v(a7) + v(a8) + v(a9) + v(a10) = 1,

v(d) = v(a10) + v(a11) + v(a12) + v(a13) = 1,

v(e′) = v(a13) + v(a14) + v(a15) = 1,

v(g′) = v(a6) + v(a8) + v(a15) = 1,

v(h′) = v(a5) + v(a12) + v(a14) = 1,

v(i ′) = v(a9) + v(a11) = 1.

(12.51)

The configuration is depicted in Fig. 12.17.As all atoms remain to be biconnected and
there are 7, that is, an odd number, of equations, value indefiniteness can be proven
by a similar parity argument as before. One could argue that the “primed” contexts
in (12.51) are not complete because those contexts are “truncated.” However, every
completion would result in vectors orthogonal to a1; and therefore their values must
again be zero.

Chromatic Number of the Sphere

Graph coloring allows another view on value (in)definiteness. The chromatic number
of a graph is defined as the least number of colors needed in any total coloring of a
graph; with the constraint that two adjacent vertices have distinct colors.
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Suppose that we are interested in the chromatic number of graphs associated with
both (i) the real and (ii) the rational three-dimensional unit sphere.

More generally, we can consider n-dimensional unit spheres with the same adja-
cency property defined by orthogonality. An orthonormal basis will be called con-
text (block, maximal observable, Boolean subalgebra), or, in this particular area, a
n-clique. Note that for any such graphs involving n-cliques the chromatic number
of this graph is at least be n (because the chromatic number of a single n-clique or
context is n).

Thereby vertices of the graph are identified with points on the three-dimensional
unit sphere; with adjacency defined by orthogonality; that is, two vertices of the
graph are adjacent if and only if the unit vectors from the origin to the respective two
points are orthogonal.

The connection to quantum logic is this: any context (block, maximal observable,
Boolean subalgebra, orthonormal basis) can be represented by a triple of points on
the sphere such that any two unit vectors from the origin to two distinct points of
that triple of points are orthogonal. Thus graph adjacency in logical terms indicates
“belonging to some common context (block, maximal observable, Boolean subalge-
bra, orthonormal basis).”

In three dimensions, if the chromatic number of graphs is four or higher, there
does not globally exist any consistent coloring obeying the rule that adjacent vertices
(orthogonal vectors) must have different colors: if one allows only three different
colors, then somewhere in that graph of chromatic number higher than three, adjacent
vertices must have the same colors (or else the chromatic number would be three or
lower).

By a similar argument, non-separability of two-valued states – such as encoun-
tered in Sect. 12.9.8.6 with the Γ3-configuration of Kochen–Specker [314, p. 70]
– translates into non-differentiability by colorings with colors less or equal to the
number of atoms in a block (cf. Fig. 12.14).

Godsil and Zaks [245, 269] proved the following results:

1. the chromatic number of the graph based on points of real-valued unit sphere is
four [245, Lemma 1.1].

2. he chromatic number of rational points on the unit sphere S3 ∩ Q
3 is three [245,

Lemma 1.2].

We shall concentrate on (i) and discuss (ii) later. As has been pointed out byGodsil
in an email conversation from March 13, 2016 [244], “the fact that the chromatic
number of the unit sphere in R

3 is four is a consequence of Gleason’s theorem,
from which the Kochen–Specker theorem follows by compactness. Gleason’s result
implies that there is no subset of the sphere that contains exactly one point from each
orthonormal basis.”

Indeed, any coloring can be mapped onto a two-valued state by identifying a
single color with “1” and all other colors with “0.” By reduction, all propositions
on two-valued states translate into statements about graph coloring. In particular, if
the chromatic number of any logical structure representable as graph consisting of
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n-atomic contexts (blocks, maximal observables with n outcomes, Boolean subalge-
bras 2n , orthonormal bases with n elements) – for instance, as Greechie orthogonality
diagramof quantum logics – is larger than n, then there cannot be any globally consis-
tent two-valued state (truth value assignment) obeying adjacency (aka admissibility).
Likewise, if no two-valued states on a logic which is a pasting of n-atomic contexts
exist, then, by reduction, no global consistent coloring with n different colors exists.
Therefore, the Kochen–Specker theorem proves that the chromatic number of the
graph corresponding to the unit sphere with adjacency defined as orthogonality must
be higher than three.

Based on Godsil and Zaks finding that the chromatic number of rational points
on the unit sphere S3 ∩ Q

3 is three [245, Lemma 1.2] – thereby constructing a two-
valued measure on the rational unit sphere by identifying one color with “1” and the
two remaining colors with “0” – there exist “exotic” options to circumvent Kochen–
Specker type constructions which have been quite aggressively (Cabello has referred
to this as the second contextuality war [94]) marketed by allegedly “nullifying” [369]
the respective theorems under the umbrella of “finite precision measurements” [32,
75, 76, 146, 306, 366]: the support of vectors spanning the one-dimensional sub-
spaces associated with atomic propositions could be “diluted” yet dense, so much
so that the intertwines of contexts (blocks, maximal observables, Boolean subalge-
bras, orthonormal bases) break up; and the contexts themselves become “free and
isolated.” Under such circumstances the logics decay into horizontal sums; and the
Greechie orthogonality diagrams are just disconnected stacks of previously inter-
twined contexts. As can be expected, proofs of Gleason- or Kochen–Specker-type
theorems do no longer exist, as the necessary intertwines are missing.

The “nullification” claim and subsequent ones triggered a lot of papers, some cited
in [32]; mostly critical – of course, not to the results of Godsil and Zaks’s finding
(ii); how could they? – but to their physical applicability. Peres even wrote a parody
by arguing that “finite precision measurement nullifies Euclid’s postulates” [392],
so that “nullification” of the Kochen–Specker theorem might have to be our least
concern.

Exploring Value Indefiniteness

Maybe one could, with all due respect, speak of “extensions” of the Kochen–Specker
theorem by looking at situations in which a system is prepared in a state |x〉〈x|
along direction |x〉 and measured along a non-orthogonal, non-collinear projection
|y〉〈y| along direction |y〉. Those extensions yield what may be called [286, 401]
indeterminacy. Indeterminacy may be just another word for contextuality; but, as
has been suggested by the realist Bell, the latter term implicitly implies that there “is
something (rather than nothing) out there,” some “pre-existing observable” which,
however, needs to depend on the context of the measurement. To avoid such implicit
assumption we shall henceforth use indeterminacy rather than contextuality.

Pitowsky’s logical indeterminacy principle [401, Theorem 6, p. 226] states that,
given two linearly independent non-orthogonal unit vectors |x〉 and |y〉 inR3, there is
a finite set of unit vectors Γ (|x〉, |y〉) containing |x〉 and |y〉 for which the following
statements hold:
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1. There is no (not necessarily two-valued) state v on Γ (|x〉, |y〉) which satisfies
v(|x〉) = v(|y〉) = 1.

