WhoAreYou (WAY): A Mobile CUDA Powered
Picture ID Card Recognition System

Raffaele Montella, Alfredo Petrosino®™, and Vincenzo Santopietro

Department of Science and Technology, University of Naples Parthenope,
Naples, Italy
petrosino@uniparthenope.it

Abstract. The paper reports a novel cloud based approach for image
matching between high-resolution images of faces and low resolution
images of ID Cards. We design our application matching the mobile
cloud computing design guidelines with the use of CUDA kernel invo-
cation from regular mobile devices (devices that naively don’t support
CUDA GPGPUs) as a novel contribution. Face matching is performed
by the OpenFace deep neural network, which evaluates pre-processed
images in cloud, whilst pre-processing is done on mobile device. To test
our system, we built an image dataset of 30 subject caputeres in 10 dif-
ferent poses, denoised to reduce any traces of stamps or watermark on
the ID cards, mixed to the well known ORL and LFW datasets.

Keywords: Cloud computing - Neural network + Deep learning
Face matching

1 Introduction

This paper proposes a cloud based solution to automatic face matching between
low resolution photos on ID Cards and high-resolution face photos. This solution
could be applied to every possible scenario where an identification is required.
The are several aspects that may affect performances, that may be due to the
person that is going to be identified, due to the documents or to the acquisition
system, like hair-style changes, since the photo on ID Cards is shot way before
the identification step (aging), stamps or watermarks on the ID Card and other
aspects introduced by the acquisition system like the resolution of the device
used to scan the ID Card. As instance, in Fig. 1, we can clearly see some of the
aspects we discussed about, for example the poor conservation of the ID Card
on the right that led to the erosion of the photo.

The contribution of the present paper is thus twofold. We design our appli-
cation matching the mobile cloud computing design guidelines with the use of
CUDA kernel invocation from regular mobile devices (devices that naively don’t
support CUDA GPGPUs) to allow fase detection be a service to provide to
user who usually adopts mobile devices. Also, we describe a novel benchmarking
framework that we set up in order to evaluate and compare face detection based

© Springer International Publishing AG 2017
S. Battiato et al. (Eds.): ICTAP 2017 International Workshops, LNCS 10590, pp. 375-382, 2017.
https://doi.org/10.1007/978-3-319-70742-6_35

376 R. Montella et al.

Fig. 1. Two ID Cards obtained in different cities.

on matching for recognizing person identity by his/her face compared with ID
Card. The results are devoted to assess to what extent typical aspects in face
matching challenges pose troubles to common, like EigenFaces and LBPH, and
novel, like deep neural OpenFace, methods.

The paper is organized in four sections. Section 2 describes the system, while
Sect. 3 describes the algorithms adopted for benchmarking. Section4 reports
results and discusses some critical issues. Sections 5 draws some conclusions and
future developments.

2 Design and Architecture

The capabilities of mobile devices have been improving very quickly in terms of
computing power, storage, feature support, and developed applications [4]. We
design our application matching the mobile cloud computing design guidelines
with the use of CUDA kernel invocation from regular mobile devices (devices
that naively don’t support CUDA GPGPUs) as a novel contribution. To make it
possible we use GVirtuS4j [9] a pure Java framework enabling Android devices
to CUDA remote invocation calls using the GVirtuS Linux back-end [8]. The
developer prototypes the kernels on a CUDA enabled regular x86_64 machine.
Then the compiled kernels are embedded in the application project and invoked
using GVirtuS4j. The actual GPU used by the mobile phone could be hosted on
cloud or on premises: it works in both cases. Nevertheless for a real working ID
Card face recognition application the scalability and the availability is one of the
main design requirements. We used the Amazon Web Services because offering an
advanced Infrastructure as a Service deployment, affordable GPGPU equipped
virtual machine instances, a complete API for programmatical interaction with
the cloud and, last but not the least, a good level of service uptime.

The Figure 2 represents system big picture.

When the application is deployed in the wild, the user scan the ID-Card
picture using the WAY app. The app performs all the preparation steps using
the CUDA kernels invoked remotely in order to extract the face features. Then a

WhoAreYou (WAY): A Picture ID Card Recognition System 377

WAY
Mobile
Application

~
7

\ GVirtuS
/| Back-End Router

GVirtus4j

REST API
Interface
Data Access
Layer

s
2.
58
23S
<8
=y
ag®
o}

WAY

On Premises
Enterprise
Application

WAY
Embedded
Device

GVirtuS
Front-End

Fig. 2. The architectural schema of the Amazon Web Service deployment. Dotted
lines represent GVirtuS CUDA remote invocations performed by mobile or embedded
devices. Filled lines are regular REST requests/responses performed by client applica-
tions or remote enterprise infrastructures.

REST service is invoked for the main recognition step. The result is returned by
the service. The both stages could be computationally intensive, battery eager,
and privacy demanding. With the proposed system we overcome the three pits:

— Compute-intensive operations: the GVirtuS load balancer distributes CUDA
remote kernel invocations on different GPGPU enabled instances in respect
of computation load and costs;

— Battery-consuming task: the computation is offload tightly for CUDA invoca-
tion and loseley for feature recognition with the main target of energy usage
drainage mitigation.