2. There is no (not necessarily two-valued) v on Γ (|x〉, |y〉)which satisfies v(|x〉) =
1 and v(|y〉) = 0.

3. There is no (not necessarily two-valued) state v on Γ (|x〉, |y〉) which satisfies
v(|x〉) = 0 and v(|y〉) = 1.

Stated differently [286, Theorem 2, p 183], let |x〉 and |y〉 be two non-orthogonal
rays in a Hilbert space H of finite dimension ≥ 3. Then there is a finite set of rays
Γ (|x〉, |y〉) containing |x〉 and |y〉 such that a (not necessarily two-valued) state v

on Γ (|x〉, |y〉) satisfies v(|x〉), (|y〉) ∈ {0, 1} only if v(|x〉) = v(|y〉) = 0. That
is, if a system of three mutually exclusive outcomes (such as the spin of a spin-1
particle in a particular direction) is prepared in a definite state |x〉 corresponding to
v(|x〉) = 1, then the state v(|y〉) along some direction |y〉 which is neither collinear
nor orthogonal to |x〉 cannot be (pre-)determined, because, by an argument via some
set of intertwined raysΓ (|x〉, |y〉), both caseswould lead to a complete contradiction.

The proofs of the logical indeterminacy principle presented by Pitowsky and
Hrushovski [286, 401] is global in the sense that any ray in the set of intertwining
rays Γ (|x〉, |y〉) in-between |x〉 and |y〉 – and thus not necessarily the “beginning
and end points” |x〉 and |y〉 – may not have a pre-existing value. (If you are an omni-
realist, substitute “pre-existing” by “non-contextual:” that is, any ray in the set of
intertwining rays Γ (|x〉, |y〉) may violate the admissibility rules and, in particular,
non-contextuality.) Therefore, one might argue that the cases (i) as well as (ii); that
is, v(|x〉) = v(|y〉) = 1. as well as v(|x〉) = 1 and v(|y〉) = 0 might still be
predefined, whereas at least one ray in Γ (|x〉, |y〉) cannot be pre-defined. (If you are
an omni-realist, substitute “pre-defined” by “non-contextual.”)

This possibility has been excluded in a series of papers [3–6] localizing value
indefiniteness. Thereby the strong admissibility rules coinciding with two-valued
states which are total function on a logic, have been generalized or extended (if you
prefer “weakened”) in such away as to allow for value definiteness. Essentially, by
allowing the two-valued state to be a partial function on the logic, which need not be
defined any longer on all of its elements, admissability has been defined by two rules
(IV) of Sect. 12.9.4: if v(|x〉) = 1, then a measurement of all the other observables in
a context containing |x〉must yield the value 0 for the other observables in this context
– as well as counterfactually, in all contexts including |x〉 and in mutually orthogonal
rays which are orthogonal to |x〉, such as depicted as the star-shaped configuration
in Fig. 12.15. Likewise, if all propositions but one, say the one associated with |x〉,
in a context have value 0, then this proposition |x〉 is assigned the value 1; that is,
v(|x〉) = 1.

However, as long as the entire context containsmore than two atoms, if v(|x〉) = 0
for some proposition associated with |x〉, any of the other observables in the context
containing |x〉 could still yield the value 1 or 0. Therefore, these other observables
need not be value definite. In such a formalism, and relative to the assumptions –
in particular, by the admissibility rules allowing for value indefiniteness – sets of
intertwined rays Γ (|x〉, |y〉) can be constructed which render value indefiniteness of
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property |y〉〈y| if the system is prepared in state |x〉 (and thus v(|x〉) = 1). More
specifically, sets of intertwined raysΓ (|x〉, |y〉) can be foundwhich demonstrate that,
in accord with the “weak” admissibility rules (IV) of Sect. 12.9.4, in Hilbert spaces of
dimension greater than two, in accord with complementarity, any proposition which
is complementary with respect to the state prepared must be value indefinite [3–6].

How Can You Measure a Contradiction?

Clifton replied with this (rhetorical) question after I had asked if he could imagine
any possibility to somehow “operationalize” the Kochen–Specker theorem.

Indeed, theKochen–Specker theorem – in particular, not only non-separability but
the total absence of any two-valued state – has been resilient to attempts to somehow
“measure” it: first, as alluded by Clifton, its proof is by contraction – any assumption
or attempt to consistently (in accordance with admissibility) construct two-valued
state on certain finite subsets of quantum logics provably fails.

Second, the very absence of any two-valued state on such logics reveals the futility
of any attempt to somehow define classical probabilities; let alone the derivation of
any Boole’s conditions of physical experience – both rely on, or are, the hull spanned
by the vertices derivable from two-valued states (if the latter existed) and the respec-
tive correlations. So, in essence, on logics corresponding to Kochen–Specker config-
urations, such as theΓ2-configuration ofKochen–Specker [314, p. 69], or theCabello,
Estebaranz and García-Alcaine logic [91, 96] depicted in Fig. 12.16 which (subject
to admissibility) have no two-valued states, classical probability theory breaks down
entirely – that is, in the most fundamental way; by not allowing any two-valued state.

It is amazing how many papers exist which claim to “experimentally verify” the
Kochen–Specker theorem. However, without exception, those experiments either
prove some kind of Bell–Boole of inequality on single-particles (to be fair this is
referred to as “proving contextuality;” such as, for instance, Refs. [36, 98, 267,
268, 309]); or show that the quantum predictions yield complete contradictions if
one “forces” or assumes the counterfactual co-existence of observables in different
contexts (and measured in separate, distinct experiments carried out in different
subensembles; e.g., Refs. [91, 250, 383, 467, 468]; again these lists of references
are incomplete.)

Of course, what one could still do is measuring all contexts, or subsets of compat-
ible observables (possibly by Einstein–Podolsky–Rosen type [196] counterfactual
inference) – one at a time – on different subensembles prepared in the same state
by Einstein–Podolsky–Rosen type [196] experiments, and comparing the complete
sets of results with classical predictions [250]. For instance, multiplying all products
of dichotomic ±1 observables within contexts, and summing up the results in par-
ity proofs such as for the Cabello, Estebaranz and García-Alcaine logic depicted in
Fig. 12.16 must yield differences between the classical and the quantum predictions
– in this case parity odd and even, respectively.

Contextual Inequalities

If one is willing to drop admissibility altogether while at the same time maintain-
ing non-contextuality – thereby only assuming that the hidden variable theories
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assign values to all the observables [54, Sect. 4, p. 375], thereby only assuming
non-contextuality [92], one arrives at contextual inequalities [16]. Of course, these
value assignments need to be much more general as the admissibility requirements
on two-valued states; allowing all 2n (instead of just n combinations) of contexts
with n atoms; such as 1 − 1 − 1 − · · · − 1, or 0 − 0 − · · · − 0. For example,
Cabello has suggested [92] to consider fourth order correlations within all the
contexts (blocks; really within single maximal observables) constituting the logic
considered by Cabello, Estebaranz and García-Alcaine [91, 96], and depicted as a
Greechie orthogonality diagram in Fig. 12.16. For the sake of demonstration, con-
sider a Greechie (orthogonality) diagram of a finite subset of the continuum of blocks
or contexts imbeddable in four-dimensional real Hilbert space without a two-valued
probability measure. More explicitly, the correlations are with nine tightly intercon-
nected contexts a = {a1, a2, a3, a4}, b = {a4, a5, a6, a7}, c = {a7, a8, a9, a10},
d = {a10, a11, a12, a13}, e = {a13, a14, a15, a16}, f = {a16, a17, a18, a1}, g =
{a6, a8, a15, a17} h = {a3, a5, a12, a14}, i = {a2, a9, a11, a18}, respectively.

A hull problem can be defined as follows: (i) assume that each one of the 18
(partially counterfactual) observables a1, a2, . . . , a18 independently acquires either
the definite value “−1” or “+1,” respectively. There are 218 = 262144 such cases.
Note that, essentially, thereby all information on the intertwine structure is elimi-
nated (the only remains are in the correlations taken in the next step), as one treats
all observables to belong to a large Boolean algebra of 18 atoms a1, a2, . . . , a18;
(ii) form all the 9 four-order correlations according to the context (block) struc-
ture a1a2a3a4, a4a5a6a7, . . . , a2a9a11a18, respectively; (iii) then evaluate (by mul-
tiplication) each one of these nine observables according to the valuations cre-
ated in (i); (iv) for each one of the 218 valuations form a 9-dimensional vector
(E1 = a1a2a3a4, E2 = a4a5a6a7, . . . , E9 = a2a9a11a18)

ᵀ which contains all the val-
ues computed in (iii), and consider them as vertices (of course, there will be many
duplicates which can be eliminated) defining a correlation polytope; (v) finally,
solve the hull problem for this polytope. The resulting 274 inequalities and 256
vertices (a reverse vertex computation reveals 256 vertices; down from 218) confirms
Cabello’s [92] as well as other bounds [521, Eq. (8)]; among them

−1 ≤ E1 ≤ 1,

E1 + 7 ≥ E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9,

E1 + E8 + E9 + 7 ≥ E2 + E3 + E4 + E5 + E6 + E7,

E1 + E6 + E7 + E8 + E9 + 7 ≥ E2 + E3 + E4 + E5,

E1 + E4 + E5 + E6 + E7 + E8 + E9 + 7 ≥ E2 + E3,

E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + 7 ≥ 0.

(12.52)

Similar calculations for the pentagon and the Specker bug logics, by “bundling”
the 3rd order correlations within the contexts (blocks, 3-atomic Boolean subalge-
bras), yield 32 (down from 210 = 1024 partially duplicate) vertices and 10 “trivial”
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inequalities for the bug logic, as well as 128 (down from 213 = 8192 partially
duplicate) vertices and 14 “trivial” inequalities for the Specker bug logic.

12.9.9 Quantum Probabilities and Expectations

Since from Hilbert space dimension higher than two there do not exist any two-
valued states, the (quasi-)classical Boolean strategy to find (or define) probabilities
via the convex sum of two-valued states brakes down entirely. Therefore, as this
happened to be [172, 173, 295, 551, 552, 554], the quantum probabilities have to
be “derived” or postulated from entirely new concepts, based upon quantities – such
as vectors or projection operators – in linear vector spaces equipped with a scalar
product. One guiding principle should be that, among those observables which are
simultaneously co-measurable (that is, whose projection operators commute), the
classical probability theory should hold.

Historically, what is often referred to asBorn rule for calculating probabilities, has
been a statistical re-interpretation of Schrödinger’s wave function [68, Footnote 1,
Anmerkung bei der Korrektur, p. 865], as outlined by Dirac [172, 173] (a digression:
a small piece [176] on “the futility of war” by the late Dirac is highly recommended;
I had the honour listening to the talk personally), Jordan [295], von Neumann [551,
552, 554], and Lüders [89, 346, 347].

Rather than stating it as axiom of quantum mechanics, Gleason [240] derived
the Born rule from elementary assumptions; in particular from subclassicality:
within contexts – that is, among mutually commuting and thus simultaneously co-
measurable observables – the quantum probabilities should reduce to the classical,
Kolmogorovian, form. In particular, the probabilities of propositions corresponding
to observables which are (i) mutually exclusive (in geometric terms: correspond to
orthogonal vectors/projectors) as well as (ii) simultaneously co-measurable observ-
ables are (i) non-negative, (ii) normalized, and (iii) finite additive as in Eqs. (12.24)
and (12.25); that is, probabilities (of atoms within contexts or blocks) add up to
one [259, Sect. 1].

As already mentioned earlier, Gleason’s paper made a high impact on those in
the community capable of comprehending it [41, 151, 180, 301, 314, 401, 434,
591]. Nevertheless it might not be unreasonable to state that, while a proof of the
Kochen–Specker theorem is straightforward, Gleason’s results are less attainable.
However, in what follows we shall be less concerned with either necessity nor with
mixed states, but shall rather concentrate on sufficiency and pure states. (This will
also rid us of the limitations to Hilbert spaces of dimensions higher that two.)

Recall that pure states [172, 173] as well as elementary yes-no propositions [62,
552, 554] can both be represented by (normalized) vectors in some Hilbert space.
If one prepares a pure state corresponding to a unit vector |x〉 (associated with the
one-dimensional projection operator Ex = |x〉〈x|) and measures an elementary yes-
no proposition, representable by a one-dimensional projection operator Ey = |y〉〈y|
(associated with the vector |y〉), then Gleason notes [240, p. 885] in the second
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paragraph that (in Dirac notation), “it is easy to see that such a [[probability]]
measure μ can be obtained by selecting a vector |y〉 and, for each closed subspace
A, taking μ(A) as the square of the norm of the projection of |y〉 on A.”

Since in Euclidean space, the projection Ey of |y〉 on A = span(|x〉) is the
dot product (both vectors |x〉, |y〉 are supposed to be normalized) |x〉〈x|y〉 =
|x〉 cos∠(|x〉, |y〉), Gleason’s observation amounts to the well-known quantum
mechanical cosine square probability law referring to the probability to find a system
prepared a in state in another, observed, state. (Once this is settled, all self-adjoint
observables follow by linearity and the spectral theorem.)

In this line of thought, “measurement” contexts (orthonormal bases) allow“views”
on “prepared” contexts (orthonormal bases) by the respective projections.

For the sake of demonstration, suppose some unit vector |ρ〉 corresponding to a
pure quantum state (preparation) is selected. For each one-dimensional closed sub-
space corresponding to a one-dimensional orthogonal projection observable (inter-
pretable as an elementary yes-no proposition) E = |e〉〈e| along the unit vector |e〉,
define wρ(|e〉) = |〈e|ρ〉|2 to be the square of the length |〈ρ|e〉| of the projection of
|ρ〉 onto the subspace spanned by |e〉.