— Privacy-enforcing: there is no ID-Card picture related image transfer among
the WAY app and the recognition engine: the app invokes the CUDA kernel
remotely in order to extract the pattern’s features. The app leverages on a
remote REST web service to get data about the recognized picture.

GVirtuS (back-end) and GVirtuS4j (front-end) implement a split driver
based virtualization and remoting. While other similar software components for
GPGPU vitalization are strongly CUDA oriented, GVirtuS is completely plug-
in based: both front-end/back-end and the communicator could be enhanced
implementing new capabilities.

The GPU virtualization architecture is based on a split-driver model [3] (also
known as driver paravirtualization), involves sharing a physical GPU. Hardware
management is left to a privileged domain. A front-end driver runs in the unpriv-
ileged VM and forwards calls to the back-end driver in the privileged domain [5].
The back-end driver then takes care of sharing resources among virtual machines.
This approach requires special drivers for the guest VM. The split driver model
is currently the only GPU virtualization technique that effectively allows sharing

378 R. Montella et al.

the same GPU hardware between several VMs simultaneously [7]. This frame-
work offers virtualization for generic GPU libraries on traditional x86 computers.
At the current state, GVirtuS supports leading GPGPU programming models
such as CUDA and OpenCL. It also enables platform independence from all the
underlying involved technologies (i.e. hypervisor, communicator, and target of
virtualization).

The GPU Accelerator Load Balancer component is responsible for GPGPU
enabled instances metrics measurement and related policy enforcement in order
to honour the expected performances.

The GVirtuS Back-End Router component ensure the coherence between
GPGPU enabled clients and the cloud hosted back-end instances.

2.1 The Toolkit Libraries

In order to extend the set of CUDA functions supported by GvirtuS, it necessary
to define three main components for each library that are responsible for the
communication between the guest and host machine:

— Front-end Layer
— Back-end Layer
— Function Handler

The first one contains the definitions of the wrapper functions called by
the client, with the same signature as the library ones, where the name of
the requested routine and the addresses of the input parameters, variables and
host/device pointers, are encapsulated in a buffer that is sent to the back-end
through a communicator. For each CUDA toolkit library the back-end layer
stores a function handler that declares, for each function of the toolkit library, a
handler function used to execute the requested routine properly. Once the buffer
is received by the back-end, the handler retrieves the input parameters, executes
the requested routine and if needed sends a buffer containing the output vari-
ables and host/device pointers back to the client. With the described technique
we implemented cuFFT, cuBLAS, cuRAND e cuDNN libraries we used for the
algorithm implementation.

3 Face Matching

In this section we are going to describe the algorithms used and their perfor-
mances, focusing on the approach based on deep learning.

3.1 Eigenfaces

Given an image of a face that has to be recognized, the algorithm [12] compares
the input image with other images of known subjects. The most meaninfgul fea-
tures are called eigenfaces, since they represent the eigenvectors of the features-
space. We can recognize a face by comparing the sum of the eigenvectors of an
unknown face and the sum of the eigevectors of a known face. This approach
may fail often if the background is rich of details or the size of the face changes.

WhoAreYou (WAY): A Picture ID Card Recognition System 379

3.2 LBPH

Local Binary Patterns (LBP) [1] is a highly used operator in computer vision.
This approach is robust when there are light changes, since it uses local features.
LBP is based on a non-parametric operator defined as a binary string (descriptor
of p), which given a pixel p in position (z,y), estimates the structure of the
neighborhood of p. Let’s consider a 3 x 3 window, as shown in Fig. 3, each bit of
the string is 1 if the value of the pixel of the corresponding pixel in neighborhood
is less than the central pixel. Furthermore, the LBP operator has been extended
(Extended Local Binary Patterns) in order to handle windows of arbitrary size.

7

oJo]o]®
' Binary: 00010011
9|56 | Threshold_ |1 ! Decimal: 19
!
3 1jojo]y
4

Fig. 3. LBP operator example

3.3 OpenFace

OpenFace [2] is a Python and Torch implementation of face recognition with
deep neural networks [11]. OpenFace is based on the logic flow shown in Fig. 4
to compute low-dimensional representations for the faces in the image. The face
detection procedure returns a list of bounding boxes, but there’s the problem
that a face could not be looking right into the camera. OpenFace handles this
situations by applying a 2D affine transformation, which also crops the face so
the image is 96 x 96 pixels. This image in then processed by the neural network
estimates the normalized probability for each user of our database.

4 FEvaluation

We have conducted four tests in order to evaluate the performances of the
approaches mentioned before for face recognition between the photo extracted
from the ID Card and a high-resolution photo. We used:

1. ID Card photos and high-resolution photos of 30 subjects (FRs)
2. ORL Database
3. LFW database

In order to create the dataset the first dataset used for performance evalu-
ation, we used a 13 megapixels camera to take high-resolution images of faces
and a Brother MFC 1910W to scan the ID Cards. High-resolution face photos
have been taken at a distance of 150 cm in a closed environment with white
background. We collected data from 30 subjects, whose age goes from 25 up to
45. These data can be arranged in three subsets:

380 R. Montella et al.

(Faces)

Preprocessing

Neural Network

Representation

Classification

Fig. 4. Face recognition with Neural Networks, as shown in [2]

— Face subset (Fs), which contains high-resolution face images

— ID Card Face subset (IDCFs), which contains the photos on the scanned
ID Cards

— Face Recognition subset (FRs), which contains the pre-processed images
from the Fs and IDCFs.