The reason for this is that an orthonormal basis {|ei 〉} “induces” an ad hoc prob-
ability measure wρ on any such context (and thus basis). To see this, consider the
length of the orthogonal (with respect to the basis vectors) projections of |ρ〉 onto all
the basis vectors |ei 〉, that is, the norm of the resulting vector projections of |ρ〉 onto
the basis vectors, respectively. This amounts to computing the absolute value of the
Euclidean scalar products 〈ei |ρ〉 of the state vector with all the basis vectors.

In order that all such absolute values of the scalar products (or the associated
norms) sum up to one and yield a probability measure as required in Eqs. (12.24)
and (12.25), recall that |ρ〉 is a unit vector and note that, by the Pythagorean theorem,
these absolute values of the individual scalar products – or the associated norms of
the vector projections of |ρ〉 onto the basis vectors – must be squared. Thus the value
wρ(|ei 〉) must be the square of the scalar product of |ρ〉 with |ei 〉, corresponding to
the square of the length (or norm) of the respective projection vector of |ρ〉 onto |ei 〉.
For complex vector spaces one has to take the absolute square of the scalar product;
that is, fρ(|ei 〉) = |〈ei |ρ〉|2.

Pointedly stated, from this point of view the probabilities wρ(|ei 〉) are just the
(absolute) squares of the coordinates of a unit vector |ρ〉 with respect to some
orthonormal basis {|ei 〉}, representable by the square |〈ei |ρ〉|2 of the length of the
vector projections of |ρ〉 onto the basis vectors |ei 〉 – one might also say that each
orthonormal basis allows “a view” on the pure state |ρ〉. In two dimensions this is
illustrated for two bases in Fig. 12.18. The squares come in because the absolute val-
ues of the individual components do not add up to one; but their squares do. These
considerations apply to Hilbert spaces of any, including two, finite dimensions. In
this non-general, ad hoc sense the Born rule for a system in a pure state and an
elementary proposition observable (quantum encodable by a one-dimensional pro-
jection operator) can be motivated by the requirement of additivity for arbitrary finite
dimensional Hilbert space.
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|ρ〉

|e1〉

|f1〉

|e2〉

|f2〉

−|f2〉

|〈ρ|e1〉|

|〈ρ|e2〉|

|〈ρ|f1〉|

|〈ρ|f2〉|

Fig. 12.18 Different orthonormal bases {|e1〉, |e2〉} and {|f1〉, |f2〉} offer different “views” on
the pure state |ρ〉. As |ρ〉 is a unit vector it follows from the Pythagorean theorem that
|〈ρ|e1〉|2 + |〈ρ|e2〉|2 = |〈ρ|f1〉|2 + |〈ρ|f2〉|2 = 1, thereby motivating the use of the absolute value
(modulus) squared of the amplitude for quantum probabilities on pure states

12.9.9.1 Comparison of Classical and Quantum Form of Correlations

In what follows quantum configurations corresponding to the logics presented in the
earlier sections will be considered. All of them have quantum realizations in terms
of vectors spanning one-dimensional subspaces corresponding to the respective one-
dimensional projection operators.

The appendix contains a detailed derivation of two-particle correlation functions.
It turns out that, whereas on the singlet state the classical correlation function (B.1)
Ec,2,2(θ) = 2

π
θ − 1 is linear, the quantum correlations (B.11) and (B.23) are of the

“stronger” cosine form Eq,2 j+1,2(θ) ∝ − cos(θ). A stronger-than-quantum correla-
tion would be a sign function Es,2,2(θ) = sgn(θ − π/2) [321].

When translated into the most fundamental empirical level – to two clicks in
2× 2 = 4 respective detectors, a single click on each side – the resulting differences

ΔE = Ec,2,2(θ) − Eq,2 j+1,2(θ)

= −1 + 2

π
θ + cos θ = 2

π
θ +

∞∑

k=1

(−1)kθ2k

(2k)!
(12.53)

signify a critical difference with regards to the occurrence of joint events: both clas-
sical and quantum systems perform the same at the three points θ ∈ {0, π

2 ,π}. In
the region 0 < θ < π

2 , ΔE is strictly positive, indicating that quantum mechani-
cal systems “outperform” classical ones with regard to the production of unequal
pairs “+−” and “−+,” as compared to equal pairs “++” and “−−.” This gets
largest at θmax = arcsin(2/π) ≈ 0.69; at which point the differences amount to
38% of all such pairs, as compared to the classical correlations. Conversely, in the
region π

2 < θ < π, ΔE is strictly negative, indicating that quantum mechanical
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systems “outperform” classical ones with regard to the production of equal pairs
“++” and “−−,” as compared to unequal pairs “+−” and “−+.” This gets largest
at θmin = π − arcsin(2/π) ≈ 2.45. Stronger-than-quantum correlations [414, 415]
could be of a sign functional form Es,2,2(θ) = sgn(θ − π/2) [321].

In correlation experiments these differences are the reason for violations of
Boole’s (classical) conditions of possible experience. Therefore, it appears not
entirely unreasonable to speculate that the non-classical behaviour already is
expressed and reflected at the level of these two-particle correlations, and not in
need of any violations of the resulting inequalities.

12.9.10 Min-Max Principle

Violation of Boole’s (classical) conditions of possible experience by the quantum
probabilities, correlations and expectations are indications of some sort of non-
classicality; and are often interpreted as certification of quantum physics, and quan-
tum physical features [395, 540]. Therefore it is important to know the extent of such
violations; as well as the experimental configurations (if they exist [478]) for which
such violations reach a maximum.

The basis of the min-max method are two observations [212]:

1. Boole’s bounds are linear – indeed linearity is, according to Pitowsky [400], the
main finding of Boole with regards to conditions of possible (nowadays classi-
cal physical) experience [66, 67] – in the terms entering those bounds, such as
probabilities and nth order correlations or expectations.

2. All such terms, in particular, probabilities and nth order correlations or expec-
tations, have a quantum realization as self-adjoint transformations. As coherent
superpositions (linear sums and differences) of self-adjoint transformations are
again self-adjoint transformations (and thus normal operators), they are subject
to the spectral theorem. So, effectively, all those terms are “bundled together”
to give a single “comprehensive” (with respect to Boole’s conditions of possible
experience) observable.

3. The spectral theorem, when applied to self-adjoint transformations obtained from
substituting the quantum terms for the classical terms, yields an eigensystem con-
sisting of all (pure or non-pure) states, aswell as the associated eigenvalueswhich,
according to the quantum mechanical axioms, serve as the measurement out-
comes corresponding to the combined, bundled, “comprehensive,” observables.
(In the usual Einstein–Podolsky–Rosen “explosion type” setup these quantities
will be highly non-local.) The important observation is that this “comprehensive”
(with respect to Boole’s conditions of possible experience) observable encodes or
includes all possible one-by-one measurements on each one of the single terms
alone, at least insofar as they pertain to Boole’s conditions.
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4. By taking the minimal and the maximal eigenvalue in the spectral sum of this
comprehensive observable one therefore obtains the minimal and the maximal
measurement outcomes “reachable” by quantization.

Thereby, Boole’s conditions of possible experience are taken as given and for
granted; and the computational intractability of their hull problem [399] is of no
immediate concern, because nothing need to be said of actually finding those condi-
tions of possible experience, whose calculation may grow exponential with the num-
ber of vertices. Note also that there might be a possible confusion of the term “min-
max principle” [260, Sect. 90] with the term “maximal operator” [260, Sect. 84].
And finally, this is no attempt to compute general quantum ranges, as for instance
discussed by Pitowsky [396, 402, 406] and Tsirelson [141–143].

Indeed, functional analysis provides a technique to compute (maximal) viola-
tions of Boole–Bell type inequalities [213, 214]: the min-max principle, also known
as Courant–Fischer–Weyl min-max principle for self-adjoint transformations (cf.
Ref. [260, Sect. 90], Ref. [430, pp. 75ff], andRef. [528, Sect. 4.4, pp. 142ff]), or rather
an elementary consequence thereof: by the spectral theorem any bounded self-adjoint
linear operator T has a spectral decomposition T = ∑n

i=1 λiEi , in terms of the sum
of products of bounded eigenvalues times the associated orthogonal projection oper-
ators. Suppose for the sake of demonstration that the spectrum is non-degenerate.
Then we can (re)order the spectral sum so that λ1 ≥ λ2 ≥ · · · ≥ λn (in case the
eigenvalues are also negative, take their absolute value for the sort), and consider the
greatest eigenvalue.

In quantum mechanics the maximal eigenvalue of a self-adjoint linear operator
can be identified with the maximal value of an observation. Thereby, the spectral
theorem supplies even the state associated with this maximal eigenvalue λ1: it is
the eigenvector (linear subspace) |e1〉 associated with the orthogonal projector Ei =
|e1〉〈e1| occurring in the (re)ordered spectral sum of T.

With this in mind, computation of maximal violations of all the Boole–Bell type
inequalities associated with Boole’s (classical) conditions of possible experience is
straightforward:

1. take all terms containing probabilities, correlations or expectations and the
constant real-valued coefficients which are their multiplicative factors; thereby
excluding single constant numerical values O(1) (which could be written on “the
other” side of the inequality; resulting if what might look like “T (p1, . . . , pn,

p1,2, . . . , p123, . . .) ≤ O(1)” (usually, these inequalities, for reasons of opera-
tionalizability, as discussed earlier, do not include higher than 2rd order correla-
tions), and thereby define a function T ;

2. in the transition “quantization” step T → T substitute all classical prob-
abilities and correlations or expectations with the respective quantum self-
adjoint operators, such as for two spin- 12 particles enumerated in Eq. (B.6),
p1 → q1 = 1

2 [I2 ± σ(θ1,ϕ1)] ⊗ I2, p2 → q2 = 1
2 [I2 ± σ(θ2,ϕ2)] ⊗ I2,

p12 → q12 = 1
2 [I2 ± σ(θ1,ϕ1)] ⊗ 1

2 [I2 ± σ(θ2,ϕ2)], Ec → Eq = p12++ +
p12−− − p12+− − p12−+, as demanded by the inequality. Note that, since the
coefficients in T are all real-valued, and because (A+ B)† = A†+ B† = (A+ B)
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for arbitrary self-adjoint transformations A, B, the real-valued weighted sum T
of self-adjoint transformations is again self-adjoint.

3. Finally, compute the eigensystem of T; in particular the largest eigenvalue λmax

and the associated projector which, in the non-degenerate case, is the dyadic
product of the “maximal state” |emax〉, or Emax = |emax〉〈emax|.

4. In a last step, maximize λmax (and find the associated eigenvector |emax〉) with
respect to variations of the parameters incurred in step (ii).

The min-max method yields a feasible, constructive method to explore the quan-
tum bounds on Boole’s (classical) conditions of possible experience. Its application
to other situations is feasible. A generalization to higher-dimensional cases appears
tedious but with the help of automated formula manipulation straightforward.

12.9.10.1 Expectations from Quantum Bounds

The quantum expectation can be directly computed from spin state operators. For
spin- 12 particles, the relevant operator, normalized to eigenvalues ±1, is

T(θ1,ϕ1; θ2,ϕ2) =
[
2S 1

2
(θ1,ϕ1)

]
⊗
[
2S 1

2
(θ2,ϕ2)

]
. (12.54)

The eigenvalues are −1,−1, 1, 1 and 0; with eigenvectors for ϕ1 = ϕ2 = π
2 ,

(−e−i(θ1+θ2), 0, 0, 1
)ᵀ

,
(
0,−e−i(θ1−θ2), 1, 0

)ᵀ
,

(
e−i(θ1+θ2), 0, 0, 1

)ᵀ
,

(
0, e−i(θ1−θ2), 1, 0

)ᵀ
,

(12.55)

respectively.
If the states are restricted toBell basis states |Ψ ∓〉 = 1√

2
(|01〉 ∓ |10〉) and |Φ∓〉 =

1√
2
(|00〉 ∓ |11〉) and the respective projection operators are EΨ ∓ and EΦ∓ , then the

correlations, reduced to the projected operators EΨ ∓EEΨ ∓ and EΦ∓EEΦ∓ on those
states, yield extrema at− cos(θ1 −θ2) for EΨ − , cos(θ1 −θ2) for EΨ + ,− cos(θ1 +θ2)
for EΦ− , and cos(θ1 + θ2) for EΦ+ .

12.9.10.2 Quantum Bounds on the Clauser–Horne–Shimony–Holt
Inequalities

Theeaseof thismethod canbedemonstratedby (re)deriving theTsirelsonbound [141]
of 2

√
2 for the quantum expectations of the Clauser–Horne–Shimony–Holt inequal-

ities (12.32) (cf. Sect. 12.9.8.2), which compare to the classical bound 2. First note
that the two-particle projection operators along directions ϕ1 = ϕ2 = π

2 and θ1, θ2,



114 12 Quantum Mechanics in a Nutshell

as taken from Eqs. (B.6) and (B.3), are

q1,±1,2,±2

(
θ1,ϕ1 = π

2
, θ2,ϕ2 = π

2

)
=

= 1

2

[
I2 ± σ

(
θ1,

π

2

)]
⊗ 1

2

[
I2 ± σ

(
θ2,

π

2

)]
.

(12.56)

Adding these four orthogonal projection operators according to the parity of their
signatures ±1±2 yields the expectation value

Eq

(
θ1,ϕ1 = π

2
; θ2,ϕ2 = π

2

)
=

= Eq(θ1, θ2) = p1+2+ + p1−2− − p1+2− − p1−2+ =

=

⎛

⎜
⎜
⎝

0 0 0 e−i(θ1+θ2)

0 0 e−i(θ1−θ2) 0
0 ei(θ1−θ2) 0 0

ei(θ1+θ2) 0 0 0

⎞

⎟
⎟
⎠ .