The ORL [10] dataset of faces, now claimed AT&T “The Database of Faces”,
includes ten different images of each of 40 distinct subjects. For some subjects,
the images were taken at different times, varying the lighting, facial expressions
(open/closed eyes, smiling/not smiling) and facial details (glasses/no glasses).
All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some side movement).

Labeled Faces in the Wild [6] is a database of face photographs designed for
studying the problem of unconstrained face recognition. The data set contains
more than 13,000 images of faces collected from the web. Each face has been
labeled with the name of the person pictured. 1680 of the people pictured have
two or more distinct photos in the data set.

For each test we performed the training of the faces included in the FRs, a
substet of identities from ORL and FLW databases. Then the face recognition
procedure is executed over the face extracted from an ID Card. For each test
we changed the number of identities that composes the training set, setting it
to 10,25,50,100. Since we only have 30 identities that are linked to an ID Card,
we performed 30 test of identification. We performed tests on a remote machine
with an Intel Core i5-3320m CPU and a Nvidia Geforce 920m. Figure5 show
that the OpenFace solution is of course the most accurate.

WhoAreYou (WAY): A Picture ID Card Recognition System 381

80
70
60
50
40
30
20
10

0

10 25 50 100

Number of identities

Recognition Accuracy (%)

ki EigenFaces M LBPH M Openface

Fig. 5. Algorithms’ accuracy

5 Conclusions and Future Works

The exponential growth of computer hardware performance is leading to faster
matching. A system like WAY uses a video stream which is already being cap-
tured in most of the places in which security is important, like airports, banks
ete. As future work we could use the proposed system with company badges too
and not just with ID Cards, capturing employees entrance end exit times. This
kind of application is not affected by aging and light changes, since the training
photos of the employees can be updated regularly and the camera is set in the
always in the same place.

Acknowledgement. This research has been funded by the European Commission
under the Horizon 2020 program through Grant Agreement No 644312, corresponding
to the “Heterogeneous Secure Multi-level Remote Acceleration Service for Low-Power
Integrated Systems and Devices” (RAPID) project.

References

1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns:
Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12),
2037-2041 (2006)

2. Amos, B., Ludwiczuk, B., Satyanarayanan, M.: Open-face: a general-purpose face
recognition library with mobile applications. Technical report CMU-CS-16-118,
CMU School of Computer Science (2016)

3. Armand, F., Gien, M.: A practical look at micro-kernels and virtual machine
monitors. In: Proceedings of the 6th IEEE Conference on Consumer Com-
munications and Networking Conference, CCNC 2009, pp. 395-401. IEEE
Press, Las Vegas (2009). ISBN:978-1-4244-2308-8, http://dl.acm.org/citation.cfm?
id=1700527.1700644

4. Bahl, P., et al.: Advancing the state of mobile cloud computing. In: Proceedings of
the Third ACM Workshop on Mobile Cloud Computing and Services, pp. 21-28.
ACM (2012)

http://dl.acm.org/citation.cfm?id=1700527.1700644
http://dl.acm.org/citation.cfm?id=1700527.1700644

382

10.

11.

12.

R. Montella et al.

. Dunlap, G.W., et al.: Execution replay for multiprocessor virtual machines. In:

VEE 2008 - Proceedings of the 4th International Conference on Virtual Execu-
tion Environments, pp. 121-130 (2008). ISBN: 9781595937964. https://doi.org/10.
1145/1346256.1346273

. Learned-Miller, E., et al.: Labeled faces in the wild: a survey. In: Kawulok,

M., Emre Celebi, M., Smolka, B. (eds.) Advances in Face Detection and Facial
Image Analysis, pp. 189-248. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-25958-1_8

. Li, W.: GPU-based computation of Voxelized Minkowski Sums with Applications.

PhD thesis. University of California (2011)

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014)

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3-14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3_1

Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face
identication. In: Proceedings of 1994 IEEE Workshop on Applications of Computer
Vision, pp. 138142 (1994). https://doi.org/10.1109/ACV.1994.341300

Schro, F., Kalenichenko, D., Philbin, J.: FaceNet: a unied embedding for face recog-
nition and clustering. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015)

Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognit. Neurosci. 3(1), 71—
86 (1991). ISSN: 0898-929X

https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1145/1346256.1346273
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1007/978-3-319-25958-1_8
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1109/ACV.1994.341300

	WhoAreYou (WAY): A Mobile CUDA Powered Picture ID Card Recognition System
	1 Introduction
	2 Design and Architecture
	2.1 The Toolkit Libraries

	3 Face Matching
	3.1 Eigenfaces
	3.2 LBPH
	3.3 OpenFace

	4 Evaluation
	5 Conclusions and Future Works
	References