(12.57)

Forming the Clauser–Horne–Shimony–Holt operator

CHSH(θ1, θ2, θ3, θ4) =
= Eq(θ1, θ3) + Eq(θ1, θ4) + Eq(θ2, θ3) − Eq(θ2, θ4).

(12.58)

The eigenvalues
λ1,2 = ∓2

√
1 − sin(θ1 − θ2) sin(θ3 − θ4),

λ3,4 = ∓2
√
1 + sin(θ1 − θ2) sin(θ3 − θ4),

(12.59)

for θ1 − θ2 = θ3 − θ4 = ± π
2 , yield the Tsirelson bounds ±2

√
2. In particular, for

θ1 = 0, θ2 = π
2 , θ3 = π

4 , θ4 = 3π
4 , Eq. (12.58) reduces to

⎛

⎜
⎜
⎝

0 0 0 −2i
√
2

0 0 0 0
0 0 0 0

2i
√
2 0 0 0

⎞

⎟
⎟
⎠ ; (12.60)

and the eigenvalues are λ1 = 0, λ2 = 0, λ3 = −2
√
2, λ4 = 2

√
2; with the associated

eigenstates (0, 0, 1, 0)ᵀ, (0, 1, 0, 0)ᵀ, (i, 0, 0, 1)ᵀ, (−i, 0, 0, 1)ᵀ, respectively. Note
that, by comparing the components [368, p. 18] the eigenvectors associated with the
eigenvalues reaching Tsirelson’s bound are entangled, as could have been expected.

If one is interested in the measurements “along” Bell states, then one has to
consider the projected operators EΨ ∓(CHSH)EΨ ∓ and EΦ∓(CHSH)EΦ∓ on those
states which yield extrema at
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λΨ ∓ = ∓[ cos(θ1 − θ3) + cos(θ2 − θ3)+
+ cos(θ1 − θ4) − cos(θ2 − θ4)

]
,

λΦ∓ = cos(θ1 + θ3) + cos(θ2 + θ3)+
+ cos(θ1 + θ4) − cos(θ2 + θ4).

(12.61)

For θ1 = 0, θ2 = π
2 , θ3 = π

4 , θ4 = − π
4 , cos(θ1+θ3) = cos(θ2+θ3) = cos(θ1+θ4) =

− cos(θ2 + θ4) = 1√
2
, and Eq. (12.61) yields the Tsirelson bound λΨ ∓ = ∓2

√
2.

Likewise, for θ1 = 0, θ2 = π
2 , θ3 = − π

4 , θ4 = π
4 , cos(θ1 + θ3) = cos(θ2 + θ3) =

cos(θ1 + θ4) = − cos(θ2 + θ4) = 1√
2
, and Eq. (12.61) yields the Tsirelson bound

λΦ∓ = ∓2
√
2.

Again it should be stressed that these violations might be seen as a “build-up;”
resulting from the multiple addition of correlations which they contain.

Note also that, only as single context can be measured on a single system, because
other context contain incompatible, complementary observables. However, as each
observable is supposed to have the same (counterfactual) measurement outcome in
any context, different contexts can be measured on different subensembles prepared
in the same state such that, with the assumptions made (in particular, existence
and context independence), Boole’s conditions of possible experience should be
valid for the averages over each subsensemble – regardless of whether they are co-
measurable or incompatible and complementary. (This is true for instance for models
with partition logics, such as generalized urn or finite automaton models.)

12.9.10.3 Quantum Bounds on the Pentagon

In a similar way two-particle correlations of a spin-one system can be defined by the
operator S1 introduced in Eq. (B.13)

A(θ1,ϕ1; θ2,ϕ2) = S1(θ1,ϕ1) ⊗ S1(θ2,ϕ2). (12.62)

Plugging in these correlations into the Klyachko–Can–Biniciogolu–Shumovsky
inequality [312] in Eq. (12.40) yields the Klyachko–Can–Biniciogolu–Shumovsky
operator

KCBS(θ1, . . . , θ5,ϕ1, . . . ,ϕ5) =
= A(θ1,ϕ1, θ3,ϕ3) + A(θ3,ϕ3, θ5,ϕ5) + A(θ5,ϕ5, θ7,ϕ7)+

+A(θ7,ϕ7, θ9,ϕ9) + A(θ9,ϕ9, θ1,ϕ1).

(12.63)

Taking the special values of Tkadlec [532], as enumerated in Cartesian coor-
dinates in Fig. 12.6, which, is spherical coordinates, are a1 = (

1, π
2 , 0

)ᵀ
, a2 =

(
1, π

2 , π
2

)ᵀ
, a3 = (

1, 0, π
2

)ᵀ
, a4 =

(√
2, π

2 ,− π
4

)ᵀ
, a5 =

(√
2, π

2 , π
4

)ᵀ
, a6 =

(√
6, tan−1

(
1√
2

)
,−π

4

)ᵀ
,a7 =

(√
3, tan−1

(√
2
)

, 3π
4

)ᵀ
,a8 =

(√
6, tan−1

(√
5
)

,
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tan−1
(
1
2

))ᵀ
, a9 =

(√
2, 3π

4 , π
2

)ᵀ
, a10 =

(√
2, π

4 , π
2

)ᵀ
, yields eigenvalues of

KCBS in
{− 2.49546, 2.2288,−1.93988, 1.93988,−1.33721,

1.33721,−0.285881, 0.285881, 0.266666
} (12.64)

all violating Eq. (12.40).

12.9.10.4 Quantum Bounds on the Cabello, Estebaranz
and García-Alcaine logic

As a final exercise we shall compute the quantum bounds on the Cabello, Este-
baranz and García-Alcaine logic [91, 96] which can be used in a parity proof of
the Kochen–Specker theorem in 4 dimensions, as depicted in Fig. 12.16 (where also
a representation of the atoms as vectors in R

4 suggested by Cabello [92, Fig. 1] is
enumerated), as well as the dichotomic observables [92, Eq. (2)]Ai = 2|ai 〉〈ai |− I4

is used. The observables are then “bundled” into the respective contexts to which
they belong; and the context summed according to the contextual inequalities from
the Hull computation (12.52), and introduced by Cabello [92, Eq. (1)]. As a result
(we use Cabello’s notation and not ours),

T = −A12 ⊗ A16 ⊗ A17 ⊗ A18

−A34 ⊗ A45 ⊗ A47 ⊗ A48 − A17 ⊗ A37 ⊗ A47 ⊗ A67

−A12 ⊗ A23 ⊗ A28 ⊗ A29 − A45 ⊗ A56 ⊗ A58 ⊗ A59

−A18 ⊗ A28 ⊗ A48 ⊗ A58 − A23 ⊗ A34 ⊗ A37 ⊗ A39

−A16 ⊗ A56 ⊗ A67 ⊗ A69 − A29 ⊗ A39 ⊗ A59 ⊗ A69

(12.65)

The resulting 44 = 256 eigenvalues of T have numerical approximations as ordered
numbers −6.94177 ≤ −6.67604 ≤ · · · ≤ 5.78503 ≤ 6.023, neither of which
violates the contextual inequality (12.52) and Ref. [92, Eq. (1)].

12.9.11 What Can Be Learned from These Brain Teasers?

When reading the book of Nature, she obviously tries to tell us something very
sublime yet simple; but what exactly is it? As mentioned earlier it seems that often
discussants approach this particular book not with evenly-suspended attention [224,
225] but with strong – even ideologic [144] or evangelical [589] – (pre)dispositions.
This might be one of the reasons why Specker called this area “haunted” [482]. With
these provisos we shall enter the discussion.
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Already in 1935 – possibly based to the Born rule for computing quantum
probabilities which differ from classical probabilities on a global scale involving
complementary observables, and yet coincide within contexts – Schrödinger pointed
out (cf. also Pitowsky [400, footnote 2, p. 96]) that [539, p. 327] “at no moment does
there exist an ensemble of classical states of the model that squares with the totality
of quantum mechanical statements of this moment.”4 This seems to be the gist of
what can be learned from the quantum probabilities: they cannot be accommodated
entirely within a classical framework.

What can be positively said? Quantummechanics grant operational access merely
to a single context (block, maximal observable, orthonormal basis, Boolean subal-
gebra); and for all that operationally matters, all observables forming that context
can be simultaneously value definite. (It could formally be argued that an entire star
of contexts intertwined in a “true” proposition must be value definite, as depicted in
Fig. 12.15.) A single context represents the maximal information encodable into a
quantum system. This can be done by state preparation.

Beyond this single context one can get “views” on that single state in which
the quantized system has been prepared. But these “views” come at a price: value
indefiniteness. (Value indefiniteness is often expressed as “contextuality,” but this
view is distractive, as it suggests some existing entity which is changing its value;
depending on how – that is, along which context – it is measured.)

This situation might not be taken as a metaphysical conundrum, but perceived
rather Socratically: it should come as no surprise that intrinsic [500], emdedded [538]
observers have no access to all the information they subjectively desire, but only to
a limited amount of properties their system – be it a virtual or a physical universe –
is capable to express. Therefore there is no omniscience in the wider sense of “all
that observers want to know” but rather than “all that is operationally realizable.”

Anything beyond this narrow “local omniscience covering a single context” in
which the quantized system has been prepared appears to be a subjective illusion
which is only stochastically supported by the quantum formalism – in terms of
Gleason’s “projective views” on that single, value definite context. Experiments
may enquire about such value indefinite observables by “forcing” a measurement
upon a system not prepared or encoded to be “interrogated” in that way. However,
these “measurements” of non-existing properties, although seemingly possessing
viable outcomes which might be interpreted as referring to some alleged “hidden”
properties, cannot carry any (consistent classical) content pertaining to that system
alone.

To paraphrase a dictum by Peres [388], unprepared contexts do not exist; at least
not in any operationally meaningful way. If one nevertheless forces metaphysical
existence upon (value) indefinite, non-existing, physical entities the price, hedged
into the quantum formalism, is stochasticity.

4German original [452, p. 811]: “Es gibt in keinem Augenblick ein Kollektiv klassischer Model-
lzustände, auf das die Gesamtheit der quantenmechanischen Aussagen dieses Augenblicks zutrifft.”
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12.10 Quantum Mechanical Observer–Object Theory

The quantum measurement problem is at the heart of today’s quantum random num-
ber generators. Thus everybody relying on that technology has to be concerned
with this seemingly philosophical issues of observer-object relation. And anybody
denying its existence (aka Austin Powers’ “if you got an issue here’s a tissue”) is
tantamount to building a bridge with a new material whose properties and construc-
tion objectives are largely unknown – thereby relying on assurances of most experts
which are solely based on heuristics.

Presently the quantummechanical observer—object theory is a “canvaswithmany
facets and nuances.” There is no one accepted view of the measurement problem.
The Ansätze proposed include, but are not limited to

(I) collapse models: modification of quantummechanics by the inclusion of some
additional non-linear, irreversible transformation accounting for von Neu-
mann’s process 1, and possible also for the transformation of pure states into
mixed ones [226, 237, 238, 544].

(II) Exner-Schrödinger thesis: all laws; in particular, also the unitary time evolution
of the quantum state, have to be understood merely statistically, and are not
valid individually [209, 262, 451].

(III) Noncollapse Schrödinger-type quantum jellification without observation or
measurement: in Schrödinger’s own words [457, pp. 19,20], “He [[the quan-
tum physicist]] thinks that if the laws of nature took this [[von Neumann’s
Process 2, permutation]] form for, let me say, a quarter of an hour, we should
find our surroundings rapidly turning into a quagmire, or sort of a feature-
less jelly or plasma, all contours becoming blurred, we ourselves probably
becoming jelly fish. . . . nature is prevented from rapid jellification only by our
perceiving or observing it. And I wonder that he is not afraid, when he puts a
ten-pound-note {his wrist-watch} into his drawer in the evening, he might find
it dissolved in the morning, because he has not kept watching it.”

(IV) Non-collapse Everettian type relative state formalism [30, 33, 205, 206, 208,
544, 545]: Everett realized that, due to nesting, there cannot occur any kind
of irreversibility, but just the formation of entanglement. Entanglement in turn
induces relational properties between objects and observers (a the price of
individual properties of those parties). Given a pure state and a measurement
not compatible with it, the coherent superposition decomposition of the state
in terms of the eigenstates of the measurement operator all constitute a valid
observer (observing agent) who subjectively experiences the outcome of the
measurement as unique.Maybe Everett would have even granted observers the
capacity of being in a coherent superposition yet having the illusory subjective
experience of uniqueness; but this is highly speculative; as well as all further
interpretations of his writings in terms of splitting worlds theory [207].

(V) Non-collapse and intrinsic incompleteness: already von Neumann mentions
(and immediately discards this as a solution of the measurement problem) the
possibility that [554, Sect. 6.2, p. 426] “. . . the result of the measurement is
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indeterminate, because the state of the observer before the measurement is
not known exactly. It is conceivable that such a mechanism might function,
because the state of information of the observer regarding his own state could
have absolute limitations, by the laws of nature.”5 Breuer has discussed this
possibility in a series of papers [72–74]. This is not dissimilar to self-nesting,
as discussed in Sect. 1.8.

(VI) Non-collapse entanglement (zero sum scenario, excluding consciousness): the
extrinsic state representation of the combined object and observer system is
pure and entangled, while intrinsically both the observer and the object, mis-
takenly perceived individually, are in mixed states. This line of thought might
have been best expressed by London and Bauer [341, 342] who base their
presentation on von Neumann’s treatment of the measurement process [552,
Chap. VI] (echoed also in Everett’s [206] andWigner’s [571] papers). Related
ideas can be found in Schrödinger’s accounts on entanglement [452, 453, 455],
which in turn have been influenced by a (nowadays famous) paper by Einstein,
Podolsky and Rosen [196].

(i) Initial phase: this conceptualization of the measurement process starts with
the supposition that initially the entire system consists of two isolated
systems O and A, identifiedwith an object and themeasurement apparatus,
respectively. Initially, if the respective states are pure and denoted by |ψO〉
aswell as |ψA〉, then thewave function of the entire systemcanbe composed
from the individual parts by multiplication; that is, |ψO&A〉 = |ψO〉 ⊗
|ψA〉 = |ψOψA〉. In this initial phase the object as well as the measurement
apparatus are separated and know nothing about each other, their joint state
|ψO&A〉 being non-entangled and without any relational properties.
Suppose further, for the sake of simplicity, that both the object as well as the
measurement device have an equal number k of mutually exclusive states
|ψO,i 〉 as well as |ψA, j 〉, with 1 ≤ i, j ≤ k, respectively. The operator A
corresponding to the measurement device should have a spectral resolution
of E = ∑k

j=1 a j |ψA, j 〉〈ψA, j |.
(ii) Interaction phase: in order to obtain information about each other, both

object and the measurement apparatus have to interact with each other.
This interaction is supposed to be representable by a unitary transforma-
tion. During this interaction, the initial state |ψO&A〉 is transformed into a
coherent superposition, a sum of products of individual states of O and A,
so that the state after the interaction phase is |ψ′

O&A〉 = ∑k
i, j=1 ϕi j |ψO,i 〉⊗

|ψA, j 〉 = ∑k
i, j=1 ϕi j |ψO,iψA, j 〉. Preferably, in a measurement, states of the

measurement apparatus “should get aligned” with states of the object, such
that ϕi j ≈ δi jϕi i and |ψ′

O&A〉 ≈ ∑k
i=1 ϕi i |ψO,iψA,i 〉.

5German original [554, Sect. 6.3, p 233], “. . . das Resultat der Messung ist unbestimmt, weil der
Zustand des Beobachters vor der Messung nicht genau bekannt ist. Es wäre denkbar, da ein solcher
Mechanismus funktioniert, denn die Informiertheit des Beobachters über den eigenen Zustand
könnte naturgesetzliche Schranken haben.”

http://dx.doi.org/10.1007/978-3-319-70815-7_1
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This state |ψ′
O&A〉 will in generally not be factorizable as a non-entangled

product state of individual states of O and A. Suppose further that it is not
the case; that is, suppose that |ψO&A〉 is entangled.

(iii) interpretation phase: depending on our viewpoint, conventions and incli-
nations,
i. on the one hand, |ψO&A〉 can either be perceived from the outside – that

is, extrinsically – and thus appear as pure entangled state of the combined
system of object and the measurement apparatus, encoding relational
information (that is, statistical correlations) among these subsystems,
but lacking complete information of individual subsystems;

ii. or, on the other hand, from the intrinsic point of view of individual sub-
systems, |ψO&A〉 can be analysed in terms of the individual components
by forcing some type of individuality (e.g., by taking the partial trace
with respect to one subsystem) upon the subsystems. In the latter case of
individuality forcing, as the wave function lacks complete information
about the individual subsystems, the respective undefined subsystem
properties are value indefinite.
As a side effect of individuality forcing, entanglement is fapp destroyed,
and |ψ′

O&A〉 undergoes a change back to a non-entangled state |ψ′′
O&A〉,

subject to the relational information contained in |ψ′
O&A〉.

One may ask how individuality can be enforced upon |ψ′
O&A〉. This can

be done by context translation [505] (for related ideas see Refs. [333,
520]); that is, by “translating” or “transforming” a misaligned mea-
surement context into one which can be analysed, possibly by a third
measurement device. This translation process introduces stochastic-
ity through the (supposedly many) degrees of freedom of the outside
measurement apparatus. Thereby, context translation involves fapp irre-
versibility [348] for macroscopic measurement devices [202, 461]. Yet
in principle the chaining or nesting of measurements results in a (poten-
tially infinite) regress.
If there is a regress, when does it stop? This can be answered by con-
sidering the smallest isolated system encompassing the original object
O as well as the measurement apparatus A. Already Baumann [37]
and Zeh [586] have pointed out that, strictly speaking, because of the
high density of energy niveaus in macroscopic systems, the interactions
between macroscopic systems are effective even at astronomical dis-
tances. Therefore these systems are exceedingly difficult to isolate; and
any system which includes all (nested) observers would encompass the
universe as a whole.

Most importantly, whatever the measurement outcome of measurements on
individual parts of the entangled object–measurement apparatus system, this
cannot correspond to some pre-existing, definite value solely residing within
the bounds of the observed object, because the information encoded in the
entangled state is (also, and in the extreme case solely and exclusively) in the
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relational properties of its constituent parts; and not about the individual states
of these constituents. Therefore, if one forces individuality, one has to add
additional information from the environment, in particular, the measurement
apparatus, which is not present in the original state.
The author is inclined to adopt this view of the measurement process – it is just
like zooming in and out of the situation: if one looks at it from an extrinsic,
outside, disentangled perspective (if one can afford such a view) – that is, as
an isolated holistic system including the observer and the object, as well as
the cut between them, the system is in a pure, well-defined state. However, if
one “zooms into” this system, and takes an embedded, intrinsic point of view,
then the individual constituents of the system – in particular, the object as well
as the observer – are underdefined and value definite. “Forcing individuality”
upon these constituents requires additional input from the environment (via
context translation), thereby introducing auxiliary bits which do not reflect any
property of those constituents.

(VII) consciousness causes state reduction: this scenario is identical to the previ-
ous one but employs nesting until the level of consciousness of the observer.
At this level, awareness by consciousness is then assumed to be essentially
irreversible. That is, it is assumed that one cannot “unthink” the perception
of a measurement. This point of view has been suggested by London and
Bauer [341, 342] as well as Wigner [571]; although the latter one may have
developed a different stance on this subject later [203]. For a critical discussion,
see Ref. [582].

12.11 Observer-Objects “Riding” on the Same State Vector

What does it mean “to ride on a particular section” of a vector in high dimensional
Hilbert space?Can two such sectors of one and the samevector constitute an observer-
object system? Where is the cut, the interface between those sections?

We suggest here that indeed itmight fapp be possible tomake a distinction between
observer and object; where both parties “ride” the same state. This distinction is
formally specified by Everett’s relative states; that is, it involves entangled states.

12.12 Metaphysical Status of Quantum Value Indefiniteness

What does it mean that a particular (quantum) entity is value indefinite? It means
that relative to, or with respect to, a particular physical resource or physical means,
the respective entity cannot be entirely, that is, completely and totally, defined. In
short: any proposition about physical value indefiniteness is means relative.



122 12 Quantum Mechanics in a Nutshell

If such an entity is “observed” nevertheless, then this “observation” must neces-
sarily introduce, add, input, and include, other specifications “outside” of the object.
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